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Spatially-dependent modeling and simulation of runaway electron mitigation in DIII-D
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Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071, USA

Confinement of runaway electrons (REs) plays a potential key role in the efficiency of impurity-
based mitigation strategies. This work analyzes a DIII-D discharge that injects Ne gas to dissi-
pate a post-disruption, RE beam. The kinetic RE code KORC has been enhanced to incorporate
experimentally-reconstructed, time-dependent magnetic and electric fields, and line integrated elec-
tron density data to construct spatiotemporal models of electron and partially-ionized impurity
transport in the companion plasma. Simulations indicate that the observed current dissipation is
mostly due to deconfinement losses to the wall, and not to collisional slowing down. We posit that
the deconfinement of REs is caused by current profile changes lowering the rotational transform
due to increased pitch angle scattering of REs by injected impurities. Comparisons of experimental
current evolution and KORC results are performed including Coulomb collisions with partially-
ionized impurity physics, different models of initial RE energy and pitch angle distributions, and
different spatiotemporal electron and partially-ionized impurity transport. The majority of KORC
simulations indicate that while the RE beam current is decreasing, the RE beam energy increases
due to induced electric field acceleration until confinement degrades. This research provides an ini-
tial quantification of the efficacy of RE mitigation via injected impurities, and identification of the
critical role played by loss of confinement as compared to the relatively slow collisional damping.

I. INTRODUCTION

If not avoided or dissipated, runaway electrons (REs)
can seriously damage ITER’s plasma-facing components
[1, 2]. If avoidance fails, shattered pellet injection (SPI)
is the leading candidate to dissipate REs in ITER [3–6],
and although significant progress has been made, there
is a pressing need for modeling and simulation studies to
assess the efficacy of SPI and to optimize different dis-
sipation strategies, such as massive gas injection (MGI).
From the theory and simulation perspective, there is a
need to develop and validate realistic models of the in-
teraction of REs with partially-ionized impurities, such
as those proposed in Refs. [7, 8].

Recent experiments at DIII-D indicate that SPI and
MGI perform similarly [9]. This work will focus on DIII-
D experiment #164409, which has been reported exten-
sively in Ref. [9]. The evolution of characteristic parame-
ters are plotted in Fig. 1. At approximately 1.2 s, a small
Ar pellet is injected that triggers the observed current
quench in Fig. 1a. A RE beam is generated and position
controlled until a secondary injection of Ne gas causes
the RE beam to dissipate. Figure 1b shows the three
vertical, interferometer chords, capturing the evolution
of line integrated electron density. Figure 1c calculated
the toroidal electric field consistent with the loop voltage
measured at the high field side (HFS) and low field side
(LFS). The bremsstrahlung hard x-ray (HXR) signals in
Fig.1d are measured by a bismuth-germanate based scin-
tillator located at the bottom of DIII-D and mostly sensi-
tive to 1−10,MeV photons [10]. The RE plateau phase is
significantly different from the pre-thermal quench (TQ),
in that the majority of the current is carried by REs and
the “companion”, or background, plasma plays a minor
role in the dynamics. For this reason, the dynamics dur-
ing this phase can be well studied using a particle track-
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ing code, and in this work we employ the Kinetic Orbit
Runaway electrons Code (KORC) [11].

There have been significant previous efforts to model
RE dissipation by impurity injection. Refs. [12–14] use
1D transport codes with Fokker-Planck models for REs
having physics of bound electrons and partially-ionized
impurities. Ref. [15] uses ESTAR modeling of the Bethe
stopping power of an idealized beam of REs in JET-ILW.
Refs. [16, 17] use guiding center test particle modeling us-
ing KORCGC, a predecessor of KORC, with 2D axisym-
metric fields and Monte Carlo collision operators having
physics of bound electrons and partially-ionized impuri-
ties with constant density profiles.

Several studies using guiding center test particle mod-
eling have also been employed to study RE generation
and confinement during the thermal quench of a disrup-
tion. Refs. [18, 19] use the ANTS code to evolve particle
orbits in 3D fields. Refs. [20, 21] use the RE orbit module
in JOREK to calculate RE confinement and hot tail and
Dreicer generation during a simulated thermal quench.
Ref. [22] uses the RE orbit module in NIMROD to calcu-
late RE confinement during impurity injection induced
thermal quench and Ref. [23] uses the same module to
calculate RE confinement with a pre-seeded large-scale
island structure. Ref.[24] uses a RE orbit module with
Monte Carlo collision operators having physics of bound
electrons and partially-ionized impurities to calculate the
post thermal quench spatial distribution of REs. Ref.[25]
uses a RE orbit module in MARS-F to calculate RE loss
by magnetohydrodynamic (MHD) instabilities. The con-
finement of REs in stochastic magnetic fields characteris-
tic of the thermal quench phase was studied in Ref. [26].

