-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_datasets.py
623 lines (480 loc) · 27.7 KB
/
load_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# SPDX-FileCopyrightText: 2024 Nico Hambauer, Sven Kruschel
#
# SPDX-License-Identifier: MIT
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import numpy as np
import pandas as pd
class Dataset:
def __init__(self, name: str, model_name: str):
self.name = name
""" name of the dataset"""
self.model_name = model_name
""" model name """
self.problem = None
""" classification or regression """
self.X = None
""" X data frame """
self.y = None
""" y data frame """
self.labels = None
""" discrete label values of the dataset: classification: [0, 1]"""
self.target_names = None
""" name of the label: classification: ['Negative Class', 'Positive Class'], regression: ['ValueName'] """
self.numerical_cols = None
""" list of numerical columns which are selected after preprocessing"""
self.categorical_cols = None
""" list of categorical feature names which are selected after preprocessing """
self.basic_dataset_metadata = None
""" dictionary with basic dataset metadata """
self.preprocessing_dataset_metadata = None
""" dictionary with preprocessing dataset metadata """
# Now load all these variables
self._load_by_name()
# self._replace_underscore()
def _replace_underscore(self):
self.X.columns = [col.replace('_', ' ') for col in self.X.columns]
self.numerical_cols = [col.replace('_', ' ') for col in self.numerical_cols]
self.categorical_cols = [col.replace('_', ' ') for col in self.categorical_cols]
def _load_by_name(self):
# classification data sets
if 'water' in self.name:
self.load_water_quality_data()
elif 'stroke' in self.name:
self.load_stroke_data()
elif 'telco' in self.name:
self.load_telco_churn_data()
elif 'fico' in self.name:
self.load_fico_data()
elif 'bank' in self.name:
self.load_bank_marketing_data()
elif 'adult' in self.name:
self.load_adult_data()
elif 'airline' in self.name:
self.load_airline_passenger_data()
elif 'college' in self.name:
self.load_college_data()
elif 'weather' in self.name:
self.load_weather_data()
elif 'compas' in self.name:
self.load_compas_data()
# Regression data sets
elif 'car' in self.name:
self.load_car_data()
elif 'student' in self.name:
self.load_student_grade_data()
elif 'crimes' in self.name:
self.load_crimes_data()
elif 'bike' in self.name:
self.load_bike_sharing_data()
elif 'housing' in self.name:
self.load_california_housing_data()
elif 'medical' in self.name:
self.load_medical_data()
elif 'crab' in self.name:
self.load_crab_data()
elif 'wine' in self.name:
self.load_wine_data()
elif 'diamond' in self.name:
self.load_diamond_data()
elif 'productivity' in self.name:
self.load_productivity_data()
elif 'mimic' in self.name:
self.load_mimic_data()
elif 'diabetes' in self.name:
self.load_diabetes_data()
else:
raise ValueError("Dataset not in our current dataset list! Add it to the load_datasets.py procedure!")
def _preprocess_columns(self, df):
"""
Drop variables with missing values >50%.
Replace missing numerical variable values by mean.
Replace missing categorical variable values by -1.
Drop categorical columns with more than 25 distinct values.
:return:
"""
assert len(self.numerical_cols) + len(self.categorical_cols) > 0, \
"Dataframe columns must be specified in load_datasets.py in order to preprocess them."
# Ensure there are no empty string in numerical columns and encode as float
df.loc[:, self.numerical_cols] = df.loc[:, self.numerical_cols].replace({'': np.nan, ' ': np.nan})
# select columns with more than 50 % missing values
incomplete_cols = df.columns[df.isnull().sum() / len(df) > 0.5]
# select categorical_cols with more than 25 unique values
detailed_cols = df[self.categorical_cols].nunique()[df[self.categorical_cols].nunique() > 25].index.tolist()
self.numerical_cols = [col for col in self.numerical_cols if col not in incomplete_cols]
self.categorical_cols = [col for col in self.categorical_cols if col not in incomplete_cols and col not in detailed_cols]
df = df.loc[:, self.numerical_cols + self.categorical_cols]
# For categorical columns with values: fill n/a-values with -1.
if len(self.categorical_cols) > 0:
for categorical_col in self.categorical_cols:
df.loc[:, categorical_col] = df.loc[:, categorical_col].fillna('unknown')
if self.model_name == "CATBOOST":
df.loc[:, categorical_col] = df.loc[:, categorical_col].astype(str)
else:
df.loc[:, categorical_col] = df.loc[:, categorical_col].astype('category')
