-
Notifications
You must be signed in to change notification settings - Fork 4
/
aes.c
660 lines (533 loc) · 19.6 KB
/
aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aes.h"
// substitute box
// size 16x16
const unsigned int sBox[16][16] = {
{ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 },
{ 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 },
{ 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 },
{ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 },
{ 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 },
{ 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf },
{ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 },
{ 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 },
{ 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 },
{ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb },
{ 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 },
{ 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 },
{ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a },
{ 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e },
{ 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf },
{ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }
};
// reverse substitute box
// size 16x16
const unsigned int rsBox[16][16] = {
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb },
{ 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb },
{ 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e },
{ 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 },
{ 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 },
{ 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 },
{ 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 },
{ 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b },
{ 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 },
{ 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e },
{ 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b },
{ 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 },
{ 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f },
{ 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef },
{ 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 },
{ 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }
};
// round constants to find round keys
const unsigned int rCon[11] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
// GF(2^8) multiplication constants to do mix columns
const unsigned int mCon[BLOCK_SIZE][BLOCK_SIZE] = {
{ 0x02, 0x03, 0x01, 0x01 },
{ 0x01, 0x02, 0x03, 0x01 },
{ 0x01, 0x01, 0x02, 0x03 },
{ 0x03, 0x01, 0x01, 0x02 }
};
// GF(2^8) multiplication constants to reverse mix columns
const unsigned int rmCon[BLOCK_SIZE][BLOCK_SIZE] = {
{ 0x0e, 0x0b, 0x0d, 0x09 },
{ 0x09, 0x0e, 0x0b, 0x0d },
{ 0x0d, 0x09, 0x0e, 0x0b },
{ 0x0b, 0x0d, 0x09, 0x0e }
};
// this function produces all round keys
void key_schedule(unsigned int w[], unsigned int key[][BLOCK_SIZE]){
unsigned int row, column; // row and column for lookup
unsigned int temp[4]; // temporary holds the results
int i, j, k; // counters for the loops and used as array "pointers"
// the first round key is the given key
// we store it to the first 4 words
// w0 w1 w2 w3 || w[0] ... w[15]
printf("Round keys:\n");
for(i = 0; i < BLOCK_SIZE; i++){
printf("w[%d] = ", i);
for(j = 0; j < BLOCK_SIZE; j++){
w[(i * 4) + j] = key[j][i];
printf("%x ", w[(i * 4) + j]);
}
printf("\t");
}
// all other round keys are found from the previous round keys
// start for 4, because we calculated the 4 words before
// 4 is the block size and 10 is the number of rounds
for(i = 4; i < (4 * (10 + 1)); i++){
// k is "pointer" to find wi-1
k = (i - 1) * 4;
// temp = w-1
temp[0] = w[k + 0];
temp[1] = w[k + 1];
temp[2] = w[k + 2];
temp[3] = w[k + 3];
if(i % 4 == 0){
// rot_word function
k = temp[0];
temp[0] = temp[1];
temp[1] = temp[2];
temp[2] = temp[3];
temp[3] = k;
// sub_word function
for(j = 0; j < 4; j++){
get2Bytes(temp[j], &row, &column);
temp[j] = sub_byte(row, column);
}
// temp = sub_word(rot_word(temp)) XOR RCi/4
temp[0] = temp[0] ^ rCon[i/4];
}
// j is "pointer" to find wi
j = i * 4;
// k is "pointer" to find wi-4
k = (i - 4) * 4;
// wi = wi-4 XOR temp
w[j + 0] = w[k + 0] ^ temp[0];
w[j + 1] = w[k + 1] ^ temp[1];
w[j + 2] = w[k + 2] ^ temp[2];
