-
Notifications
You must be signed in to change notification settings - Fork 4
/
nants_dots_simple.py
209 lines (182 loc) · 9.6 KB
/
nants_dots_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3
from math import pi, sin, cos, atan2, radians, degrees
from random import randint
import pygame as pg
'''
NAnts - Ants simply make dot-trails, and follow others. Looks cool!
Copyright (c) 2021 Nikolaus Stromberg nikorasu85@gmail.com
'''
FLLSCRN = False # True for Fullscreen, or False for Window.
ANTS = 80 # Number of Ants to spawn.
WIDTH = 1200 # default 1200
HEIGHT = 800 # default 800
FPS = 60 # 48-90
class Ant(pg.sprite.Sprite):
def __init__(self, drawSurf, nest):
super().__init__()
self.drawSurf = drawSurf
self.nest = nest
self.image = pg.Surface((12, 21)).convert()#, pg.HWSURFACE)
self.image.set_colorkey(0)
cBrown = (80,42,42)
# Draw Ant
pg.draw.aaline(self.image, cBrown, [0, 5], [11, 15])
pg.draw.aaline(self.image, cBrown, [0, 15], [11, 5]) # legs
pg.draw.aaline(self.image, cBrown, [0, 10], [12, 10])
pg.draw.aaline(self.image, cBrown, [2, 0], [4, 3]) # antena l
pg.draw.aaline(self.image, cBrown, [9, 0], [7, 3]) # antena r
pg.draw.ellipse(self.image, cBrown, [3, 2, 6, 6]) # head
pg.draw.ellipse(self.image, cBrown, [4, 6, 4, 9]) # body
pg.draw.ellipse(self.image, cBrown, [3, 13, 6, 8]) # rear
# save drawing for later
self.orig_img = pg.transform.rotate(self.image.copy(), -90)
self.rect = self.image.get_rect(center=self.nest)
self.ang = randint(0, 360)
self.desireDir = pg.Vector2(cos(radians(self.ang)),sin(radians(self.ang)))
self.pos = pg.Vector2(self.rect.center)
self.vel = pg.Vector2(0,0)
self.last_phero = nest
def update(self, dt): # behavior
curW, curH = self.drawSurf.get_size()
mid_result = left_result = right_result = (0,0,0)
randAng = randint(0,360)
accel = pg.Vector2(0,0)
wandrStr = .15
maxSpeed = 12 # more than 11 may stretch pheros too much
steerStr = 3 # 2-4
if self.pos.distance_to(self.last_phero) > 24: # 20-25 seems best, too high they get distracted
pheromones.add(Trail(self.pos, 1)) # + pg.Vector2(-5, 0).rotate(self.ang) # self.groups()[0]
self.last_phero = pg.Vector2(self.rect.center)
#mid_sensr = vec2round(self.pos + pg.Vector2(20, 0).rotate(self.ang))#.normalize() # directional vec forward
mid_sensL = self.vint(self.pos + pg.Vector2(21, -3).rotate(self.ang))
mid_sensR = self.vint(self.pos + pg.Vector2(21, 3).rotate(self.ang))
left_sensr1 = self.vint(self.pos + pg.Vector2(18, -14).rotate(self.ang))
left_sensr2 = self.vint(self.pos + pg.Vector2(16, -21).rotate(self.ang))
right_sensr1 = self.vint(self.pos + pg.Vector2(18, 14).rotate(self.ang))
right_sensr2 = self.vint(self.pos + pg.Vector2(16, 21).rotate(self.ang))
#pg.draw.circle(self.drawSurf, (200,0,200), mid_sensL, 1)
#pg.draw.circle(self.drawSurf, (200,0,200), mid_sensR, 1)
#pg.draw.circle(self.drawSurf, (200,0,200), left_sensr1, 1)
#pg.draw.circle(self.drawSurf, (200,0,200), left_sensr2, 1)
#pg.draw.circle(self.drawSurf, (200,0,200), right_sensr1, 1)
#pg.draw.circle(self.drawSurf, (200,0,200), right_sensr2, 1)
if self.drawSurf.get_rect().collidepoint(mid_sensL) and self.drawSurf.get_rect().collidepoint(mid_sensR):
ms_rL = self.drawSurf.get_at(mid_sensL)[:3]
ms_rR = self.drawSurf.get_at(mid_sensR)[:3]
mid_result = (max(ms_rL[0], ms_rR[0]), max(ms_rL[1], ms_rR[1]), max(ms_rL[2], ms_rR[2]))
if self.drawSurf.get_rect().collidepoint(left_sensr1) and self.drawSurf.get_rect().collidepoint(left_sensr2):
ls_r1 = self.drawSurf.get_at(left_sensr1)[:3]
ls_r2 = self.drawSurf.get_at(left_sensr2)[:3]
left_result = (max(ls_r1[0], ls_r2[0]), max(ls_r1[1], ls_r2[1]), max(ls_r1[2], ls_r2[2]))
if self.drawSurf.get_rect().collidepoint(right_sensr1) and self.drawSurf.get_rect().collidepoint(right_sensr2):
rs_r1 = self.drawSurf.get_at(right_sensr1)[:3]
rs_r2 = self.drawSurf.get_at(right_sensr2)[:3]
right_result = (max(rs_r1[0], rs_r2[0]), max(rs_r1[1], rs_r2[1]), max(rs_r1[2], rs_r2[2]))
if mid_result[2] > max(left_result[2], right_result[2]) and mid_result[:2] == (0,0):
self.desireDir = pg.Vector2(1,0).rotate(self.ang).normalize()
wandrStr = 0
elif left_result[2] > right_result[2] and left_result[:2] == (0,0):
self.desireDir = pg.Vector2(1,-2).rotate(self.ang).normalize() #left (0,-1)
wandrStr = 0
elif right_result[2] > left_result[2] and right_result[:2] == (0,0):
