-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpipe.py
572 lines (510 loc) · 23.7 KB
/
pipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
"""module for pipelined image reconstruction and analysis"""
import logging
import os
from numbers import Integral
from textwrap import dedent
import numpy as np
from niftypet import nimpa
from ..lm import dynamic_timings
from ..lm.mmrhist import mmrhist
from ..prj import mmrrec
from . import obtain_image
from .mmrimg import image_affine
log = logging.getLogger(__name__)
def mmrchain(
datain, # all input data in a dictionary
scanner_params, # all scanner parameters in one dictionary
# containing constants, transaxial and axial
# LUTs.
outpath=None, # output path for results
fout=None, # full file name (any folders and extensions are disregarded)
frames=None, # definition of time frames, default: ['fluid', [0, 0]]
mu_h=None, # hardware mu-map.
mu_o=None, # object mu-map.
tAffine=None, # affine transformations for the mu-map for
# each time frame separately.
itr=4, # number of OSEM iterations
fwhm=0., # Gaussian Post-Smoothing FWHM
psf=None, # Resolution Modelling
recmod=-1, # reconstruction mode: -1: undefined, chosen
# automatically. 3: attenuation and scatter
# correction, 1: attenuation correction
# only, 0: no correction (randoms only).
histo=None, # input histogram (from list-mode data);
# if not given, it will be performed.
decay_ref_time=None, # decay corrects relative to the reference
# time provided; otherwise corrects to the scan
# start time.
trim=False,
trim_scale=2,
trim_interp=0, # interpolation for upsampling used in PVC
trim_memlim=True, # reduced use of memory for machines
# with limited memory (slow though)
trim_store=True,
pvcroi=None, # ROI used for PVC. If undefined no PVC
# is performed.
pvcreg_tool='niftyreg', # the registration tool used in PVC
store_rois=False, # stores the image of PVC ROIs
# as defined in pvcroi.
pvcpsf=None,
pvcitr=5,
fcomment='', # text comment used in the file name of
# generated image files
ret_sinos=False, # return prompt, scatter and randoms
# sinograms for each reconstruction
ret_histo=False, # return histogram (LM processing output) for
# each image frame
store_img=True,
store_img_intrmd=False,
store_itr=None, # store any reconstruction iteration in
# the list. ignored if the list is empty.
del_img_intrmd=False,
):
if frames is None:
frames = ['fluid', [0, 0]]
if mu_h is None:
mu_h = []
if mu_o is None:
mu_o = []
if pvcroi is None:
pvcroi = []
if pvcpsf is None:
pvcpsf = []
if store_itr is None:
store_itr = []
# decompose all the scanner parameters and constants
Cnt = scanner_params['Cnt']
# -------------------------------------------------------------------------
# HISOTGRAM PRECEEDS FRAMES
if histo is not None and 'psino' in histo:
frames = ['fluid', [histo['t0'], histo['t1']]]
else:
histo = None
log.warning(
'the given histogram does not contain a prompt sinogram--will generate a histogram.')
# FRAMES
# check for the provided dynamic frames
if isinstance(frames, list):
# Can be given in three ways:
# * a 1D list (duration of each frame is listed)
# * a more concise 2D list--repetition and duration lists in
# each entry. Must start with the 'def' entry.
# * a 2D list with fluid timings: must start with the string
# 'fluid' or 'timings'. a 2D list with consecutive lists
# describing start and end of the time frame, [t0, t1];
# The number of time frames for this option is unlimited,
# provided the t0 and t1 are within the acquisition times.
# 2D starting with entry 'fluid' or 'timings'
if (isinstance(frames[0], str) and frames[0] in ('fluid', 'timings')
and all(isinstance(t, list) and len(t) == 2 for t in frames[1:])):
t_frms = frames[1:]
# if 2D definitions, starting with entry 'def':
elif (isinstance(frames[0], str) and frames[0] == 'def'
and all(isinstance(t, list) and len(t) == 2 for t in frames[1:])):
# get total time and list of all time frames
t_frms = dynamic_timings(frames)['timings'][1:]
# if 1D:
elif all(isinstance(t, Integral) for t in frames):
# get total time and list of all time frames
t_frms = dynamic_timings(frames)['timings'][1:]
else:
log.error('osemdyn: frames definitions are not given in the correct list format:'
' 1D [15,15,30,30,...] or 2D list [[2,15], [2,30], ...]')