# For numerical columns with values: fill n/a-values with median.
if len(self.numerical_cols) > 0:
for num_col in self.numerical_cols:
df.loc[:, num_col] = pd.to_numeric(df.loc[:, num_col], errors='coerce')
df.loc[:, num_col] = df.loc[:, num_col].fillna(df.loc[:, num_col].median())
# GAMens seem to have troubles with " " and "-", that why we replace them here
def replace_char_in_string(cell_value) -> str:
if isinstance(cell_value, str):
for char in [" ", "-", "?", "+", "~"]:
cell_value = cell_value.replace(char, "_")
return cell_value
else:
return cell_value
if self.model_name == "GAMENS":
df = df.applymap(replace_char_in_string)
return df
def load_water_quality_data(self):
# 1
# https://www.kaggle.com/adityakadiwal/water-potability
df = pd.read_csv('data/water_potability.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['ph', 'Hardness', 'Solids', 'Chloramines', 'Sulfate', 'Conductivity', 'Organic_carbon',
'Trihalomethanes', 'Turbidity']
self.categorical_cols = []
self.X = self._preprocess_columns(df)
self.y = df['Potability']
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['Not Potable', 'Potable']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_college_data(self):
# 2
# https://www.kaggle.com/code/alrafikri/classification-potential-to-go-to-college?scriptVersionId=99597664
df = pd.read_csv('data/college_data.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ["parent_age", "parent_salary", "house_area", "average_grades"]
self.categorical_cols = ["type_school", "school_accreditation", "gender", "interest", "residence",
"parent_was_in_college"]
self.X = self._preprocess_columns(df)
self.y = df['will_go_to_college']
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['No College', 'College']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_stroke_data(self):
# 3
# https://www.kaggle.com/fedesoriano/stroke-prediction-dataset
df = pd.read_csv('data/healthcare-dataset-stroke-data.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['age', 'avg_glucose_level', 'bmi']
self.categorical_cols = ['gender', 'hypertension', 'heart_disease', 'ever_married', 'work_type',
'Residence_type',
'smoking_status']
self.X = self._preprocess_columns(df)
self.y = df['stroke']
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['No Stroke', 'Stroke']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_telco_churn_data(self):
# 4
# https://www.kaggle.com/blastchar/telco-customer-churn/downloads/WA_Fn-UseC_-Telco-Customer-Churn.csv/1
df = pd.read_csv('data/WA_Fn-UseC_-Telco-Customer-Churn.csv')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['tenure', 'MonthlyCharges', 'TotalCharges']
self.categorical_cols = ['gender', 'SeniorCitizen', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines',
'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport',
'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod']
self.X = self._preprocess_columns(df)
self.y = df['Churn'] # 'Yes, No'
self.y = self.y.replace({'Yes': 1, 'No': 0})
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['No Churn', 'Churn']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_fico_data(self):
# 5
# https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=3
df = pd.read_csv('data/fico_heloc_dataset_v1.csv')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['ExternalRiskEstimate', 'MSinceOldestTradeOpen', 'MSinceMostRecentTradeOpen',
'AverageMInFile',
'NumSatisfactoryTrades', 'NumTrades60Ever2DerogPubRec', 'NumTrades90Ever2DerogPubRec',
'PercentTradesNeverDelq', 'MSinceMostRecentDelq', 'NumTotalTrades',
'NumTradesOpeninLast12M',
'PercentInstallTrades', 'MSinceMostRecentInqexcl7days', 'NumInqLast6M',
'NumInqLast6Mexcl7days',
'NetFractionRevolvingBurden', 'NetFractionInstallBurden', 'NumRevolvingTradesWBalance',
'NumInstallTradesWBalance', 'NumBank2NatlTradesWHighUtilization',
'PercentTradesWBalance']
self.categorical_cols = ['MaxDelq2PublicRecLast12M', 'MaxDelqEver']
self.X = self._preprocess_columns(df)
