-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcontrolnet_fused_avg.py
365 lines (285 loc) · 15.5 KB
/
controlnet_fused_avg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlnetMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import (
CrossAttnDownBlock2D,
DownBlock2D,
UNetMidBlock2DCrossAttn,
get_down_block,
)
from diffusers.models.unet_2d_condition import UNet2DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def return_maxvar_feat_intra(controlnet_cond_pose,controlnet_cond_depth):
A= controlnet_cond_pose
B= controlnet_cond_depth
mean_A = torch.mean(A, dim=1, keepdim=True)
mean_B = torch.mean(B, dim=1, keepdim=True)
A_demeaned = A - mean_A
B_demeaned = B - mean_B
covariance = torch.sum(A_demeaned * B_demeaned, dim=1)
std_A = torch.sqrt(torch.sum(A_demeaned ** 2, dim=1))
std_B = torch.sqrt(torch.sum(B_demeaned ** 2, dim=1))
correlation = covariance / (std_A * std_B)
A_flat = A.view(A.size(0), A.size(1), -1)
B_flat = B.view(B.size(0), B.size(1), -1)
cosine_sim = (F.cosine_similarity(A_flat, B_flat, dim=1)+1)/2
cosine_sim = cosine_sim.view(A.size(0), A.size(2), A.size(3))
std_A = torch.std(A, dim=1, keepdim=True)
std_B = torch.std(B, dim=1, keepdim=True)
var_A = torch.var(A , dim=1, keepdim=True)
var_B = torch.var(B , dim=1, keepdim=True)
var_A=var_A /torch.sum(var_A )
var_B=var_B/torch.sum(var_B)
high_sim_threshold =0.7
average=(A+B)/2
fuse_based_on_variance1 = torch.where(var_A >= var_B, A, torch.div(B*std_A,std_B))
fuse_based_on_variance2 = torch.where(var_A >= var_B, torch.div(A*std_B,std_A), B)
# Decide which values to take based on the cosine similarity
fused_tensor1 = torch.where(correlation.unsqueeze(1) > high_sim_threshold, average, fuse_based_on_variance1)
fused_tensor2 = torch.where(correlation.unsqueeze(1) > high_sim_threshold, average, fuse_based_on_variance2)
controlnet_cond1=fused_tensor1
controlnet_cond2=fused_tensor2
return controlnet_cond1, controlnet_cond2
def return_maxvar_feat_intra_sd(controlnet_cond_pose,controlnet_cond_depth):
A= controlnet_cond_pose
B= controlnet_cond_depth
mean_A = torch.mean(A, dim=1, keepdim=True)
mean_B = torch.mean(B, dim=1, keepdim=True)
A_demeaned = A - mean_A
B_demeaned = B - mean_B
covariance = torch.sum(A_demeaned * B_demeaned, dim=1)
std_A = torch.sqrt(torch.sum(A_demeaned ** 2, dim=1))
std_B = torch.sqrt(torch.sum(B_demeaned ** 2, dim=1))
correlation = covariance / (std_A * std_B)
A_flat = A.view(A.size(0), A.size(1), -1)
B_flat = B.view(B.size(0), B.size(1), -1)
cosine_sim = (F.cosine_similarity(A_flat, B_flat, dim=1)+1)/2
cosine_sim = cosine_sim.view(A.size(0), A.size(2), A.size(3))
std_A = torch.std(A, dim=1, keepdim=True)
std_B = torch.std(B, dim=1, keepdim=True)
var_A = torch.var(A , dim=1, keepdim=True)
var_B = torch.var(B , dim=1, keepdim=True)
var_A=var_A /torch.sum(var_A )
var_B=var_B/torch.sum(var_B)
high_sim_threshold =0.7
average=(A+B)/2
fuse_based_on_variance = torch.where(var_A >= var_B, A, B)
fused_tensor = torch.where(correlation.unsqueeze(1) > high_sim_threshold, average, fuse_based_on_variance)
return fused_tensor
@dataclass
class ControlNetOutput(BaseOutput):
"""
The output of [`ControlNetModel`].
Args:
down_block_res_samples (`tuple[torch.Tensor]`):
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
used to condition the original UNet's downsampling activations.
mid_down_block_re_sample (`torch.Tensor`):
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
Output can be used to condition the original UNet's middle block activation.
"""
down_block_res_samples: Tuple[torch.Tensor]
mid_block_res_sample: torch.Tensor
def forwardfused(
model1,
model2,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
controlnet_cond_pose: torch.FloatTensor,
controlnet_cond_depth: torch.FloatTensor,
conditioning_scale: float = 1.0,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guess_mode: bool = False,
return_dict: bool = True,
) -> Union[ControlNetOutput, Tuple]:
channel_order = model1.config.controlnet_conditioning_channel_order
if channel_order == "rgb":
# in rgb order by default
...
