-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
251 lines (229 loc) · 9.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from tqdm import tqdm
from time import sleep
import torch.utils.data as Data
import torch.nn.functional as F
import torch.nn as nn
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import argparse
import librosa
import random
import torch
import os
class UNet(nn.Module):
def __init__(self):
super().__init__()
# Define the network components
self.conv1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size = (5, 5), stride=(2, 2), padding=2),
nn.BatchNorm2d(16),
nn.LeakyReLU(True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size = (5, 5), stride=(2, 2), padding=2),
nn.BatchNorm2d(32),
nn.LeakyReLU(True)
)
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size = (5, 5), stride=(2, 2), padding=2),
nn.BatchNorm2d(64),
nn.LeakyReLU(True)
)
self.conv4 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size = (5, 5), stride=(2, 2), padding=2),
nn.BatchNorm2d(128),
nn.LeakyReLU(True)
)
self.conv5 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size = (5, 5), stride=(2, 2), padding=2),
nn.BatchNorm2d(256),
nn.LeakyReLU(True)
)
self.conv6 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size = (5, 5), stride=(2, 2), padding=2),
nn.BatchNorm2d(512),
nn.LeakyReLU(True)
)
self.deconv1 = nn.ConvTranspose2d(512, 256, kernel_size = (5, 5), stride=(2, 2), padding=2)
self.deconv1_BAD = nn.Sequential(
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Dropout2d(0.5)
)
self.deconv2 = nn.ConvTranspose2d(512, 128, kernel_size = (5, 5), stride=(2, 2), padding=2)
self.deconv2_BAD = nn.Sequential(
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.Dropout2d(0.5)
)
self.deconv3 = nn.ConvTranspose2d(256, 64, kernel_size = (5, 5), stride=(2, 2), padding=2)
self.deconv3_BAD = nn.Sequential(
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.Dropout2d(0.5)
)
self.deconv4 = nn.ConvTranspose2d(128, 32, kernel_size = (5, 5), stride=(2, 2), padding=2)
self.deconv4_BAD = nn.Sequential(
nn.BatchNorm2d(32),
nn.ReLU(True),
nn.Dropout2d(0.5)
)
self.deconv5 = nn.ConvTranspose2d(64, 16, kernel_size = (5, 5), stride=(2, 2), padding=2)
self.deconv5_BAD = nn.Sequential(
nn.BatchNorm2d(16),
nn.ReLU(True),
nn.Dropout2d(0.5)
)
self.deconv6 = nn.ConvTranspose2d(32, 1, kernel_size = (5, 5), stride=(2, 2), padding=2)
# Define loss list
self.loss_list_vocal = []
self.Loss_list_vocal = []
# Define the criterion and optimizer
self.optim = torch.optim.Adam(self.parameters(), lr=1e-3)
self.crit = nn.L1Loss()
#self.to('cuda')
# ==============================================================================
# IO
# ==============================================================================
def load(self, path):
if os.path.exists(path):
print("Load the pre-trained model from {}".format(path))
state = torch.load(path)
for (key, obj) in state.items():
if len(key) > 10:
if key[1:9] == 'oss_list':
setattr(self, key, obj)
self.conv1.load_state_dict(state['conv1'])
self.conv2.load_state_dict(state['conv2'])
self.conv3.load_state_dict(state['conv3'])
self.conv4.load_state_dict(state['conv4'])
self.conv5.load_state_dict(state['conv5'])
self.conv6.load_state_dict(state['conv6'])
self.deconv1.load_state_dict(state['deconv1'])
self.deconv2.load_state_dict(state['deconv2'])
self.deconv3.load_state_dict(state['deconv3'])
self.deconv4.load_state_dict(state['deconv4'])
self.deconv5.load_state_dict(state['deconv5'])
self.deconv6.load_state_dict(state['deconv6'])
self.deconv1_BAD.load_state_dict(state['deconv1_BAD'])
self.deconv2_BAD.load_state_dict(state['deconv2_BAD'])
self.deconv3_BAD.load_state_dict(state['deconv3_BAD'])
self.deconv4_BAD.load_state_dict(state['deconv4_BAD'])
self.deconv5_BAD.load_state_dict(state['deconv5_BAD'])
self.optim.load_state_dict(state['optim'])
else:
print("Pre-trained model {} is not exist...".format(path))
def save(self, path):
# Record the parameters
state = {
