-
Notifications
You must be signed in to change notification settings - Fork 4
/
nants_6sens.py
321 lines (288 loc) · 15.6 KB
/
nants_6sens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/env python3
from math import pi, sin, cos, atan2, radians, degrees
from random import randint
import pygame as pg
import numpy as np
'''
NAnts - Ant pheromone trail simulation. Surfarray version. WIP
Copyright (c) 2021 Nikolaus Stromberg nikorasu85@gmail.com
'''
FLLSCRN = False # True for Fullscreen, or False for Window
ANTS = 42 # Number of Ants to spawn
WIDTH = 1200 # default 1200
HEIGHT = 800 # default 800
FPS = 60 # 48-90
VSYNC = True # limit frame rate to refresh rate
PRATIO = 5 # Pixel Size for Pheromone grid, 5 is best
class Ant(pg.sprite.Sprite):
def __init__(self, drawSurf, nest, pheroLayer):
super().__init__()
#self.antID = antNum
self.drawSurf = drawSurf
self.curW, self.curH = self.drawSurf.get_size()
self.pgSize = (int(self.curW/PRATIO), int(self.curH/PRATIO))
self.isMyTrail = np.full(self.pgSize, False)
self.phero = pheroLayer
self.nest = nest
self.image = pg.Surface((12, 21)).convert()
self.image.set_colorkey(0)
cBrown = (100,42,42)
# Draw Ant
pg.draw.aaline(self.image, cBrown, [0, 5], [11, 15])
pg.draw.aaline(self.image, cBrown, [0, 15], [11, 5]) # legs
pg.draw.aaline(self.image, cBrown, [0, 10], [12, 10])
pg.draw.aaline(self.image, cBrown, [2, 0], [4, 3]) # antena l
pg.draw.aaline(self.image, cBrown, [9, 0], [7, 3]) # antena r
pg.draw.ellipse(self.image, cBrown, [3, 2, 6, 6]) # head
pg.draw.ellipse(self.image, cBrown, [4, 6, 4, 9]) # body
pg.draw.ellipse(self.image, cBrown, [3, 13, 6, 8]) # rear
# save drawing for later
self.orig_img = pg.transform.rotate(self.image.copy(), -90)
self.rect = self.image.get_rect(center=self.nest)
self.ang = randint(0, 360)
self.desireDir = pg.Vector2(cos(radians(self.ang)),sin(radians(self.ang)))
self.pos = pg.Vector2(self.rect.center)
self.vel = pg.Vector2(0,0)
self.last_sdp = (nest[0]/10/2,nest[1]/10/2)
self.mode = 0
def update(self, dt): # behavior
mid_result = left_result = right_result = [0,0,0]
mid_GA_result = left_GA_result = right_GA_result = [0,0,0]
randAng = randint(0,360)
accel = pg.Vector2(0,0)
foodColor = (2,150,2) # color of food to look for
pStrength = 80 # Pheromone strength, evaps slowly
wandrStr = .12 # how random they walk around
maxSpeed = 12 # 10-12 seems ok
steerStr = 3 # 3 or 4, dono
# Converts ant's current screen coordinates, to smaller resolution of pherogrid.
scaledown_pos = (int(self.pos.x/PRATIO), int(self.pos.y/PRATIO))
#scaledown_pos = (int((self.pos.x/self.curW)*self.pgSize[0]), int((self.pos.y/self.curH)*self.pgSize[1]))
# Get locations to check as sensor points, in pairs for better detection.
mid_sensL = Vec2.vint(self.pos + pg.Vector2(21, -3).rotate(self.ang))
mid_sensR = Vec2.vint(self.pos + pg.Vector2(21, 3).rotate(self.ang))
left_sens1 = Vec2.vint(self.pos + pg.Vector2(18, -14).rotate(self.ang))
left_sens2 = Vec2.vint(self.pos + pg.Vector2(16, -21).rotate(self.ang))
right_sens1 = Vec2.vint(self.pos + pg.Vector2(18, 14).rotate(self.ang))
right_sens2 = Vec2.vint(self.pos + pg.Vector2(16, 21).rotate(self.ang))
# May still need to adjust these sensor positions, to improve following.
if self.drawSurf.get_rect().collidepoint(mid_sensL) and self.drawSurf.get_rect().collidepoint(mid_sensR):
mid_result, mid_isID, mid_GA_result = self.sensCheck(mid_sensL, mid_sensR)
if self.drawSurf.get_rect().collidepoint(left_sens1) and self.drawSurf.get_rect().collidepoint(left_sens2):
left_result, left_isID, left_GA_result = self.sensCheck(left_sens1, left_sens2)
if self.drawSurf.get_rect().collidepoint(right_sens1) and self.drawSurf.get_rect().collidepoint(right_sens2):
right_result, right_isID, right_GA_result = self.sensCheck(right_sens1, right_sens2)
if self.mode == 0 and self.pos.distance_to(self.nest) > 21:
self.mode = 1
elif self.mode == 1: # Look for food, or trail to food.
