-
Notifications
You must be signed in to change notification settings - Fork 1
/
checkpoint_utils.py
57 lines (39 loc) · 1.62 KB
/
checkpoint_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import torch
from flax.training.checkpoints import latest_checkpoint
def save_checkpoint(micro_step, model, engine, cfg, job_idx=None):
optimizer = engine.optimizer
scheduler = engine.scheduler
scaler = engine.scaler
state = {
"micro_step": micro_step,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict() if scheduler else {},
"scaler": scaler.state_dict()
}
exp_dir = os.path.join(cfg.out_dir, cfg.exp_name)
if job_idx is not None: # subfolder for each job in the sweep
exp_dir = os.path.join(exp_dir, f"job_idx_{job_idx}")
save_path = os.path.join(exp_dir, f'ckpt_micro_step_{micro_step}.pth')
print(f"Saving checkpoint to {save_path}")
torch.save(state, save_path)
print(f"Successfully saved checkpoint!")
def maybe_load_checkpoint(cfg, device):
ckpt = None
micro_step_start = 0
if cfg.resume:
# resume from a specified exp or from the same exp
exp_name = cfg.resume_exp_name if cfg.resume_exp_name is not None else cfg.exp_name
ckpt_dir = os.path.join(cfg.out_dir, exp_name)
print(f"Resuming from {ckpt_dir}")
# resume from a specified checkpoint or from the latest
if cfg.resume_micro_step is not None:
ckpt_path = os.path.join(ckpt_dir, f'ckpt_micro_step_{cfg.resume_micro_step}.pth')
else:
ckpt_path = latest_checkpoint(ckpt_dir, prefix='ckpt_')
# load checkpoint
print(f"Loading checkpoint from {ckpt_path}")
ckpt = torch.load(ckpt_path, map_location=device)
micro_step_start = ckpt['micro_step']
return ckpt, micro_step_start