-
AlexNet
-
ResNet
-
http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
-
https://www.gitbook.com/book/yingchenlu/famous-convolutional-neural-networks
-
http://yanran.li/peppypapers/2015/11/28/improving-information-flow-in-recurrent-networks.html
-
http://yanran.li/peppypapers/2016/01/10/highway-networks-and-deep-residual-networks.html
-
Vgg
- http://www.robots.ox.ac.uk/~vgg/research/very_deep/
- http://arxiv.org/abs/1409.1556
- http://arxiv.org/abs/1405.3531
- http://www.robots.ox.ac.uk/~vgg/publications/2014/Chatfield14/presentation.pdf
- http://stackoverflow.com/questions/28232235/how-to-calculate-the-number-of-parameters-of-convolutional-neural-networkscnns
-
LeNet
-
Inception
- https://arxiv.org/abs/1409.4842
- http://arxiv.org/abs/1512.00567
- https://arxiv.org/pdf/1602.07261.pdf
- http://www.jianshu.com/p/329d2c0cfca9
- http://blog.csdn.net/u010025211/article/details/51206237
- http://blog.csdn.net/shuzfan/article/details/50738394
- https://huixucs.wordpress.com/2016/03/08/笔记inception-v4-inception-resnet-and-the-impact-of-residual-connections-on-learning/
- https://www.reddit.com/r/MachineLearning/comments/2gp385/googlenet_slides_from_eccv_2014_workshop/
- http://image-net.org/challenges/LSVRC/2014/slides/GoogLeNet.pptx
- BVLC/caffe#3067
- http://stackoverflow.com/questions/30585122/how-to-calculate-the-number-of-parameters-for-google-net
- https://github.com/lim0606/caffe-googlenet-bn
- https://arxiv.org/abs/1610.02357