setAcolor = (0,0,100)
if scaledown_pos != self.last_sdp and scaledown_pos[0] in range(0,self.pgSize[0]) and scaledown_pos[1] in range(0,self.pgSize[1]):
self.phero.img_array[scaledown_pos] += setAcolor
#self.phero.pixelID[scaledown_pos] = self.antID # maybe each ant should have their own ID array
self.isMyTrail[scaledown_pos] = True
self.last_sdp = scaledown_pos
if mid_result[1] > max(left_result[1], right_result[1]): #and (mid_result[0],mid_result[2]) == (0,0):
self.desireDir += pg.Vector2(1,0).rotate(self.ang).normalize()
wandrStr = .1
elif left_result[1] > right_result[1]: #and (left_result[0],left_result[2]) == (0,0):
self.desireDir += pg.Vector2(1,-2).rotate(self.ang).normalize() #left (0,-1)
wandrStr = .1
elif right_result[1] > left_result[1]: #and (right_result[0],right_result[2]) == (0,0):
self.desireDir += pg.Vector2(1,2).rotate(self.ang).normalize() #right (0, 1)
wandrStr = .1
if left_GA_result == foodColor and right_GA_result != foodColor :
self.desireDir += pg.Vector2(0,-1).rotate(self.ang).normalize() #left (0,-1)
wandrStr = .1
elif right_GA_result == foodColor and left_GA_result != foodColor:
self.desireDir += pg.Vector2(0,1).rotate(self.ang).normalize() #right (0, 1)
wandrStr = .1
elif mid_GA_result == foodColor: # if food
self.desireDir = pg.Vector2(-1,0).rotate(self.ang).normalize() #pg.Vector2(self.nest - self.pos).normalize()
#self.lastFood = self.pos + pg.Vector2(21, 0).rotate(self.ang)
maxSpeed = 5
wandrStr = .01
steerStr = 5
self.mode = 2
elif self.mode == 2: # Once found food, either follow own trail back to nest, or head in nest's general direction.
setAcolor = (0,80,0)
if scaledown_pos != self.last_sdp and scaledown_pos[0] in range(0,self.pgSize[0]) and scaledown_pos[1] in range(0,self.pgSize[1]):
self.phero.img_array[scaledown_pos] += setAcolor
self.last_sdp = scaledown_pos
if self.pos.distance_to(self.nest) < 24:
#self.desireDir = pg.Vector2(self.lastFood - self.pos).normalize()
self.desireDir = pg.Vector2(-1,0).rotate(self.ang).normalize()
self.isMyTrail[:] = False #np.full(self.pgSize, False)
maxSpeed = 5
wandrStr = .01
steerStr = 5
self.mode = 1
elif mid_result[2] > max(left_result[2], right_result[2]) and mid_isID: #and mid_result[:2] == (0,0):
self.desireDir += pg.Vector2(1,0).rotate(self.ang).normalize()
wandrStr = .1
elif left_result[2] > right_result[2] and left_isID: #and left_result[:2] == (0,0):
self.desireDir += pg.Vector2(1,-2).rotate(self.ang).normalize() #left (0,-1)
wandrStr = .1
elif right_result[2] > left_result[2] and right_isID: #and right_result[:2] == (0,0):
self.desireDir += pg.Vector2(1,2).rotate(self.ang).normalize() #right (0, 1)
wandrStr = .1
else: # maybe first add ELSE FOLLOW OTHER TRAILS?
