-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_CL.py
284 lines (235 loc) · 10.4 KB
/
train_CL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
'''
Copyright 2024 OPPO. All rights reserved.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
'''
import copy, os
import logging
from dataclasses import dataclass, field
from typing import Optional, Dict, Sequence
import torch
import transformers
from torch.utils.data import Dataset
from transformers import Trainer
import utils
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To avoid warnings about parallelism in tokenizers
local_rank = int(os.getenv("LOCAL_RANK", "0"))
print(f"local_rank: {local_rank}")
world_size = int(os.getenv("WORLD_SIZE", "1"))
torch.cuda.set_device(local_rank)
IGNORE_INDEX = -100
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
DEFAULT_PAD_TOKEN = "[PAD]"
PROMPT_DICT = {
"prompt_input": (
"{instruction}\n\n{input}"
)
}
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="checkpoints/LLAMA_7B")
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
lazy_preprocess: bool = field(default=True, metadata={"help": "lazy activate or note"})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=2048,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
dataloader_num_workers: int=field(default=16, metadata={"help": "num worker setting"})
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
# if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""Preprocess the data by tokenizing."""
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
label[:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer):
super(SupervisedDataset, self).__init__()
logging.warning("Loading data...")
list_data_dict = utils.jload(data_path)
logging.warning("Formatting inputs...")
prompt_input= PROMPT_DICT["prompt_input"]
sources = [
prompt_input.format_map(example)
for example in list_data_dict
]
targets = [f"{example['output']}{tokenizer.eos_token}" for example in list_data_dict]
logging.warning("Tokenizing inputs... This may take some time...")
data_dict = preprocess(sources, targets, tokenizer)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
def preprocess_batch(source, target, tokenizer):
examples, sources = [source + target], [source]
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
for i, (label, source_len) in enumerate(zip(labels, sources_tokenized["input_ids_lens"])):
labels[i][:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path, tokenizer: transformers.PreTrainedTokenizer):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
logging.warning("Loading data...")
list_data_dict = utils.jload(data_path)
print("Formatting inputs...Skip in lazy mode")
self.raw_data = list_data_dict
self.cached_data_dict = {}
self.prompt_input = PROMPT_DICT["prompt_input"]
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
example = self.raw_data[i]
source = self.prompt_input.format_map(example)
target = f"{example['output']}{self.tokenizer.eos_token}"
ret = preprocess_batch(source, target, self.tokenizer)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0]
)
try:
torch.nonzero(ret["input_ids"].ne(self.tokenizer.pad_token_id).flatten())
except Exception as e:
print("Error: {}".format(e))
return self.cached_data_dict[list(self.cached_data_dict.keys())[0]]
self.cached_data_dict[i] = ret
return ret
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_data_path = data_args.data_path
if data_args.lazy_preprocess:
train_dataset = LazySupervisedDataset(data_path=train_data_path, tokenizer=tokenizer)
else:
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path)
# for i in range(len(train_dataset)):
# train_dataset[i]
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
def train():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
)
model.config.use_cache = False
tokenizer = transformers.LlamaTokenizer.from_pretrained( # AutoTokenizer
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="left",
use_fast=False,
)
# tokenizer.pad_token_id = tokenizer.eos_token_id
# tokenizer.pad_token=tokenizer.eos_token
# tokenizer.add_eos_token=True
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
if "llama" in model_args.model_name_or_path.lower():
tokenizer.add_special_tokens(
{
"eos_token": DEFAULT_EOS_TOKEN,
"bos_token": DEFAULT_BOS_TOKEN,
"unk_token": DEFAULT_UNK_TOKEN,
}
)
merge_output_dir = training_args.output_dir
if not os.path.exists(merge_output_dir):
os.makedirs(merge_output_dir)
# bash loop
jfile = data_args.data_path.split('/')[-1].split('.')[0] # task name
print("start training!\t", jfile)
training_args.output_dir = os.path.join(merge_output_dir, jfile.split('.')[0])
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train()