else:
log.error(
'provided dynamic frames definitions are incorrect (should be a list of definitions).')
raise TypeError('Wrong data type for dynamic frames')
# number of dynamic time frames
nfrm = len(t_frms)
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# create folders for results
if outpath is None:
petdir = os.path.join(datain['corepath'], 'reconstructed')
fmudir = os.path.join(datain['corepath'], 'mumap-obj')
pvcdir = os.path.join(datain['corepath'], 'PRCL')
else:
petdir = os.path.join(outpath, 'PET')
fmudir = os.path.join(outpath, 'mumap-obj')
pvcdir = os.path.join(outpath, 'PRCL')
if fout is not None:
# > get rid of folders
fout = os.path.basename(fout)
# > get rid of extension
fout = fout.split('.')[0]
# folder for co-registered mu-maps (for motion compensation)
fmureg = os.path.join(fmudir, 'registered')
# folder for affine transformation MR/CT->PET
petaff = os.path.join(petdir, 'faffine')
# folder for reconstructed images (dynamic or static depending on number of frames).
if nfrm > 1:
petimg = os.path.join(petdir, 'multiple-frames')
pvcdir = os.path.join(pvcdir, 'multiple-frames')
elif nfrm == 1:
petimg = os.path.join(petdir, 'single-frame')
pvcdir = os.path.join(pvcdir, 'single-frame')
else:
raise TypeError('Unrecognised/confusing time frames!')
# create now the folder
nimpa.create_dir(petimg)
# create folder
nimpa.create_dir(petdir)
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# MU-MAPS
# get the mu-maps, if given; otherwise will use blank mu-maps.
if tAffine is not None:
muod = obtain_image(mu_o, imtype='object mu-map')
else:
muod = obtain_image(mu_o, Cnt=Cnt, imtype='object mu-map')
# hardware mu-map
muhd = obtain_image(mu_h, Cnt, imtype='hardware mu-map')
# choose the mode of reconstruction based on the provided (or not) mu-maps
if muod['exists'] and muhd['exists'] and recmod == -1:
recmod = 3
elif (muod['exists'] or muhd['exists']) and recmod == -1:
recmod = 1
log.warning('partial mu-map: scatter correction is switched off.')
else:
if recmod == -1:
recmod = 0
log.warning(
'no mu-map provided: scatter and attenuation corrections are switched off.')
# -------------------------------------------------------------------------
# import pdb; pdb.set_trace()
# output dictionary
output = {}
output['recmod'] = recmod
output['frames'] = t_frms
output['#frames'] = nfrm
# if affine transformation is given
# the baseline mu-map in NIfTI file or dictionary has to be given
if tAffine is None:
log.info('using the provided mu-map the same way for all frames.')
else:
if len(tAffine) != nfrm:
raise ValueError("the number of affine transformations in the list"
" has to be the same as the number of dynamic frames")
elif not isinstance(tAffine, list):
raise ValueError("tAffine has to be a list of either 4x4 numpy arrays"
" of affine transformations or a list of file path strings")
elif 'fim' not in muod:
raise NameError("when tAffine is given, the object mu-map has to be"
" provided either as a dictionary or NIfTI file")
# check if all are file path strings to the existing files
if all(isinstance(t, str) for t in tAffine):
if all(os.path.isfile(t) for t in tAffine):
# the internal list of affine transformations
faff_frms = tAffine
log.info('using provided paths to affine transformations for each dynamic frame.')
else:
raise IOError('not all provided paths are valid!')
# check if all are numpy arrays
elif all(isinstance(t, (np.ndarray, np.generic)) for t in tAffine):
# create the folder for dynamic affine transformations
nimpa.create_dir(petaff)
faff_frms = []
for i in range(nfrm):
fout_ = os.path.join(petaff, 'affine_frame(' + str(i) + ').txt')
np.savetxt(fout_, tAffine[i], fmt='%3.9f')
faff_frms.append(fout_)
log.info('using provided numpy arrays affine transformations for each dynamic frame.')
else:
raise ValueError(
'Affine transformations for each dynamic frame could not be established.')