Additional previous studies have developed tools for
modeling the transport of injected impurities. Ref. [27]
developed KPRAD to study the effect of MGI on dis-
ruptions. Ref. [28] developed the 1D radial fluid code
IMAGINE to model MGI with comparisons to JET in-
terferometer diagnostics. Ref. [29] recently developed a
1D diffusion model for impurity profiles and evolution.

The present study builds on previous research by incor-
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FIG. 1. DIII-D experiment #164409 with Ne MGI into the
post-disruption, RE plateau, dissipating the RE current in
panel a). The impurity injection results in greatly increased
densities at time 1.405 ms (marked by vertical, dashed line)
as seen by interferometer chord data in b). Changes in RE
current after Ne MGI drive a toroidal loop voltage consistent
with a toroidal electric field in panel c). REs interacting with
the companion plasma and limiters produce hard x-rays in
panel d).

porating experimentally-reconstructed, time-dependent
magnetic and electric fields and employing models for the
spatial-dependence of the injected impurity and electron
density. Additionally, the flexible KORC framework is
used to simulate RE dissipation with different models for
bound electrons and partially-ionized impurity physics.
The code KORC has been extended to serve as a general
framework for simulating RE physics, including valida-
tion and verification of the theoretical models needed to
understand RE dissipation by impurity injection.

A major theme and contribution of the present paper
is the assessment of the effectiveness of RE dissipation
given the competing time scales of the RE loss of con-
finement (due to the displacement of the flux surfaces
and the eventual loss of magnetic confinement) and RE
energy dissipation. The remainder of this paper is or-
ganized as follows. In Sec. II we introduce the exten-
sions to KORC permitting the study of RE dissipation
by impurity injection, including relativistic guiding cen-
ter equations of motion, incorporating experimentally-
reconstructed magnetic and toroidal electric fields, mod-
els for a spatiotemporal density profile, Monte Carlo lin-
earized, Coulomb collision operator with models of bound

electron effects, and synchrotron and bremsstrahlung ra-
diation models. In Sec. III we discuss the initialization
of the RE distributions used in KORC simulations. In
Sec. IV we present results of KORC simulations and
comparisons to DIII-D experiment #164409. Lastly, in
Sec. V we provide concluding remarks.

II. PHYSICS MODEL

A. Relativistic Guiding-Center Equations

To make modeling RE orbits for the duration of the
RE dissipation phase numerically feasible, we employ the
relativistic guiding center (RGC) model from Refs. [30,
31]. We implement the RGC model in the limit that
the magnetic field is static, which yields the equations of
motion

dX

dt
=

1

b ·B∗

(
eE× b +

mµb×∇B + p‖B
∗

mγgc

)
(1a)

dp‖

dt
=

B∗

b ·B∗
·
(
eE− µ∇B

γgc

)
, (1b)

where X ∈ R3 denotes the spatial location of the GC in
cylindrical (R,φ, Z) coordinates and p‖ ∈ R denotes the
component of the relativistic momentum along the mag-
netic field, p‖ ≡ γm(V·b) = γmV cos η, with V = dX/dt
the velocity of the GC, b = B/B the unit magnetic field
vector, η the pitch angle relative to b, m the particle

mass, e the particle charge, γ =
[
1− (V/c)2

]−1/2
, and

the magnitude of a vector A given by A =
√
A ·A. The

magnetic moment is defined as

µ =
|p− p‖b|2

2mB
=

p2
⊥

2mB
, (2)

and is assumed constant in the absence of collisions and
radiation, with p⊥ = γmV sin η. The “effective” mag-
netic field is defined as

B∗ = qB + p‖∇× b, (3)

and the GC relativistic factor is defined as

γgc =

√
1 +

( p‖
mc

)2

+
2µB

mc2
. (4)

The static magnetic field limit of the RGC equations
can be shown to be valid for the present case by scaling
the right-hand-side (RHS) velocity terms for the spatial
location

eE× b :: p‖
∂b

∂t
× b ::

µ

γ
b×∇B ::

p‖B
∗

meγ

e :: γmec :: γmec
2η2 :: ec

10−19 :: 10−21 :: 10−14 :: 10−11, (5)

where we assume a RE has kinetic energy of 10 MeV and
pitch angle of 10◦, electric field, magnetic field, and spa-
tial length scale are of order unity, and Faraday’s law is
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FIG. 2. Snapshots of the time-evolving, poloidal flux contours (thin, black contours) from DIII-D experiment #164409 as
calculated with JFIT. The overlaid thick, black contour shows the approximate first wall of DIII-D. The colormap indicates
the toroidal electric field as calculated from the time-derivative of the poloidal flux contours.

used to scale ∂b/∂t. The term coming from the covariant
relativistic correction proportional to the time-derivative
of the magnetic unit vector is the smallest contribution,
and many orders of magnitude smaller than the leading
terms. More precise calculations (not shown) also indi-
cate the applicability of the static magnetic field limit
used in the equations of motion in this work.