elif channel_order == "bgr":
controlnet_cond_pose = torch.flip(controlnet_cond_pose, dims=[1])
controlnet_cond_depth= torch.flip(controlnet_cond_depth, dims=[1])
else:
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb1 = model1.time_proj(timesteps)
t_emb2 = model2.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb1= t_emb1.to(dtype=sample.dtype)
# print(model1.device, t_emb1.device)
emb1 = model1.time_embedding(t_emb1, timestep_cond)
emb2 = model2.time_embedding(t_emb2, timestep_cond)
aug_emb1 = None
aug_emb2 = None
if model1.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if model1.config.class_embed_type == "timestep":
class_labels1 = model1.time_proj(class_labels)
class_labels2 = model2.time_proj(class_labels)
class_emb1 =model1.class_embedding(class_labels1).to(dtype=model1.dtype)
class_emb2 =model2.class_embedding(class_labels2).to(dtype=model2.dtype)
emb1 = emb1 + class_emb1
emb2 = emb2 + class_emb2
if model1.config.addition_embed_type is not None:
if model1.config.addition_embed_type == "text":
aug_emb1 = model1.add_embedding(encoder_hidden_states)
aug_emb2 = model2.add_embedding(encoder_hidden_states)
elif model1.config.addition_embed_type == "text_time":
text_embeds1 = added_cond_kwargs.get("text_embeds")
text_embeds2 = added_cond_kwargs.get("text_embeds")
time_ids1 = added_cond_kwargs.get("time_ids")
time_embeds1 = model1.add_time_proj(time_ids1.flatten())
time_embeds1 = time_embeds1.reshape((text_embeds1.shape[0], -1))
add_embeds1 = torch.concat([text_embeds1, time_embeds1], dim=-1)
add_embeds1 = add_embeds1.to(emb1.dtype)
aug_emb1 = model1.add_embedding(add_embeds1)
time_ids2 = added_cond_kwargs.get("time_ids")
time_embeds2 = model2.add_time_proj(time_ids2.flatten())
time_embeds2 = time_embeds2.reshape((text_embeds2.shape[0], -1))
add_embeds = torch.concat([text_embeds2, time_embeds2], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb2 =model2.add_embedding(add_embeds)
emb1 = emb1 + aug_emb1 if aug_emb1 is not None else emb1
emb2 = emb2 + aug_emb2 if aug_emb2 is not None else emb2
sample1 = model1.conv_in(sample)
sample2 = model2.conv_in(sample)
controlnet_cond1 = model1.controlnet_cond_embedding(controlnet_cond_pose)
controlnet_cond2 = model2.controlnet_cond_embedding(controlnet_cond_depth)
sample1,sample2=return_maxvar_feat_intra(sample1,sample2)
controlnet_cond_pose,controlnet_cond_depth=return_maxvar_feat_intra(controlnet_cond_pose,controlnet_cond_depth)
sample1 = sample1 + controlnet_cond1
sample2 = sample2 + controlnet_cond2
down_block_res_samples1 = (sample1,)
down_block_res_samples2= (sample2,)
for downsample_block1,downsample_block2 in zip(model1.down_blocks,model2.down_blocks):
if hasattr(downsample_block1, "has_cross_attention") and downsample_block1.has_cross_attention:
sample1, res_samples1 = downsample_block1(
hidden_states=sample1,
temb=emb1,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
sample2, res_samples2 = downsample_block2(
hidden_states=sample2,
temb=emb2,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
sample1,sample2=return_maxvar_feat_intra(sample1,sample2)
set1,set2=(),()
for a,b in zip(res_samples1,res_samples2):
a,b = return_maxvar_feat_intra(a,b)
set1=set1+(a,)
set2=set2+(b,)
res_samples1,res_samples2=set1,set2
else:
sample1, res_samples1 = downsample_block1(hidden_states=sample1, temb=emb1)
sample2, res_samples2 = downsample_block2(hidden_states=sample2, temb=emb2)
sample1,sample2=return_maxvar_feat_intra(sample1,sample2)
set1,set2=(),()
for a,b in zip(res_samples1,res_samples2):
a,b = return_maxvar_feat_intra(a,b)
set1=set1+(a,)
set2=set2+(b,)
res_samples1,res_samples2=set1,set2
down_block_res_samples1 += res_samples1
down_block_res_samples2 += res_samples2
if model1.mid_block is not None:
sample1 = model1.mid_block(
sample1,
emb1,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
sample2 = model2.mid_block(
sample2,
emb2,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
sample1,sample2=return_maxvar_feat_intra(sample1,sample2)
controlnet_down_block_res_samples1 = ()
controlnet_down_block_res_samples2 = ()
for down_block_res_sample1, controlnet_block1,down_block_res_sample2, controlnet_block2 in zip(down_block_res_samples1, model1.controlnet_down_blocks,down_block_res_samples2, model2.controlnet_down_blocks):
down_block_res_sample1 = controlnet_block1(down_block_res_sample1)
down_block_res_sample2 = controlnet_block2(down_block_res_sample2)
down_block_res_sample1,down_block_res_sample2=return_maxvar_feat_intra_sd(down_block_res_sample1,down_block_res_sample2)
controlnet_down_block_res_samples1 = controlnet_down_block_res_samples1 + (down_block_res_sample1,)
controlnet_down_block_res_samples2 = controlnet_down_block_res_samples2 + (down_block_res_sample2,)
down_block_res_samples1 = controlnet_down_block_res_samples1
down_block_res_samples2 = controlnet_down_block_res_samples2
mid_block_res_sample1 = model1.controlnet_mid_block(sample1)
mid_block_res_sample2 = model2.controlnet_mid_block(sample2)
mid_block_res_sample1,mid_block_res_sample2=return_maxvar_feat_intra_sd(mid_block_res_sample1,mid_block_res_sample2)
# 6. scaling
if guess_mode and not model1.config.global_pool_conditions:
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
scales = scales * conditioning_scale
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
else:
down_block_res_samples1 = [sample * conditioning_scale for sample in down_block_res_samples1]
mid_block_res_sample1 = mid_block_res_sample1 * conditioning_scale
down_block_res_samples2 = [sample * conditioning_scale for sample in down_block_res_samples2]
mid_block_res_sample2 = mid_block_res_sample2 * conditioning_scale
if model1.config.global_pool_conditions:
# stop
down_block_res_samples = [
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
]
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
if not return_dict:
return (down_block_res_samples1, mid_block_res_sample2)
return ControlNetOutput(
down_block_res_samples=down_block_res_samples1, mid_block_res_sample=mid_block_res_sample2
)
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module