w[j + 3] = w[k + 3] ^ temp[3];
}
// print round keys 1 - 10
// round key 0(given key) printed before
for(i = 4; i < 44; i++){
printf("%s", (i % 4 == 0) ? "\n" : "\t");
printf("w[%d] = ", i);
for(j = 0; j < 4; j++){
printf("%x ", w[(i * 4) + j]);
}
}
printf("\n\n");
return;
}
// this function do result = a XOR b
void add_roundkey(unsigned int result[][BLOCK_SIZE], unsigned int a[][BLOCK_SIZE], unsigned int b[][BLOCK_SIZE]){
int i, j; // counters for the loops
for(i = 0; i < BLOCK_SIZE; i++)
for(j = 0; j < BLOCK_SIZE; j++)
result[i][j] = a[i][j] ^ b[i][j];
return;
}
// this function lookup in sBox table and return the new value
unsigned int sub_byte(unsigned int row, unsigned int column){
return sBox[row][column];
}
// this function shifts the rows to the left
// each row is shifted differently
void shift_rows(unsigned int state[][BLOCK_SIZE]){
unsigned int temp; // temporary variables to do the shifts
// first row is not shifted
// second row is shifted left 1 time
temp = state[1][0];
state[1][0] = state[1][1];
state[1][1] = state[1][2];
state[1][2] = state[1][3];
state[1][3] = temp;
// third row is shifted left 2 times
temp = state[2][0];
state[2][0] = state[2][2];
state[2][2] = temp;
temp = state[2][1];
state[2][1] = state[2][3];
state[2][3] = temp;
// fourth row is shifted left 3 times
temp = state[3][0];
state[3][0] = state[3][3];
state[3][3] = state[3][2];
state[3][2] = state[3][1];
state[3][1] = temp;
return;
}
// this function mix the columns
// state column multiplied with mCon row
// instead of normal multiplication here we do GF(2^8) multiply
// and instead of addition here we do XOR operation
void mix_columns(unsigned int result[][BLOCK_SIZE], unsigned int state[][BLOCK_SIZE]){
unsigned int sum = 0; // we hold the sum here
int i, j, k; // counters for the loops
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
for(k = 0; k < BLOCK_SIZE; k++){
sum ^= gfMul(state[k][i], mCon[j][k]);
}
result[j][i] = sum;
sum = 0;
}
}
return;
}
// this function encrypts the plaintext
void encryption(unsigned int state[][BLOCK_SIZE], unsigned int w[]){
unsigned int roundKey[BLOCK_SIZE][BLOCK_SIZE]; // round key
unsigned int table[BLOCK_SIZE][BLOCK_SIZE]; // temp array to hold results
unsigned int row, column; // row and column for sub_bytes lookup
int i, j, k; // counters for the loops
// round 0
// 1. add_roundkey
getRoundKey(w, roundKey, 0);
add_roundkey(state, state, roundKey);
printf("add_roundkey:\n");
printArray(state);
// round 1-9
// 1. sub_bytes
// 2. shift_rows
// 3. mix_columns
// 4. add_roundkey
for(k = 1; k < 10; k++){
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
get2Bytes(state[i][j], &row, &column);
state[i][j] = sub_byte(row, column);
}
}
printf("sub_bytes:\n");
printArray(state);
shift_rows(state);
printf("shift_rows:\n");
printArray(state);
mix_columns(table, state);
printf("mix_columns:\n");
printArray(table);
getRoundKey(w, roundKey, k);
add_roundkey(state, table, roundKey);
printf("add_roundkey:\n");
printArray(state);
}
// round 10
// 1. sub_bytes
// 2. shift_rows
// 3. add_roundkey
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
get2Bytes(state[i][j], &row, &column);
state[i][j] = sub_byte(row, column);
}
}
printf("sub_bytes:\n");
printArray(state);
shift_rows(state);
printf("shift_rows:\n");
printArray(state);
getRoundKey(w, roundKey, 10);
add_roundkey(state, state, roundKey);
printf("add_roundkey:\n");
printArray(state);
return;
}
// this function lookup in rsBox table and return the new value
unsigned int inv_sub_byte(unsigned int row, unsigned int column){
return rsBox[row][column];
}
// this function shifts the rows to the right
// each row is shifted differently
void inv_shift_rows(unsigned int state[][BLOCK_SIZE]){
unsigned int temp; // temporary variable to do the shifts
// first row is not shifted
// second row is shifted right 1 time
temp = state[1][3];
state[1][3] = state[1][2];
state[1][2] = state[1][1];
state[1][1] = state[1][0];
state[1][0] = temp;
// third row is shifted right 2 times
temp = state[2][0];
state[2][0] = state[2][2];
state[2][2] = temp;
temp = state[2][1];
state[2][1] = state[2][3];
state[2][3] = temp;
// fourth row is shifted right 3 times
temp = state[3][0];
state[3][0] = state[3][1];