The model equations are integrated employing the
Cash-Karp 5th order Runge-Kutta method [32]. For an
axisymmetric magnetic configuration, in the absence of
an electric-field, collisions, or radiation, energy and the
canonical toroidal momentum are conserved. These con-
served quantities are used as a way to test the accuracy
of orbit calculations in a given magnetic configuration.
We find that the accuracy of calculations are dependent
on resolving the magnitude of magnetic curvature in the
configuration, dominated by the motion parallel to the
magnetic field, consistent with Eq. (5). Based on the re-
sults of a convergence study of time step (not shown), we
use dt = eB0/γme = 3.4321×10−10 (s) in all simulations,
calculated for a RE with kinetic energy of 10 MeV.

B. Plasma Model

The magnetic field components in the poloidal-plane
are calculated from the poloidal flux function ψp as de-
termined from JFIT reconstructions [33] of DIII-D dis-
charges. The JFIT reconstruction differs from the more
often used EFIT reconstruction [34], in that it doesn’t
find an Grad-Shafranov equilibrium, instead making a
best fit to the available magnetic diagnostics. In the RE
plateau, due to the low temperature and density of the
companion plasma, the neutral beams needed for Mo-
tional Stark Effect [35] magnetic diagnostic are not avail-
able, due to the risk of shine through and damage to the
first wall. Thus, there are no internal magnetic diagnos-
tics available for constraining the JFIT equilibrium used
in this study.

KORC uses JFIT-computed ψp on a (NR × NZ) =
(33 × 65) grid, which is then interpolated using the
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FIG. 3. Measurements of the toroidal electric field calcu-
lated via the toroidal loop voltage for DIII-D experiment
#164409 at the HFS R = 0.8929 (m) (dark, blue trace) and
the LFS R = 2.5010 (m) (red trace). Point measurements
of the toroidal electric field calculated via time-derivatives of
the JFIT poloidal flux function are shown at the HFS (violet
trace) and LFS (cyan trace).

PSPLINE cubic spline interpolation routines [36]. In the
cylindrical coordinate frame we adopt the convention
Bp = ∇φ×∇ψp for the poloidal field components yield-
ing BR = (1/R)∂ψp/∂Z, BZ = −(1/R)∂ψp/∂R, where
the gradients are computed using the spline representa-
tion in PSPLINE. In the discharges of interest the current
is directed in the positive φ direction, giving ψp a local
minimum at the magnetic axis. The toroidal magnetic
field component is calculated assuming Bφ = −R0B0/R,
directed in the counter-Ip direction, where R0 = 1.682
are the major radial locations of the geometric axis and
B0 = 2.141 are the magnitudes of the toroidal field at
the geometric axis for DIII-D experiment #164409. In
addition to calculating the magnetic field components by
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FIG. 4. Left plots show experimental current and line integrated density measurements in solid traces for DIII-D experiment
#164409. Dashed traces indicate synthetic interferometer diagnostics, where the top plot uses a broad and diffuse spatiotempo-
ral density profile with parameters in the top row of Table I and the bottom plot uses a narrow and dense spatiotemporal density
profile with parameters from the bottom row. Right plots show spatiotemporal density profiles at different time slices, where the
vertical dashed lines indicate the location of the interferometer diagnostics on DIII-D. Note that the different spatiotemporal
profiles record similar synthetic interferometer signals.

nr (m−3) n0 (m−3) τin (s) τout (s) tdelay (s) ψp,0 λn τn (s)
4 × 1020 2.5 × 1019 7.5 × 10−3 1.25 × 10−2 4 × 10−2 0.8 0.255 1.5 × 10−2

7 × 1020 2.5 × 1019 10−2 1.25 × 10−2 5 × 10−2 0.775 0.15 1.75 × 10−2

TABLE I. Spatiotemporal density profile fitting parameters for modeling DIII-D experiment #164409. Top row corresponds
the a broad and diffuse profile while the bottom row corresponds to a narrow and dense profile.

taking the first derivatives using the PSPLINE routines,
we also calculate the second order derivatives from the
spline representation of ψp to compute the ∇B and ∇×b
“auxiliary” fields needed to integrate Eqs. (1a-1b).

In this work, we use time-sequenced JFIT reconstruc-
tions of ψp that are spaced 0.5 ms apart. We prepro-
cess this data with MATLAB, first smoothing ψp over 5 ms
intervals, and then taking the time-derivative using a
central difference method to calculate Eφ according to
Eφ = (1/2πR)∂ψp/∂t. Snapshots of the smoothed ψp
contours are shown in Fig. 2, by the thin contours, where
the thick contour indicates the DIII-D first wall. The
calculated toroidal electric field is shown in Fig. 2 by the
colormap. To check the robustness of the method for
calculating Eφ, we compare values calculated from the
JFIT reconstructions with data from loop voltages mea-
surements from the HFS and LFS of DIII-D in Fig. 3.
At the beginning of each simulation and 5 ms intervals
thereafter, PSPLINE recalculates the interpolants for ψp
and Eφ for the next time interval.