# -------------------------------------------------------------------------------------
# get ref image for mu-map resampling
# -------------------------------------------------------------------------------------
if 'fmuref' in muod:
fmuref = muod['fmuref']
log.info('reusing the reference mu-map from the object mu-map dictionary.')
else:
# create folder if doesn't exists
nimpa.create_dir(fmudir)
# ref file name
fmuref = os.path.join(fmudir, 'muref.nii.gz')
# ref affine
B = image_affine(datain, Cnt, gantry_offset=False)
# ref image (blank)
im = np.zeros((Cnt['SO_IMZ'], Cnt['SO_IMY'], Cnt['SO_IMX']), dtype=np.float32)
# store ref image
nimpa.array2nii(im, B, fmuref)
log.info('generated a reference mu-map in:\n{}'.format(fmuref))
# -------------------------------------------------------------------------------------
output['fmuref'] = fmuref
output['faffine'] = faff_frms
# output list of intermediate file names for mu-maps and PET images
# (useful for dynamic imaging)
if tAffine is not None: output['fmureg'] = []
if store_img_intrmd:
output['fpeti'] = []
if fwhm > 0:
output['fsmoi'] = []
# > number of3D sinograms
if Cnt['SPN'] == 1:
snno = Cnt['NSN1']
elif Cnt['SPN'] == 11:
snno = Cnt['NSN11']
else:
raise ValueError('unrecognised span: {}'.format(Cnt['SPN']))
# dynamic images in one numpy array
dynim = np.zeros((nfrm, Cnt['SO_IMZ'], Cnt['SO_IMY'], Cnt['SO_IMY']), dtype=np.float32)
# if asked, output only scatter+randoms sinogram for each frame
if ret_sinos and itr > 1 and recmod > 2:
dynmsk = np.zeros((nfrm, Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32)
dynrsn = np.zeros((nfrm, snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32)
dynssn = np.zeros((nfrm, snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32)
dynpsn = np.zeros((nfrm, snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32)
# > returning dictionary of histograms if requested
if ret_histo:
hsts = {}
# import pdb; pdb.set_trace()
# starting frame index with reasonable prompt data
ifrmP = 0
# iterate over frame index
for ifrm in range(nfrm):
# start time of a current (ifrm-th) dynamic frame
t0 = int(t_frms[ifrm][0])
# end time of a current (ifrm-th) dynamic frame
t1 = int(t_frms[ifrm][1])
# --------------
# check if there is enough prompt data to do a reconstruction
# --------------
log.info('dynamic frame times t0={}, t1={}:'.format(t0, t1))
if histo is None:
hst = mmrhist(datain, scanner_params, t0=t0, t1=t1)
else:
hst = histo
log.info(
dedent('''\
------------------------------------------------------
using provided histogram
------------------------------------------------------'''))
if ret_histo:
hsts[str(t0) + '-' + str(t1)] = hst
if np.sum(hst['dhc']) > 0.99 * np.sum(hst['phc']):
log.warning(
dedent('''\
===========================================================================
amount of randoms is the greater part of prompts => omitting reconstruction
==========================================================================='''))
ifrmP = ifrm + 1
continue
# --------------------
# transform the mu-map if given the affine transformation for each frame
if tAffine is not None:
# create the folder for aligned (registered for motion compensation) mu-maps
nimpa.create_dir(fmureg)
# the converted nii image resample to the reference size
fmu = os.path.join(fmureg, 'mumap_dyn_frm' + str(ifrm) + fcomment + '.nii.gz')