state[3][1] = state[3][2];
state[3][2] = state[3][3];
state[3][3] = temp;
return;
}
void inv_mix_columns(unsigned int result[][BLOCK_SIZE], unsigned int state[][BLOCK_SIZE]){
unsigned int sum = 0; // we hold the sum here
int i, j, k; // counters for the loops
unsigned int temp; // temporary variable to hold the results
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
for(k = 0; k < BLOCK_SIZE; k++){
switch(rmCon[j][k]){
// x = state[k][i]
case 9:
temp = gfMul(state[k][i], 2); // x * 2
temp = gfMul(temp, 2); // (x * 2) * 2
temp = gfMul(temp ,2); // ((x * 2) * 2) * 2
temp ^= state[k][i]; // (((x * 2) * 2) * 2) + x = x * 9
break;
case 11:
temp = gfMul(state[k][i], 2); // x * 2
temp = gfMul(temp, 2); // (x * 2) * 2
temp ^= state[k][i]; // ((x * 2) * 2) + x
temp = gfMul(temp, 2); // (((x * 2) * 2) + x) * 2
temp ^= state[k][i]; // ((((x * 2) * 2) + x) * 2) + x = x * 11
break;
case 13:
temp = gfMul(state[k][i], 2); // x * 2
temp ^= state[k][i]; // (x * 2) + x
temp = gfMul(temp, 2); // ((x * 2) + x) * 2
temp = gfMul(temp, 2); // (((x * 2) + x) * 2) * 2
temp ^= state[k][i]; // ((((x * 2) + x) * 2) * 2) + x = x * 13
break;
case 14:
temp = gfMul(state[k][i], 2); // x * 2
temp ^= state[k][i]; // (x * 2) + x
temp = gfMul(temp, 2); // ((x * 2) + x) * 2
temp ^= state[k][i]; // (((x * 2) + x) * 2) + x
temp = gfMul(temp, 2); // ((((x * 2) + x) * 2) + x) * 2 = x * 14
break;
}
sum ^= temp;
}
result[j][i] = sum;
sum = 0;
}
}
return;
}
// this function encrypts the plaintext
void decryption(unsigned int state[][BLOCK_SIZE], unsigned int w[]){
unsigned int roundKey[BLOCK_SIZE][BLOCK_SIZE]; // round key
unsigned int table[BLOCK_SIZE][BLOCK_SIZE]; // temp array to hold results
unsigned int row, column; // row and column for sub_bytes lookup
int i, j, k, i1, i2; // counters for the loops
// round 0
// 1. add_roundkey
// 2. inv_shift_rows
// 3. inv_sub_bytes
getRoundKey(w, roundKey, 10);
add_roundkey(state, state, roundKey);
printf("\nadd_roundkey:\n");
printArray(state);
inv_shift_rows(state);
printf("inv_shift_rows:\n");
printArray(state);
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
get2Bytes(state[i][j], &row, &column);
state[i][j] = inv_sub_byte(row, column);
}
}
printf("inv_sub_bytes:\n");
printArray(state);
// round 1-9
// 1. add_roundkey
// 2. inv_mix_columns
// 3. inv_shift_rows
// 4. inv_sub_bytes
for(k = 9; k > 0; k--){
getRoundKey(w, roundKey, k);
add_roundkey(state, state, roundKey);
printf("add_roundkey:\n");
printArray(state);
inv_mix_columns(table, state);
printf("inv_mix_columns:\n");
printArray(table);
for(i1 = 0; i1 < BLOCK_SIZE; i1++){
for(i2 = 0; i2 < BLOCK_SIZE; i2++){
state[i1][i2] = table[i1][i2];
}
}
inv_shift_rows(state);
printf("inv_shift_rows:\n");
printArray(state);
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
get2Bytes(state[i][j], &row, &column);
state[i][j] = inv_sub_byte(row, column);
}
}
printf("inv_sub_bytes:\n");
printArray(state);
}
// round 10
// 1. add_roundkey
getRoundKey(w, roundKey, 0);
add_roundkey(state, state, roundKey);
printf("add_roundkey:\n");
printArray(state);
return;
}
// this function converts hexadecimal character to integer
int hexCharToDec(char hex){
if(hex >= 48 && hex <= 57){ // ascii code for character 1-9
return (hex - '0'); // as it happens, the ascii value of the characters 1-9 is greater than the value of '0'
}else{
switch(hex){
case 'a': // a hexadecimal is a number 10 to decimal. Similar for the rest
return 10;
case 'b':
return 11;
case 'c':
return 12;
case 'd':
return 13;
case 'e':
return 14;
case 'f':
return 15;
}
}
}
// this function returns the integer value of the 2 bytes hex input
// input: xy || row = x and column = y
void get2Bytes(unsigned int a, unsigned int *row, unsigned int *column){
// we need 2 bytes for the hexadecimal value and 1 more for '\0' character
unsigned char temp[3];
// convert the number to string
sprintf(temp, "%x", a);
if(strlen(temp) == 1){ // if number is smaller than 15, c saving 1 digit instead 2 digits
// e.g. (14)dec = (0x0e)hex | C saving only e instead of 0e
// add the '\0' character to 2nd position, because we need 1 slot for the hexadecimal number
temp[1] = '\0';
// find the row for the lookup
*row = 0; // row will be 0, because number will have form like this: 0x0..