The electron temperature of the plasma is assumed
temporally and spatially constant at Te = 1.5 eV as seen
from Thomson scattering measurements taken before im-

purity injection (not shown). The effective impurity nu-
clear charge is also assumed temporally and spatially
constant at Zeff = 1. The electron density takes the
form of a temporally and spatially evolving, constricting
“ring” profile. This profile is given by that of a Gaussian
centered at a chosen flux surface with a time-dependent
magnitude and width parameterized as

ne(ψp, t) =
nr − n0

2

[
tanh

(
t− τin
τin

)
− tanh

(
t− tdelay

τout

)]
× exp

[
−
(√

ψp −
√
ψp,0

)2
2σ2

ψp
(t)

]
(6a)

σψp
(t) = λn erf

(
t

τn

)
(6b)

where nr is the maximum density of the profile, n0 is the
background density, τin, τout, and tdelay parameterize the
time scale over which the density increases, decreases,
and remains constant, respectively, ψp,0 the poloidal flux
surface where the Gaussian is centered, λn is the max-
imum width of the Gaussian, and τn is the time scale
over which the Gaussian width increases. Roughly speak-
ing, this analytic model implicitly contains the physics
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of ionization, recombination, diffusion, and confinement
to model the transport of electron and partially-ionized
impurities. In the following simulations, two spatiotem-
poral profiles are used, a broad and diffuse profile, seen
in the top row of plots in Fig. 4 with parameters in the
top row of Table I, and a narrow and dense profile seen
in the bottom row of plots in Fig. 4 with parameters in
the bottom row of Table I. The left column of plots in
Fig. 4 compare line-integrated electron density interfer-
ometer diagnostic data from DIII-D experiment #164409
with synthetic line-integrated density diagnostic applied
to the model density shown in the right plots of Fig. 4.
The two spatiotemporal density profiles were chosen to
attempt to “bookend” the possible density profiles given
the line-integrated measurements.

This work assume that all impurity charge states
considered have the same spatiotemporal profile as ne,
with only changes their ratio nj/ne to be discussed in
Sec. II C 3. Physically, as impurities are injected via SPI,
they first encounter a post-TQ, cold plasma, with little
ionization. As the impurities reach the RE beam, the
impurities are rapidly ionized and they and the resulting
electrons move along poloidal flux surfaces. This ring
structure can be seen experimentally by visible cameras
(not shown). Due to the low temperatures of the com-
panion plasma, the electrons and impurities diffuse across
magnetic surfaces [37]. Lastly, as the current decreases,
the electrons and impurities are deconfined.

C. Coulomb Collisions

1. Monte Carlo Operator

In flux-conserving form, the Fokker-Planck partial dif-
ferential equation (PDE) with a linearized Coulomb col-
lision operator in azimuthally-symmetric spherical mo-
mentum space (e.g. [38])

C(f) =
1

p2

∂

∂p

[
p2

(
CA

∂f

∂p
+ CF f

)]
+
CB
p2

[
1

sin η

∂

∂η

(
sin η

∂f

∂η

)]
(7)

can be written [39] as two equivalent stochastic differ-
ential equations (SDEs) for the phase-space momentum,
given by

dp =

{
− CF (p) +

1

p2

∂

∂p

[
p2CA(p)

]}
dt

+
√

2CA(p) dWp, (8a)

dη =
CB(p)

p2
cot ηdt+

√
2CB(p)

p
dWη, (8b)

where CF , CA, and CB are transport coefficients for col-
lisional friction (slowing down), parallel diffusion, and
pitch angle scattering (deflection), respectively, and dW
is a zero mean, unit standard deviation Weiner process
satisfying

< dW >= 0, < (dW )2 >= dt. (9)

Here, we use uniformly-distributed random numbers,
which behave better than normally-distributed random
numbers at low energies, due to their tighter bounds.
Applying Itô’s lemma by letting ξ = cos η yields

dξ = −2ξ
CB(p)

p2
dt−

√
2CB(p)

p

√
1− ξ2 dWξ. (10)

The Coulomb collision operator SDEs are subcycled
independently of the RGC equations of motion using an
operator splitting method. The time step of the colli-
sion operator is set as the 1/20 of the shortest inverse
collision frequency (to be defined in the following sub-
sections). While this temporal resolution accurately cap-
tures the damping of relativistic particles, with relatively
long inverse collision frequencies, once particles thermal-
ize this temporal resolution is not sufficient, consistent
with the divergence of dη as p→ 0. Thus, for this study,
when a particle’s momentum satisfies p < mec, the parti-
cle is flagged as thermalized and is not tracked anymore.
Future studies, especially for the generation of runaways
from a thermal plasma following the thermal quench, will
require a significant increase in the collision substep ca-
dence.