# TODO: add `-pad 0`, drop `-inter 1`?
nimpa.resample_niftyreg(fmuref, muod['fim'], faff_frms[ifrm], fimout=fmu)
# get the new mu-map from the just resampled file
muodct = nimpa.getnii(fmu, output='all')
muo = muodct['im']
muo[muo < 0] = 0
output['fmureg'].append(fmu)
else:
muo = muod['im']
# ---------------------
# output image file name
if nfrm > 1:
frmno = '_frm' + str(ifrm)
else:
frmno = ''
# run OSEM reconstruction of a single time frame
recimg = mmrrec.osemone(datain, [muhd['im'], muo], hst, scanner_params,
decay_ref_time=decay_ref_time, recmod=recmod, itr=itr, fwhm=fwhm,
psf=psf, outpath=petimg, frmno=frmno, fcomment=fcomment + '_i',
store_img=store_img_intrmd, store_itr=store_itr, fout=fout,
ret_sinos=ret_sinos)
# form dynamic Numpy array
if fwhm > 0:
dynim[ifrm, :, :, :] = recimg.imsmo
else:
dynim[ifrm, :, :, :] = recimg.im
if ret_sinos and itr > 1 and recmod > 2:
dynpsn[ifrm, :, :, :] = np.squeeze(hst['psino'])
dynssn[ifrm, :, :, :] = np.squeeze(recimg.ssn)
dynrsn[ifrm, :, :, :] = np.squeeze(recimg.rsn)
dynmsk[ifrm, :, :, :] = np.squeeze(recimg.amsk)
if store_img_intrmd:
output['fpeti'].append(recimg.fpet)
if fwhm > 0:
output['fsmoi'].append(recimg.fsmo)
if nfrm == 1: output['tuple'] = recimg
output['im'] = np.squeeze(dynim)
if ret_sinos and itr > 1 and recmod > 2:
output['sinos'] = {
'psino': np.squeeze(dynpsn), 'ssino': np.squeeze(dynssn), 'rsino': np.squeeze(dynrsn),
'amask': np.squeeze(dynmsk)}
if ret_histo:
output['hst'] = hsts
# ----------------------------------------------------------------------
# trim the PET image
# images have to be stored for PVC
if pvcroi: store_img_intrmd = True
if trim:
# create file name
if 'lm_dcm' in datain:
fnm = os.path.basename(datain['lm_dcm'])[:20]
elif 'lm_ima' in datain:
fnm = os.path.basename(datain['lm_ima'])[:20]
# trim PET and upsample
petu = nimpa.imtrimup(dynim, affine=image_affine(datain, Cnt), scale=trim_scale,
int_order=trim_interp, outpath=petimg, fname=fnm, fcomment=fcomment,
fcomment_pfx=fout + '_', store_img=trim_store,
store_img_intrmd=store_img_intrmd, memlim=trim_memlim,
verbose=log.getEffectiveLevel())
output.update({
'trimmed': {'im': petu['im'], 'fpet': petu['fimi'], 'affine': petu['affine']}})
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# run PVC if requested and required input given
if pvcroi:
if not os.path.isfile(datain['T1lbl']):
raise Exception('No labels and/or ROIs image definitions found!')
else:
# get the PSF kernel for PVC
if not pvcpsf:
pvcpsf = nimpa.psf_measured(scanner='mmr', scale=trim_scale)
else:
if (
isinstance(pvcpsf, (np.ndarray, np.generic)) and
pvcpsf.shape != (3, 2 * Cnt['RSZ_PSF_KRNL'] + 1)
): # yapf: disable
raise ValueError(
'the PSF kernel has to be an numpy array with the shape of ({},{})'.format(
3, 2 * Cnt['RSZ_PSF_KRNL'] + 1))
# > file names for NIfTI images of PVC ROIs and PVC corrected PET
froi = []
fpvc = []
# > perform PVC for each time frame
dynpvc = np.zeros(petu['im'].shape, dtype=np.float32)
for i in range(ifrmP, nfrm):
# transform the parcellations (ROIs) if given the affine transformation for each frame
if tAffine is None:
log.warning(
'affine transformation are not provided: will generate for the time frame.')
faffpvc = None
# raise StandardError('No affine transformation')
else:
faffpvc = faff_frms[i]
# chose file name of individual PVC images
if nfrm > 1:
fcomment_pvc = '_frm' + str(i) + fcomment
else:
fcomment_pvc = fcomment
# ===========================
# perform PVC
petpvc_dic = nimpa.pvc_iyang(petu['fimi'][i], datain, Cnt, pvcroi, pvcpsf,
tool=pvcreg_tool, itr=pvcitr, faff=faffpvc,
fcomment=fcomment_pvc, outpath=pvcdir,
store_rois=store_rois, store_img=store_img_intrmd)
# ===========================
if nfrm > 1:
dynpvc[i, :, :, :] = petpvc_dic['im']
else:
dynpvc = petpvc_dic['im']
fpvc.append(petpvc_dic['fpet'])
if store_rois: froi.append(petpvc_dic['froi'])
# > update output dictionary
output.update({'impvc': dynpvc})
output['fprc'] = petpvc_dic['fprc']
output['imprc'] = petpvc_dic['imprc']
if store_img_intrmd: output.update({'fpvc': fpvc})
if store_rois: output.update({'froi': froi})
# ----------------------------------------------------------------------
if store_img:
# description for saving NIFTI image
# attenuation number: if only bed present then it is 0.5
attnum = (1 * muhd['exists'] + 1 * muod['exists']) / 2.