'conv1': self.conv1.state_dict(),
'conv2': self.conv2.state_dict(),
'conv3': self.conv3.state_dict(),
'conv4': self.conv4.state_dict(),
'conv5': self.conv5.state_dict(),
'conv6': self.conv6.state_dict(),
'deconv1': self.deconv1.state_dict(),
'deconv2': self.deconv2.state_dict(),
'deconv3': self.deconv3.state_dict(),
'deconv4': self.deconv4.state_dict(),
'deconv5': self.deconv5.state_dict(),
'deconv6': self.deconv6.state_dict(),
'deconv1_BAD': self.deconv1_BAD.state_dict(),
'deconv2_BAD': self.deconv2_BAD.state_dict(),
'deconv3_BAD': self.deconv3_BAD.state_dict(),
'deconv4_BAD': self.deconv4_BAD.state_dict(),
'deconv5_BAD': self.deconv5_BAD.state_dict(),
}
# Record the optimizer and loss
state['optim'] = self.optim.state_dict()
for key in self.__dict__:
if len(key) > 10:
if key[1:9] == 'oss_list':
state[key] = getattr(self, key)
torch.save(state, path)
# ==============================================================================
# Set & Get
# ==============================================================================
def getLoss(self, normalize = False):
loss_dict = {}
for key in self.__dict__:
if len(key) > 9 and key[0:9] == 'loss_list':
if not normalize:
loss_dict[key] = round(getattr(self, key)[-1], 6)
else:
loss_dict[key] = np.mean(getattr(self, key))
return loss_dict
def getLossList(self):
loss_dict = {}
for key in self.__dict__:
if len(key) > 9 and key[0:9] == 'Loss_list':
loss_dict[key] = getattr(self, key)
return loss_dict
def forward(self, mix):
conv1_out = self.conv1(mix)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
conv4_out = self.conv4(conv3_out)
conv5_out = self.conv5(conv4_out)
conv6_out = self.conv6(conv5_out)
deconv1_out = self.deconv1(conv6_out, output_size = conv5_out.size())
deconv1_out = self.deconv1_BAD(deconv1_out)
deconv2_out = self.deconv2(torch.cat([deconv1_out, conv5_out], 1), output_size = conv4_out.size())
deconv2_out = self.deconv2_BAD(deconv2_out)
deconv3_out = self.deconv3(torch.cat([deconv2_out, conv4_out], 1), output_size = conv3_out.size())
deconv3_out = self.deconv3_BAD(deconv3_out)
deconv4_out = self.deconv4(torch.cat([deconv3_out, conv3_out], 1), output_size = conv2_out.size())
deconv4_out = self.deconv4_BAD(deconv4_out)
deconv5_out = self.deconv5(torch.cat([deconv4_out, conv2_out], 1), output_size = conv1_out.size())
deconv5_out = self.deconv5_BAD(deconv5_out)
deconv6_out = self.deconv6(torch.cat([deconv5_out, conv1_out], 1), output_size = mix.size())
out = F.sigmoid(deconv6_out)
return out
def backward(self, mix, voc):
### Update the parameters
self.optim.zero_grad()
msk = self.forward(mix)
loss = self.crit(msk * mix, voc)
self.loss_list_vocal.append(loss.item())
loss.backward()
self.optim.step()
class SpectrogramDataset(Data.Dataset):
def __init__(self, path):
self.path = path
self.files = sorted(os.listdir(os.path.join(path, 'mixture')))
self.files = [name for name in self.files if 'spec' in name]
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
# Load the spectrogram
mix = np.load(os.path.join(self.path, 'mixture', self.files[idx]))
voc = np.load(os.path.join(self.path, 'vocals', self.files[idx]))
# Random sample
start = random.randint(0, mix.shape[-1] - 128 - 1)
mix = mix[1:,start:start + 128, np.newaxis]
voc = voc[1:,start:start + 128, np.newaxis]
mix = np.asarray(mix, dtype=np.float32)
voc = np.asarray(voc, dtype=np.float32)
# To tensor
mix = torch.from_numpy(mix).permute(2, 0, 1)
voc = torch.from_numpy(voc).permute(2, 0, 1)
return mix, voc
# Load the pre-trained model
model = UNet()
# model.load("result.pth") ### Pre-trained weights
# Train!
for ep in range(5):
with tqdm(loader, total = len(loader)) as tepoch:
for i,(mix, voc) in enumerate(loader):
tepoch.set_description(f"Epoch {ep+1}")
model.backward(mix, voc)
if i == len(loader) - 1:
info_dict = model.getLoss(normalize = True)
else:
info_dict = model.getLoss(normalize = False)
info_dict.update({'Epoch': ep+1})
tepoch.set_postfix(info_dict)
#sleep(0.1)
model.save("result.pth")
print("Finish training!")