2. Relativistic Transport Coefficients

In the absence of bound electron and partially-ionized
impurity physics, Ref. [18] generalizes the collision op-
erator coefficients CA, CF , CB to combine the non-
relativistic [38] and relativistic [40] energy limits, yielding

CA(v) =
ΓeeG( v

vth
)

v
, (11a)

CF (v) =
ΓeeG( v

vth
)

Te
, (11b)

CB(v) =
Γei
2v
Zeff +

Γee
2v

[
erf

(
v

vth

)

− G
(
v

vth

)
+

1

2

(vthv

c2

)2
]
, (11c)

where Γee,ei = nee
4 ln Λee,ei/4πε

2
0 with ln Λee,ei the

Coulomb logarithm for e-e(e-i) collisions, vth =√
2Te/me the thermal electron velocity,

G(x) =
erf(x)− x erf ′(x)

2x2
(12)

is the Chandrasekhar function, where the prime indicates
a derivative with respect to the independent variable.
The expressions for ln Λee,ei are taken from Ref. [7]

ln Λee = ln Λ0 +
1

5
ln
{

1 +
[
2(γ − 1)c2/v2

th

]5/2 }
(13a)

ln Λei = ln Λ0 +
1

5
ln
[
1 + (2γv/vth)

5
]

(13b)

ln Λ0 =14.9− lnne(1020 m−3)

2
+ lnT (keV). (13c)
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Note that the term in Eq. (11c) proportional to Zeff is
taken from relativistic collision theory, and this term di-
verges as v → 0. Using the relation dp = meγ

3dv, the
second term in the brackets of Eq. (8a) can be evaluated
as

1

p2

∂

∂p

[
p2CA(p)

]
=

Γ

γ3mev2

{[
2γ2

(v
c

)2

− 1

]
G
(
v

vth

)

+
v

vth
erf ′

(
v

vth

)}
. (14)

Note, that this form does not treat the momentum de-
pendence in the Coulomb logarithm.

3. Bound Electrons

The transport coefficients given in Eqs. (11a-11c) de-
scribe normalized collision frequencies due to Coulomb
collisions with ions and free electrons according to

CA(v) ≡ p2

2
νee‖ , (15a)

CF (v) ≡ pνeeS , (15b)

CB(v) ≡ p2

2

(
νeiD + νeeD

)
, (15c)

where the factor of 1/2 used in Ref. [38] for the definition
Eq. (15b) has been absorbed into νeeS as done in Ref. [7].
However the bound electrons of the partially ionized im-
purities will also play an important role. Reference [7]
considers the effects of bound electrons on the slowing
down e-e collision frequency by including a multiplica-
tive factor

νeeS = νeeS,CS

1 +
∑
j

nj
ne

Zj − Z0j

ln Λ

[
1

5
ln(1 + h5

j )− β2

] ,

(16)
where νeeS,CS is the “completely screened” slowing down
frequency consistent with the models neglecting bound
electron physics given by Eqns. (15b,11b), the sum is
over the ionization state, nj is the density of the j-th
ionization state, Zj is the unscreened (i.e. fully ionized)
impurity ion charge, Z0j is the screened ( i.e. partially
ionized) impurity ion charge, hj = p

√
γ − 1/Ij , where

Ij is the mean excitation energy provided in Ref. [41],
and β = v/c is the usual relativistic speed. The factor
Zj −Z0j is recognized as the number of bound electrons
a partially-ionized impurity charge state possesses. The
following simulations assume that all impurity charge
states considered have the same spatiotemporal profile
as ne, with only changes their ratio nj/ne satisfying

ne =
∑
j

kj × nj+kj , (17)

where kj is the charge state for a particular partially-
ionized impurity j. The effects of bound electrons on the
pitch-angle diffusion e-i collision frequency is considered

with the modification

νeiD = νeiD,CS

1 +
1

Zeff

∑
j

nj
ne

gj
ln Λei

 , (18)

where νeiD,CS is the completely screened pitch angle scat-
tering frequency consistent with the models neglecting
bound electron physics given by Eqn. (15c) and the first
term of Eq. (11c),

gj =
2

3
(Z2

j −Z2
0j) ln(y

3/2
j + 1)− 2

3

(Zj−Z0j)
2y

3/2
j

y
3/2
j +1

(19)

with yj = pāj , and āj is the normalized effective ion
scale length for impurity charge state j. The values āj
are determined from the density of bound electrons as
calculated in Ref. [8]. Thus, with the Hesslow model
of bound electrons and partially-ionized impurities, the
transport coefficients become

CA,H(v) =
ΓeeG( v

vth
)

v
, (20a)

CF,H(v) =
ΓeeG( v

vth
)

Te

{
1 +

∑
j

nj
ne

Zj − Z0j

ln Λee

×
[

1

5
ln(1 + h5

j )− β2

]}
, (20b)

CB,H(v) =
Γei
2v
Zeff

1 +
1

Zeff

∑
j

nj
ne

gj
ln Λei


+

Γee
2v

[
erf

(
v

vth

)
− G

(
v

vth

)
+

1

2

(vthv

c2

)2
]
.