self.desireDir = pg.Vector2(1,2).rotate(self.ang).normalize() #right (0, 1)
wandrStr = 0
# Avoid edges
if not self.drawSurf.get_rect().collidepoint(left_sensr2) and self.drawSurf.get_rect().collidepoint(right_sensr2):
self.desireDir += pg.Vector2(0,1).rotate(self.ang)
wandrStr = 0
steerStr = 4
elif not self.drawSurf.get_rect().collidepoint(right_sensr2) and self.drawSurf.get_rect().collidepoint(left_sensr2):
self.desireDir += pg.Vector2(0,-1).rotate(self.ang)
wandrStr = 0
steerStr = 4
elif not self.drawSurf.get_rect().collidepoint(self.vint(self.pos + pg.Vector2(21, 0).rotate(self.ang))):
self.desireDir += pg.Vector2(-1,0).rotate(self.ang)
wandrStr = 0
steerStr = 5
'''
margin = 42
if min(self.pos.x, self.pos.y, curW - self.pos.x, curH - self.pos.y) < margin:
if self.pos.x < margin : self.desireDir = pg.Vector2(self.desireDir + (1,0)).normalize()
elif self.pos.x > curW - margin : self.desireDir = pg.Vector2(self.desireDir + (-1,0)).normalize()
if self.pos.y < margin : self.desireDir = pg.Vector2(self.desireDir + (0,1)).normalize()
elif self.pos.y > curH - margin : self.desireDir = pg.Vector2(self.desireDir + (0,-1)).normalize()
'''
randDir = pg.Vector2(cos(radians(randAng)),sin(radians(randAng)))
self.desireDir = pg.Vector2(self.desireDir + randDir * wandrStr).normalize()
dzVel = self.desireDir * maxSpeed
dzStrFrc = (dzVel - self.vel) * steerStr
accel = dzStrFrc if pg.Vector2(dzStrFrc).magnitude() <= steerStr else pg.Vector2(dzStrFrc.normalize() * steerStr)
velo = self.vel + accel * dt
self.vel = velo if pg.Vector2(velo).magnitude() <= maxSpeed else pg.Vector2(velo.normalize() * maxSpeed)
self.pos += self.vel * dt
self.ang = degrees(atan2(self.vel[1],self.vel[0]))
# adjusts angle of img to match heading
self.image = pg.transform.rotate(self.orig_img, -self.ang)
self.rect = self.image.get_rect(center=self.rect.center) # recentering fix
# actually update position
self.rect.center = self.pos
def vint(self, vec2) : return (int(vec2[0]), int(vec2[1]))
class Trail(pg.sprite.Sprite):
def __init__(self, pos, phero_type):
super().__init__()
self.type = phero_type
self.image = pg.Surface((8, 8))
self.image.fill(0)
self.image.set_colorkey(0)
self.rect = self.image.get_rect(center=pos)
self.str = 500
def update(self, dt):
self.str -= ((dt/10)*FPS) * (60/FPS)
if self.str < 0:
return self.kill()
evap = self.str/500
self.image.fill(0)
if self.type == 1 : pg.draw.circle(self.image, [0, 0, 90*evap+10], [4, 4], 4)
if self.type == 2 : pg.draw.circle(self.image, [0, 90*evap+10, 0], [4, 4], 4)
pheromones = pg.sprite.Group()
def main():
pg.init() # prepare window
pg.display.set_caption("NAnts")
try: pg.display.set_icon(pg.img.load("nants.png"))
except: print("FYI: nants.png icon not found, skipping..")
# setup fullscreen or window mode
if FLLSCRN: #screen = pg.display.set_mode((0,0), pg.FULLSCREEN)
currentRez = (pg.display.Info().current_w, pg.display.Info().current_h)
screen = pg.display.set_mode(currentRez, pg.SCALED) # pg.FULLSCREEN | #pg.display.toggle_fullscreen()
pg.mouse.set_visible(False)
else: screen = pg.display.set_mode((WIDTH, HEIGHT), pg.RESIZABLE)# | pg.DOUBLEBUF)
cur_w, cur_h = screen.get_size()
nest = (cur_w/2, cur_h/2) #w/3
#background = pg.img.load("background.png").convert_alpha()
workers = pg.sprite.Group()
for n in range(ANTS):
workers.add(Ant(screen, nest))
clock = pg.time.Clock()
fpsChecker = 0
# main loop
while True:
for e in pg.event.get():
if e.type == pg.QUIT or e.type == pg.KEYDOWN and e.key == pg.K_ESCAPE:
return
dt = clock.tick(FPS) / 100
#screen.fill(0) # enable this to show sensor debug spots
pheromones.update(dt)
workers.update(dt)
screen.fill(0) # fill MUST be after sensors update, so previous draw is visible to them
pheromones.draw(screen)
#pg.draw.circle(screen, [30,10,10], (nest[0],nest[1]+6), 6, 3)
#pg.draw.circle(screen, [40,20,20], (nest[0],nest[1]+4), 9, 4)
#pg.draw.circle(screen, [50,30,30], (nest[0],nest[1]+2), 12, 4)
#pg.draw.circle(screen, [60,40,40], nest, 16, 5)
workers.draw(screen)
pg.display.update()
fpsChecker+=1 #fpsChecker = 0 # must go before main loop
if fpsChecker>=FPS: # quick debug to see fps in terminal
print(round(clock.get_fps(),2))
#print((dt/10)*FPS)
print(dt)
fpsChecker=0
if __name__ == '__main__':
main() # by Nik
pg.quit()