# Drop rows that only contain -9. Then, all negative values will be replaced by np.nan.
# np.nan are replaced by the column's mean in the preprocess_columns function later.
drop_index = (self.X.eq(-9)).all(1)
self.X = self.X[~drop_index]
# select all columns except the target column and do conditional indexing here
self.y = df['RiskPerformance'][~drop_index] # 'Good', 'Bad'
self.y = self.y.replace({'Good': 1, 'Bad': 0})
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['Bad', 'Good']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_adult_data(self):
# 6
# https: // archive.ics.uci.edu / ml / datasets / adult
df = pd.read_csv('data/adult_census_income.csv')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['age', 'fnlwgt', 'education.num', 'capital.gain', 'capital.loss', 'hours.per.week']
self.categorical_cols = ['workclass', 'education', 'marital.status', 'occupation', 'relationship', 'race',
'sex',
'native.country']
self.X = self._preprocess_columns(df)
self.y = df["income"]
self.y = self.y.replace({' <=50K': 0, ' >50K': 1})
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['Income <= 50K', 'Income > 50K']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_bank_marketing_data(self):
# 7
# https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
df = pd.read_csv('data/bank-full.csv', sep=';')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
# TODO: Replace -1 with np.nan
self.numerical_cols = ['age', 'balance', 'day', 'campaign', 'pdays', 'previous']
self.categorical_cols = ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month',
'poutcome']
self.X = self._preprocess_columns(df)
self.y = df['y']
self.y = self.y.replace({'yes': 1, 'no': 0})
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['No subscription', 'Yes, subscribed']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_compas_data(self):
# 8
# https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
df = pd.read_csv('data/compas-scores-two-years.csv')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['age', 'juv_fel_count', 'juv_misd_count', 'juv_other_count', 'priors_count',
'days_b_screening_arrest', 'c_days_from_compas']
self.categorical_cols = ['sex', 'age_cat', 'race', 'c_charge_degree', 'c_charge_desc']
self.X = self._preprocess_columns(df)
self.y = df['two_year_recid']
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['No recidivism', 'Recidivism']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_airline_passenger_data(self):
# 9
# https://www.kaggle.com/teejmahal20/airline-passenger-satisfaction
df = pd.read_csv('data/airline_train.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['Age', 'Flight Distance', 'Inflight wifi service', 'Departure/Arrival time convenient',
'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding',
'Seat comfort',
'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling',
'Checkin service', 'Inflight service', 'Cleanliness', 'Departure Delay in Minutes',
'Arrival Delay in Minutes']
self.categorical_cols = ['Gender', 'Customer Type', 'Type of Travel', 'Class']
self.X = self._preprocess_columns(df)
self.y = df['satisfaction']
self.y = self.y.replace({'satisfied': 1, 'neutral or dissatisfied': 0})
self.y = self.y.astype(int)
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['Neutral or dissatisfied', 'Satisfied']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_weather_data(self):
# 10
# https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
df = pd.read_csv('data/weatherAUS.csv', sep=',')
df = df.dropna(axis=0, subset='RainTomorrow')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine', 'WindGustSpeed',
'WindSpeed9am',
'WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Cloud9am',
'Cloud3pm',
'Temp9am', 'Temp3pm']
# TODO: Später mal die Performance nochmal anschauen, weil RainToday erstmal noch mit drin. Leakage?
self.categorical_cols = ['Location', 'WindGustDir', 'WindDir9am', 'WindDir3pm', 'RainToday']
self.X = self._preprocess_columns(df)
self.y = df['RainTomorrow']
self.y = self.y.replace({'No': 0, 'Yes': 1})
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['No rain tomorrow', 'Rain tomorrow']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_car_data(self):
# 11
# https://archive.ics.uci.edu/ml/datasets/automobile
df = pd.read_csv('data/car.data', sep=',')
df = df.replace("?", np.nan)
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-size', 'bore',
'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg']
self.categorical_cols = ['symboling', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style',
'drive-wheels',
'engine-location', 'engine-type', 'num-of-cylinders', 'fuel-system']
self.X = self._preprocess_columns(df)
self.y = df['price']
self.problem = 'regression'
self.labels = 'Price'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_student_grade_data(self):
# 12
# https://archive.ics.uci.edu/ml/datasets/Student+Performance
df = pd.read_csv('data/student-por.csv', sep=';')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['age', 'Medu', 'Fedu', 'traveltime', 'studytime', 'failures', 'famrel', 'freetime',
'goout',
'Dalc', 'Walc', 'health', 'absences']
self.categorical_cols = ['school', 'sex', 'address', 'famsize', 'Pstatus', 'Mjob', 'Fjob', 'reason',
'guardian', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher',
'internet',
'romantic']
self.X = self._preprocess_columns(df)
self.y = df['G3']
self.problem = 'regression'
self.labels = 'Grade'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_productivity_data(self):
# 13
# https://www.kaggle.com/datasets/ishadss/productivity-prediction-of-garment-employees?resource=download
df = pd.read_csv('data/garments_worker_productivity.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['targeted_productivity', 'smv', 'wip', 'over_time', 'incentive', 'idle_time', 'idle_men',