(20c)

Reference [7] also pointed to comments in Ref. [42]
about the inclusion of bound electrons in avalanche phe-
nomena. Reference [7] incorporated these comments by
modifying the slowing down e-e collision frequency to in-
clude half of the bound electrons

νeeS = νeeS,CS

1 +
∑
j

nj
ne

Zj − Z0j

2

 . (21)

We have also incorporated similar modifications to the
pitch-angle diffusion e-i collision frequency

νeiD = νeiD,CS

1 +
∑
j

nj
ne

Zj − Z0j

2

 . (22)

Thus, with the Rosenbluth-Putvinski model of bound
electrons and partially-ionized impurities, the transport
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FIG. 5. Top plot shows the slowing down collision frequency
with the inclusion of bound electrons normalized to the fre-
quency without bound electron physics. Bottom plot shows
the pitch angle diffusion collision frequency with the inclusion
of bound electrons normalized to the frequency without bound
electron physics. Red traces indicate the Hesslow model and
blue traces indicate the Rosenbluth-Putvinski model. Solid
traces are for Ne+1 and dashed traces for for Ne+2.

coefficients become

CA,RP (v) =
ΓeeG( v

vth
)

v
, (23a)

CF,RP (v) =
ΓeeG( v

vth
)

Te

1 +
∑
j

nj
ne

Zj − Z0j

2

 , (23b)

CB,RP (v) =
Γei
2v
Zeff

1 +
∑
j

nj
ne

Zj − Z0j

2


+

Γee
2v

[
erf

(
v

vth

)
− G

(
v

vth

)
+

1

2

(vthv

c2

)2
]
.

(23c)

In the following simulations, we will refer to 3 collision
models, “No Bound” with transport coefficients given by
Eqs. (11a-11c) with no bound electrons, “Hesslow” with
transport coefficients given by Eqs. (20a-20c), and “R-P”
with transport coefficient given by Eqs. (23a-23c). Figure
5 shows the slowing down frequency in the top plot and
the pitch angle scattering frequency in the bottom plot
for singly-ionized Ar and Ne using the Hesslow and R-P
models. The collision frequencies are normalized to the
completely screened, or No Bound, collision frequencies.

D. Radiation Damping

Simulations also include the effects of synchrotron
radiation due to the radiation reaction force FR.
The Landau-Lifshitz representation [43] of the Lorentz-
Abraham-Dirac radiation reaction force, ignoring the
electric field and advective derivatives, is

FR =
1

γτR

[
(p× b)× b− 1

(mec)2
(p× b)

2
p

]
, (24)

where τR = 6πε0(mec)
3/(e4B2) is the radiation damping

time scale. In azimuthally-symmetric spherical momen-
tum space, with the identity (p̂ × b) × b = − sin ηp̂ −
cos ηη̂, the flux-conserving form of the Fokker-Planck
PDE can be written as two equivalent SDEs given by

dp

dt
= −γp

τR
(1− ξ2) (25a)

dξ

dt
=
ξ(1− ξ2)

τRγ
. (25b)

Equation (25a) is consistent with the relativistic Larmor
formula (e.g. [44]).

The evolution equations for (p, ξ) can be transformed
into evolution equations for (p‖, µ) yielding

dp‖

dt
= −

p‖(1− ξ2)

τR

(
γ − 1

γ

)
(26a)

dµ

dt
= −2µ

τR

[
γ(1− ξ2) +

ξ2

γ

]
. (26b)

These deterministic evolution equations are added to the
Cash-Karp algorithm for integrating the GC equations of
motion. We note that Eq. (24) is to be taken at the loca-
tion of a moving charge, so the above implementation is
only valid for a small gyroradius. A specific formulation
for the GC equations of motion is given by Ref. [45] and
will be explored in future studies.

The bremsstrahlung radiation due to runaway elec-
trons interacting with impurities is discussed in Ref. [46]
and can be written as

d

dt

[
(γ − 1)mec

2
]

= −2vnjκZ0j(Z0j + 1)

× α

π
(γ − 1)

[
ln(2γ)− 1

3

]
, (27)

where κ = 2πr2
emec

2, re = e2/4πε0mec
2 is the classi-

cal electron radius, and α = 1/137 is the fine structure
constant. Because only the energy changes, and not the
pitch angle, using dγ/dp = v/(mec

2) we can write

dp

dt
= −2njκZ0j(Z0j + 1)

× α

π
(γ − 1)

[
ln(2γ)− 1

3

]
(28)

dξ

dt
= 0. (29)

Similarly as for synchrotron radiation, the evolution
equations for (p, ξ) can be transformed into evolution
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FIG. 6. Example initial distribution used for simulations of
DIII-D experiment #164409 with Ne MGI with 2.5×104 sam-
pled particles. E, η distribution shown in a), and R,Z distri-
bution shown in b), with overlaid (thin) contours of ψp and
(thick) first wall.

equations for (p‖, µ) yielding

dp‖

dt
= −ξ2njκZ0j(Z0j + 1)