self.desireDir += pg.Vector2(self.nest - self.pos).normalize() * .08
wandrStr = .1 #pg.Vector2(self.desireDir + (1,0)).rotate(pg.math.Vector2.as_polar(self.nest - self.pos)[1])
wallColor = (50,50,50) # avoid walls of this color
if left_GA_result == wallColor:
self.desireDir += pg.Vector2(0,1).rotate(self.ang) #.normalize()
wandrStr = .1
steerStr = 5
elif right_GA_result == wallColor:
self.desireDir += pg.Vector2(0,-1).rotate(self.ang) #.normalize()
wandrStr = .1
steerStr = 5
elif mid_GA_result == wallColor:
self.desireDir += pg.Vector2(-2,0).rotate(self.ang) #.normalize()
maxSpeed = 5
wandrStr = .1
steerStr = 5
# Avoid edges
if not self.drawSurf.get_rect().collidepoint(left_sens2) and self.drawSurf.get_rect().collidepoint(right_sens2):
self.desireDir += pg.Vector2(0,1).rotate(self.ang) #.normalize()
wandrStr = .01
steerStr = 5
elif not self.drawSurf.get_rect().collidepoint(right_sens2) and self.drawSurf.get_rect().collidepoint(left_sens2):
self.desireDir += pg.Vector2(0,-1).rotate(self.ang) #.normalize()
wandrStr = .01
steerStr = 5
elif not self.drawSurf.get_rect().collidepoint(Vec2.vint(self.pos + pg.Vector2(21, 0).rotate(self.ang))):
self.desireDir += pg.Vector2(-1,0).rotate(self.ang) #.normalize()
maxSpeed = 5
wandrStr = .01
steerStr = 5
randDir = pg.Vector2(cos(radians(randAng)),sin(radians(randAng)))
self.desireDir = pg.Vector2(self.desireDir + randDir * wandrStr).normalize()
dzVel = self.desireDir * maxSpeed
dzStrFrc = (dzVel - self.vel) * steerStr
accel = dzStrFrc if pg.Vector2(dzStrFrc).magnitude() <= steerStr else pg.Vector2(dzStrFrc.normalize() * steerStr)
velo = self.vel + accel * dt
self.vel = velo if pg.Vector2(velo).magnitude() <= maxSpeed else pg.Vector2(velo.normalize() * maxSpeed)
self.pos += self.vel * dt
self.ang = degrees(atan2(self.vel[1],self.vel[0]))
# adjusts angle of img to match heading
self.image = pg.transform.rotate(self.orig_img, -self.ang)
self.rect = self.image.get_rect(center=self.rect.center) # recentering fix
# actually update position
self.rect.center = self.pos
def sensCheck(self, pos1, pos2): # checks given points in Array, IDs, and pixels on screen.
sdpos1 = (int(pos1[0]/PRATIO),int(pos1[1]/PRATIO))
sdpos2 = (int(pos2[0]/PRATIO),int(pos2[1]/PRATIO))
#sdpos1 = (int((pos1[0]/self.curW)*self.pgSize[0]), int((pos1[1]/self.curH)*self.pgSize[1]))
#sdpos2 = (int((pos2[0]/self.curW)*self.pgSize[0]), int((pos2[1]/self.curH)*self.pgSize[1]))
array_r1 = self.phero.img_array[sdpos1]
array_r2 = self.phero.img_array[sdpos2]
array_result = (max(array_r1[0], array_r2[0]), max(array_r1[1], array_r2[1]), max(array_r1[2], array_r2[2]))
#is1ID = self.phero.pixelID[sdpos1] == self.antID
is1ID = self.isMyTrail[sdpos1]
#is2ID = self.phero.pixelID[sdpos2] == self.antID
is2ID = self.isMyTrail[sdpos2]
isID = is1ID or is2ID
ga_r1 = self.drawSurf.get_at(pos1)[:3]
ga_r2 = self.drawSurf.get_at(pos2)[:3]
ga_result = (max(ga_r1[0], ga_r2[0]), max(ga_r1[1], ga_r2[1]), max(ga_r1[2], ga_r2[2]))
return array_result, isID, ga_result
class PheroGrid():
def __init__(self, bigSize):
self.surfSize = (int(bigSize[0]/PRATIO), int(bigSize[1]/PRATIO))
self.image = pg.Surface(self.surfSize).convert()
self.img_array = np.array(pg.surfarray.array3d(self.image),dtype=float)#.astype(np.float64)
#self.pixelID = np.zeros(self.surfSize)
def update(self, dt):
self.img_array -= .2 * (60/FPS) * ((dt/10) * FPS) #[self.img_array > 0] # dt might not need FPS parts
self.img_array = self.img_array.clip(0,255)
#self.pixelID[ (self.img_array == (0, 0, 0))[:, :, 0] ] = 0 # not sure if works, or worth it
#indices = (img_array == (0, 0, 0))[:, :, 0] # alternative in 2 lines
#pixelID[indices] = 0
#self.img_array[self.img_array < 1] = 0 # ensure no leftover floats <1
#self.img_array[self.img_array > 255] = 255 # ensures nothing over 255, replaced by clip
pg.surfarray.blit_array(self.image, self.img_array)
return self.image
class Food(pg.sprite.Sprite):
def __init__(self, pos):
super().__init__()
self.pos = pos
self.image = pg.Surface((16, 16))
self.image.fill(0)
self.image.set_colorkey(0)
pg.draw.circle(self.image, [2,150,2], [8, 8], 4)
self.rect = self.image.get_rect(center=pos)
def pickup(self):
self.kill()
class Vec2():
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def vint(self):
return (int(self.x), int(self.y))
def main():
pg.init() # prepare window
pg.display.set_caption("NAnts")
try: pg.display.set_icon(pg.img.load("nants.png"))
except: print("FYI: nants.png icon not found, skipping..")