'no_of_style_change', 'no_of_workers']
self.categorical_cols = ['quarter', 'department', 'day', 'team']
self.X = self._preprocess_columns(df)
self.y = df['actual_productivity']
self.problem = 'regression'
self.labels = 'Productivity'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_medical_data(self):
# 14
# https://www.kaggle.com/datasets/mirichoi0218/insurance
df = pd.read_csv('data/insurance.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['age', 'bmi', 'children']
self.categorical_cols = ['sex', 'smoker', 'region']
self.X = self._preprocess_columns(df)
self.y = df['charges']
self.problem = 'regression'
self.labels = 'Charges'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_crimes_data(self):
# 15
# https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
df = pd.read_csv('data/communities.data', sep=',')
df = df.replace('?', np.nan)
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
non_predictive_features = ['state', 'county', 'community', 'communityname string', 'fold', 'ViolentCrimesPerPop']
self.numerical_cols = list(set(df.columns) - set(non_predictive_features))
self.categorical_cols = []
self.X = self._preprocess_columns(df)
self.y = df['ViolentCrimesPerPop']
self.problem = 'regression'
self.labels = 'Violent crimes per population'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_crab_data(self):
# 16
# https://www.kaggle.com/datasets/sidhus/crab-age-prediction
df = pd.read_csv('data/CrabAgePrediction.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['Length', 'Diameter', 'Height', 'Weight', 'Shucked Weight', 'Viscera Weight',
'Shell Weight']
self.categorical_cols = ['Sex']
self.X = self._preprocess_columns(df)
self.y = df['Age']
self.problem = 'regression'
self.labels = 'Age'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_wine_data(self):
# 17
# https://archive.ics.uci.edu/ml/datasets/wine+quality
df = pd.read_csv('data/winequality-white.csv', sep=';')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides',
'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol']
self.categorical_cols = []
self.X = self._preprocess_columns(df)
self.y = df['quality']
self.problem = 'regression'
self.labels = 'Quality'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_bike_sharing_data(self):
# 18
# https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
df = pd.read_csv('data/bike.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['mnth', 'hr', 'temp', 'atemp', 'hum', 'windspeed', 'weekday']
self.categorical_cols = ['season', 'yr', 'holiday', 'workingday', 'weathersit']
self.X = self._preprocess_columns(df)
self.y = df['cnt']
self.problem = 'regression'
self.labels = 'Rental Bike Count'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_california_housing_data(self):
# 19
# https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
df = pd.read_csv('data/cal_housing.data', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['longitude', 'latitude', 'housingMedianAge', 'totalRooms', 'totalBedrooms', 'population',
'households', 'medianIncome']
self.categorical_cols = []
self.X = self._preprocess_columns(df)
self.y = df['medianHouseValue']
self.problem = 'regression'
self.labels = 'Median House Value'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_diamond_data(self):
# 20
# https://www.kaggle.com/datasets/nancyalaswad90/diamonds-prices
df = pd.read_csv('data/Diamonds Prices2022.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['carat', 'depth', 'table', 'x', 'y', 'z']
self.categorical_cols = ['cut', 'color', 'clarity']
self.X = self._preprocess_columns(df)
self.y = df['price']
self.problem = 'regression'
self.labels = 'Price'
self.target_names = None
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_mimic_data(self):
# 21
# Src: Julian / Lasse
df = pd.read_csv('data/IHM-complete.csv', sep=',')
self.basic_dataset_metadata = {'n_samples': df.shape[0], 'n_columns': df.shape[1]}
self.numerical_cols = ['Capillary refill rate+100%mean', 'Capillary refill rate+100%std', 'Diastolic blood pressure+100%mean', 'Diastolic blood pressure+100%std', 'Fraction inspired oxygen+100%mean', 'Fraction inspired oxygen+100%std', 'Glascow coma scale eye opening+100%mean', 'Glascow coma scale eye opening+100%std', 'Glascow coma scale motor response+100%mean', 'Glascow coma scale motor response+100%std', 'Glascow coma scale total+100%mean', 'Glascow coma scale total+100%std', 'Glascow coma scale verbal response+100%mean', 'Glascow coma scale verbal response+100%std', 'Glucose+100%mean', 'Glucose+100%std', 'Heart Rate+100%mean', 'Heart Rate+100%std', 'Height+100%mean', 'Height+100%std', 'Mean blood pressure+100%mean', 'Mean blood pressure+100%std', 'Oxygen saturation+100%mean', 'Oxygen saturation+100%std', 'Respiratory rate+100%mean', 'Respiratory rate+100%std', 'Systolic blood pressure+100%mean', 'Systolic blood pressure+100%std', 'Temperature+100%mean', 'Temperature+100%std', 'Weight+100%mean', 'Weight+100%std', 'pH+100%mean', 'pH+100%std']
self.categorical_cols = []
self.X = self._preprocess_columns(df)
self.y = df['target']
self.problem = 'classification'
self.labels = [0, 1]
self.target_names = ['Alive', 'Dead']
self.preprocessing_dataset_metadata = {'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}
def load_diabetes_data(self):
#22
# Src: https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
df = pd.read_csv("data/diabetes.csv", sep=",")
self.basic_dataset_metadata = {"n_samples": df.shape[0], "n_columns": df.shape[1]}
self.numerical_cols = ['Age', 'Bmi' , 'Bp', 'Tc', 'Ldl', 'Hdl', 'Tch', 'Ltg', 'Glu']
self.categorical_cols = ['Sex']
self.X = self._preprocess_columns(df)
self.y = df['Progression']
self.problem = 'regression'
self.target_names = None
self.preprocessing_dataset_metadata={'n_samples': self.X.shape[0], 'n_columns': self.X.shape[1] + 1}