× α

π
(γ − 1)

[
ln(2γ)− 1

3

]
(30)

dµ

dt
= − (1− ξ2)p

meB
2njκZ0j(Z0j + 1)

× α

π
(γ − 1)

[
ln(2γ)− 1

3

]
. (31)

III. ENSEMBLE INITIALIZATION

A Metropolis-Hastings (MH) algorithm [47, 48] is em-
ployed to sample user-provided distribution functions,
sampling in multidimensional spatial-momentum phase
space using a Markov-chains of Gaussian processes for
each dimension. The “acceptance ratio” is calculated for
every sample of the Markov-chains, comparing the new
sample to the previous sample. If this ratio is greater
than 1 or a uniformly-distributed random number, the
new sample is accepted. Included in the acceptance ra-
tio is the Jacobian determinant of the cylindrical spatial
coordinate system R and the of the spherical momen-
tum phase space p2 sin η at either sample. One benefit
of the MH algorithm is that it only depends on the ratio
of the distribution function at different sampling points,
and not the absolute values, thus no normalizations are
needed.

For the following simulations, we use an initial distri-
bution of the form

f [ψp(R,Z), E , η] = fψp
[ψp(R,Z)]fE(E)fη(R, E , η), (32)

where E = γmec
2 is the total energy of a RE. Across all
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FIG. 7. Comparison between the target distribution (red
traces) compared to the sampled distribution (blue traces)
for a given KORC calculation. The top plot shows the spatial
distribution for a uniform density of REs distributed along
the poloidal flux surfaces for DIII-D experiment #164409.
The middle plot shows the pitch angle distribution given by
Eqs. 34,35. The bottom plot shows the energy distribution for
sampling of the distribution function inferred from a separate
DIII-D experiment reported in Ref. [49].

simulations to be presented, we assume that the initial
spatial distribution only depends on ψp as a Gaussian

fψp(R,Z) = exp

[
−ψN (R,Z)

σψN

]
, (33)

where ψN = [ψp(R,Z) − ψp,axis]/(ψp,lim − ψp,axis) is the
normalized poloidal flux, with ψp,axis = 0.600 Wb is the
poloidal flux at the magnetic axis and ψp,lim = 0.845 Wb
is the poloidal flux at the HFS limiter, σψN

= 106 sets a
uniform density, and an indicator function is used to limit
sampling to where ψN < 0.845. The particles are sam-
pled uniformly in toroidal angle φ. For fE(E) we use ei-
ther a monoenergetic distribution of 10 MeV or the “Holl-
mann” distribution, inferred from experimental data of
a post-disruption, RE beam in Ref. [49]. For the pitch
angle distribution we use either a monopitch distribution
of 10◦ or that considered in Ref. [49]

fη(R, E , η) =
A(R, E)

2 sinhA(R, E)
eA(R,E)ξ, (34)

with

A(R, E) =
2Eφ(R)

Zeff + 1

γ2 − 1

γ
, (35)

where Eφ(R) = 24.56ECHR0/R is the approximate initial
toroidal electric field, with the Connor-Hastie field [50]
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ECH = nee
3 ln Λ0/4πε

2
0mec

2, and Zeff = 1 is effective
impurity nuclear charge.

For the nontrivial energy and pitch angle distribu-
tion from Ref. [49], the resulting distribution function
is shown in Fig. 6 in a) E, η and b) R,Z phase space for
2.5× 104 particles. Note that Fig. 6b) has overlaid (thin
line) contours of ψp, consistent with the initial time in
Sec. II B, and indicates the (thick line) approximate first
wall on DIII-D. The apparent increase in the number of
REs as R increases reflects the Jacobian determinant of
the cylindrical coordinate system appearing when we in-
tegrate over the φ direction to show the distribution in
the R,Z plane.

A comparison between the target distribution and sam-
pled distribution is presented in Fig. 7. The top plot
shows the distribution FR(R) =

∫
fψp

dZ, where the fac-
tor of R comes from the Jacobian determinant of the
cylindrical coordinate system used for the spatial rep-
resentation. The middle plot shows the distribution
Fη =

∫
dZ
∫
RdR

∫
dEf , where the factor of sin(η) comes

from the Jacobian determinant of the spherical coordi-
nate system used for the momentum representation. And
lastly the bottom plot shows the distribution FE = fE
from Ref. [49]. Note that because the target FE decreases
algebraically, rather than exponentially, the Gaussian
process MH algorithm has difficulties sampling the high
energy tail. However, since the majority of the RE beam
energy is contained in the bulk around 6.5 MeV, this sam-
pling is acceptable for the present modeling.

IV. RESULTS

To characterize the evolution of the ensemble of parti-
cles at a macroscopic level, we define the total RE energy
ERE

ERE(t) = mec
2

Np∑
i

γi(t)HRE,i(t) (36)

where

HRE,i(t) =

{
1 if pi(t) > mec

0 if pi(t) < mec or hits wall.