descrip = (f"alg=osem"
f";att={attnum*(recmod>0)}"
f";sct={1*(recmod>1)}"
f";spn={Cnt['SPN']}"
f";sub=14"
f";itr={itr}"
f";fwhm={fwhm}"
f";psf={psf}"
f";nfrm={nfrm}")
# squeeze the not needed dimensions
dynim = np.squeeze(dynim)
# NIfTI file name for the full PET image (single or multiple frame)
# save the image to NIfTI file
if nfrm == 1:
t0 = hst['t0']
t1 = hst['t1']
if t1 == t0:
t0 = 0
t1 = hst['dur']
# > --- file naming and saving ---
if fout is None:
fpet = os.path.join(
petimg,
os.path.basename(recimg.fpet)[:8] + f'_t-{t0}-{t1}sec_itr-{itr}')
fpeto = f"{fpet}{fcomment}.nii.gz"
else:
fpeto = os.path.join(petimg, os.path.basename(fout) + '.nii.gz')
nimpa.prc.array2nii(dynim[::-1, ::-1, :], recimg.affine, fpeto, descrip=descrip)
# > --- ---
else:
if fout is None:
fpet = os.path.join(petimg,
os.path.basename(recimg.fpet)[:8] + f'_nfrm-{nfrm}_itr-{itr}')
fpeto = f"{fpet}{fcomment}.nii.gz"
else:
fpeto = os.path.join(petimg, os.path.basename(fout) + f'_nfrm-{nfrm}.nii.gz')
nimpa.prc.array2nii(dynim[:, ::-1, ::-1, :], recimg.affine, fpeto, descrip=descrip)
output['fpet'] = fpeto
# get output file names for trimmed/PVC images
if trim:
# folder for trimmed and dynamic
pettrim = os.path.join(petimg, 'trimmed')
# make folder
nimpa.create_dir(pettrim)
# trimming scale added to NIfTI descritoption
descrip_trim = f'{descrip};trim_scale={trim_scale}'
# file name for saving the trimmed image
if fout is None:
fpetu = os.path.join(
pettrim,
os.path.basename(fpet) + f'_recon-trimmed-upsampled-scale-{trim_scale}')
else:
fpetu = os.path.join(
pettrim,
os.path.basename(fout) + f'_recon-trimmed-upsampled-scale-{trim_scale}')
# in case of PVC
if pvcroi:
# itertive Yang (iY) added to NIfTI descritoption
descrip_pvc = f'{descrip_trim};pvc=iY'
# file name for saving the PVC NIfTI image
fpvc = f"{fpetu}_PVC{fcomment}.nii.gz"
output['trimmed']['fpvc'] = fpvc
# update the trimmed image file name
fpetu += f'{fcomment}.nii.gz'
# store the file name in the output dictionary
output['trimmed']['fpet'] = fpetu
# save images
if nfrm == 1:
if trim:
nimpa.prc.array2nii(petu['im'][::-1, ::-1, :], petu['affine'], fpetu,
descrip=descrip_trim)
if pvcroi:
nimpa.prc.array2nii(dynpvc[::-1, ::-1, :], petu['affine'], fpvc,
descrip=descrip_pvc)
elif nfrm > 1:
if trim:
nimpa.prc.array2nii(petu['im'][:, ::-1, ::-1, :], petu['affine'], fpetu,
descrip=descrip_trim)
if pvcroi:
nimpa.prc.array2nii(dynpvc[:, ::-1, ::-1, :], petu['affine'], fpvc,
descrip=descrip_pvc)
if del_img_intrmd:
if pvcroi:
for fi in fpvc:
os.remove(fi)
if trim:
for fi in petu['fimi']:
os.remove(fi)
return output