# setup fullscreen or window mode
if FLLSCRN: #screen = pg.display.set_mode((0,0), pg.FULLSCREEN)
currentRez = (pg.display.Info().current_w, pg.display.Info().current_h)
screen = pg.display.set_mode(currentRez, pg.SCALED | pg.NOFRAME | pg.FULLSCREEN, vsync=VSYNC)
else: screen = pg.display.set_mode((WIDTH, HEIGHT), pg.SCALED, vsync=VSYNC)
cur_w, cur_h = screen.get_size()
screenSize = (cur_w, cur_h)
nest = (cur_w/3, cur_h/2)
#background = pg.img.load("background.png").convert_alpha()
workers = pg.sprite.Group()
pheroLayer = PheroGrid(screenSize)
for n in range(ANTS):
workers.add(Ant(screen, nest, pheroLayer))
foodList = []
foods = pg.sprite.Group()
clock = pg.time.Clock()
fpsChecker = 0
# main loop
while True:
for e in pg.event.get():
if e.type == pg.QUIT or e.type == pg.KEYDOWN and e.key == pg.K_ESCAPE:
return
elif e.type == pg.MOUSEBUTTONDOWN:
mousepos = pg.mouse.get_pos()
if e.button == 1: # and pg.Vector2(mousepos).distance_to(nest) > 242:
foodBits = 200
fRadius = 50
for i in range(0, foodBits): # spawn food bits evenly within a circle
dist = pow(i / (foodBits - 1.0), 0.5) * fRadius
angle = 2 * pi * 0.618033 * i
fx = mousepos[0] + dist * cos(angle)
fy = mousepos[1] + dist * sin(angle)
foods.add(Food((fx,fy)))
foodList.extend(foods.sprites())
if e.button == 3:
for fbit in foodList:
if pg.Vector2(mousepos).distance_to(fbit.rect.center) < fRadius+5:
fbit.pickup()
foodList = foods.sprites()
dt = clock.tick(FPS) / 100
pheroImg = pheroLayer.update(dt)
workers.update(dt)
screen.fill(0) # fill MUST be after sensors update, so previous draw is visible to them
rescaled_img = pg.transform.scale(pheroImg, (cur_w, cur_h))
pg.Surface.blit(screen, rescaled_img, (0,0))
foods.draw(screen)
pg.draw.circle(screen, [40,10,10], (nest[0],nest[1]+6), 6, 3)
pg.draw.circle(screen, [50,20,20], (nest[0],nest[1]+4), 9, 4)
pg.draw.circle(screen, [60,30,30], (nest[0],nest[1]+2), 12, 4)
pg.draw.circle(screen, [70,40,40], nest, 16, 5)
pg.draw.rect(screen, (50,50,50), [900, 100, 50, 400]) # test wall
workers.draw(screen)
pg.display.update()
# Outputs framerate once per second
fpsChecker+=1 #fpsChecker = 0 # must go before main loop
if fpsChecker>=FPS: # quick debug to see fps in terminal
print(round(clock.get_fps(),2)) #print((dt/10)*FPS)
fpsChecker=0
if __name__ == '__main__':
main() # by Nik
pg.quit()