-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit_sweep.sh
43 lines (30 loc) · 1.14 KB
/
init_sweep.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/bin/bash
# ###############################################################################
#
# Inits a weights & biases sweep for the ViT
#
# ###############################################################################
# You _must_ specify the partition. Rosie's default is the 'teaching'
# partition for interactive nodes. Another option is the 'batch' partition.
#SBATCH --partition=teaching
#SBATCH --account=undergrad_research
#SBATCH --mail-type=ALL
# The number of nodes to request
#SBATCH --nodes=1
# The number of GPUs to request
#SBATCH --gpus=0
# The number of CPUs to request per GPU
#SBATCH --cpus-per-gpu=16
# Prevent out file from being generated
#SBATCH --output=./segm/outputs/slurm-%j.out
# Create logging directory
now=$(date +"%m-%d-%y|%H:%M:%S")
# Path to container
#container="/data/containers/msoe-tensorflow-20.07-tf2-py3.sif"
container="/data/containers/msoe-pytorch-20.07-py3.sif"
# Command to run inside container
command="python wandb_search.py"
# Define dataset location
location="~/laviolette/segmenter/ade20k"
# Execute singularity container on node.
singularity exec --nv -B /data:/data ${container} ${command}