//printf("(%c)hex = (%d)dec\n", temp[0], *row);
// find the column for the lookup
*column = hexCharToDec(temp[0]);
//printf("(%c)hex = (%d)dec\n", temp[1], *column);
}else{
// add the '\0' character to 3rd position, because we need 2 slots for the hexadecimal number
temp[2] = '\0';
// find the row for the lookup
*row = hexCharToDec(temp[0]);
//printf("(%c)hex = (%d)dec\n", temp[0], *row);
// find the column for the lookup
*column = hexCharToDec(temp[1]);
//printf("(%c)hex = (%d)dec\n", temp[1], *column);
}
return;
}
// this function return the 16bytes round key
void getRoundKey(unsigned int w[], unsigned int roundKey[][BLOCK_SIZE], int round){
int i, j; // counters for the loops
for(i = (round * 4); i < ((round * 4) + 4); i++){
for(j = 0; j < 4; j++){
roundKey[j][i - (round * 4)] = w[(i * 4) + j];
}
}
return;
}
// multiply two numbers in the GF(2^8)
// polynomial: x^8 + x^4 + x^3 + x + 1
// binary: 00011011 || hex: 0x1b
unsigned int gfMul(unsigned int a, unsigned int b){
unsigned int r = 0; // result
unsigned int hi_bit_set; // high bit (leftmost)
int i; // counter for the loop
for(i = 0; i < 8; i++) {
if(b & 1)
r ^= a;
hi_bit_set = (a & 0x80);
a <<= 1;
if(hi_bit_set)
a ^= 0x1b; // x^8 + x^4 + x^3 + x + 1
b >>= 1;
}
// if result legnth is more than 8 bits
if(r > 255 && r < 512)
return r - 256;
if(r > 511)
return r - 512;
// if result is max 8 bits
return r;
}
// this function converts string to unsigned int array 4x4
void convertStringToBlock(char string[BYTES+1], unsigned int block[][BLOCK_SIZE]){
int i, j; // counters for the loops
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
block[j][i] = string[BLOCK_SIZE * i + j];
}
}
return;
}
// this function converts unsigned int array 4x4 to string
void convertBlockToString(unsigned int block[][BLOCK_SIZE], char string[BYTES+1]){
int i, j; // counters for the loops
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
string[BLOCK_SIZE * i + j] = block[j][i];
}
}
return;
}
// this function prints the array
void printArray(unsigned int array[][BLOCK_SIZE]){
int i, j; // counters for the loops
for(i = 0; i < BLOCK_SIZE; i++){
for(j = 0; j < BLOCK_SIZE; j++){
printf("%x\t", array[i][j]);
}
printf("\n");
}
printf("\n");
return;
}
/* Run the encryption and decryption
* Plaintext: Two One Nine Two = (54 77 6F 20 4F 6E 65 20 4E 69 6E 65 20 54 77 6F)hex
* Key: Thats my Kung Fu = (54 68 61 74 73 20 6D 79 20 4B 75 6E 67 20 46 75)hex
* we decrypting the output of encryption
*/
void test(){
unsigned int state[BLOCK_SIZE][BLOCK_SIZE] = { // input
{ 0x54, 0x4f, 0x4e, 0x20 },
{ 0x77, 0x6e, 0x69, 0x54 },
{ 0x6f, 0x65, 0x6e, 0x77 },
{ 0x20, 0x20, 0x65, 0x6f }
};
unsigned int key[BLOCK_SIZE][BLOCK_SIZE] = { // encryption key
{ 0x54, 0x73, 0x20, 0x67 },
{ 0x68, 0x20, 0x4b, 0x20 },
{ 0x61, 0x6d, 0x75, 0x46 },
{ 0x74, 0x79, 0x6e, 0x75 }
};
// we have 10 round, so we need 40 words in array plus 4 for the given key
// each word have 4 bytes, so we need 44 * 4 = 176
unsigned int w[176]; // all round keys
/*****************************/
// print the plaintext and key
printf("Plaintext:\n");
printArray(state);
printf("Key:\n");
printArray(key);
// we calculate all round keys 1-10
key_schedule(w, key);
encryption(state, w);
// print the result (ciphertext)
printf("\nCiphertext:\n");
printArray(state);
printf("\n\n--------------------\n\n\n");
decryption(state, w);
// print the result (plaintext)
printf("\nPlaintext:\n");
printArray(state);
return;
}