HRE effectively splits the ensemble of particles into two
populations, confined and thermalized or deconfined elec-
trons. Note that this definition is consistent with the dis-
cussion at the end of Sec. II C. We also define the RE
current IRE, beginning from the toroidal current density

Jφ = −enev · φ̂, satisfying IRE =
∫
dR
∫
dZJφ. Using

the definition of the density of an ensemble of particles
ne(x) =

∑
i δ

3(x − xi) =
∑
i δ(R − Ri)δ(Z − Zi)/(2πR)

and assuming that the toroidal component of the velocity

is, to lowest order, v · φ̂ ' v‖b · φ̂ = vξbφ yields

IRE(t) = − e

2π

Np∑
i

viξibφ,i
Ri

HRE,i(t). (37)

To make comparisons between simulations and experi-
ments, which contain vastly different total energy and
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FIG. 8. Subsets of REs, delineated by initial value of poloidal
flux function consistent with the left figure, to study the effect
of different beam widths, made possible by the linear nature
of individual RE orbits. Calculations performed with evolv-
ing magnetic configuration and consistent electric field, but
without radiation or collisions.

current, we normalize these dissipating quantities to
their initial values ERE(0) and IRE(0). The initial val-
ues correspond to time 1.405 ms from DIII-D experiment
#164409.

The following calculations all use dynamic magnetic
and electric fields unless otherwise noted, and syn-
chrotron and bremsstrahlung radiation. We note that the
role of radiation for the present study of RE dissipation
by impurity injection, as compared to RE generation, are
negligible (not shown). For simulations including colli-
sions, the collision frequency is evaluated assuming the
companion plasma contains two partially-ionized impu-
rity charge states, with nNe+1/nNe+2 = 2. This choice
of impurity composition is roughly in line with results
presented in Ref. [29]. With the impurity charge state
ratio and electron density supplied, the impurity charge
state densities are calculated with Eq. (17).

A. Confinement Losses

We begin by simulating a RE beam without any col-
lisions, which decouples the effects of deconfinement
of REs due to the evolution of the experimentally-
reconstructed fields from collisional effects. Fig. 8 shows
such a simulation, where we indicate different initial RE
beam widths in the left plot, including particles within
ψN < 1.0 in dark blue, ψN < 0.78 in red, ψN < 0.56
in green, and ψN < 0.34 in light blue. This is accom-
plished by a single simulation with a spatially uniform
RE distribution, because of the linear nature of RE or-
bits. The right plot of Fig. 8 indicates that as the initial
RE beam width gets smaller, the effect of deconfinement
is delayed. Physicallyt, the smaller radii beams will not
interact with the inner wall until later times, but then
will have all their particles deconfined rapidly. The most
extreme case would be a pencil beam, which would not
lose any particles until the beam touches the wall, and
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FIG. 9. Comparison of evolution of normalized RE beam
current (top plot) and RE beam energy (bottom plot) for
different bound electron models. Each calculation uses the
consistent electric field for the evolving magnetic configura-
tion and radiation. The black trace uses the Hesslow bound
electron model, the blue trace uses the R-P model, the red
trace uses no bound electrons, and the green trace does not
include collisions. The vertical, dashed, black line indicated
the approximate time that deconfinement begins to play a
role, as estimated from Fig. 12.

then all particles would be lost nearly instantaneously.
The normalized IRE for each subset of simulated REs is
compared to the experimental current from DIII-D ex-
periment #164409, indicated by the violet trace.

The increase in normalized RE current is a surpris-
ing result. As the magnetic configuration evolves, the
magnetic axis advects toward the HFS, decreasing the
major radial location of REs summed in Eq. (37). This
makes intuitive sense, as all REs are approximately trav-
eling at c in the toroidal direction, starting at a pitch of
η = 10◦ with a small spread in pitch angle due to spatial
orbit effects [11]. Without collisions, this speed remains
the same, and as the RE beam advects toward the HFS,
where the toroidal orbit length decreases linearly with R,
there will be a higher charge per time through a speci-
fied toroidal angle. There will also be an additional effect
due to pitch angle “pinching” due to the toroidal electric
field, but we find that this is a small effect compared to
the major radial location (not shown).

At the time after all REs are either deconfined or ther-
malized in this and each of the following simulations,
DIII-D experiment #164409 shows current remaining for
an additional 10 ms. With the present modeling capa-
bilities of KORC, we are unable to study this directly,
however we posit that it is due to the evolution of the
companion plasma or secondary REs generated by large-
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FIG. 10. Evolution of the RE ensemble energy (top plot)
and cosine of the pitch angle (bottom plot) for the simulation
in Fig. 9 using the Hesslow bound electron model. Traces
show the distributions every 5 ms until confinement begins to
degrade as estimated from Fig. 12.

angle collisions during this time period of larger induced
toroidal electric field. We will discuss this further in
Sec. V.

B. Bound electron modeling

We continue our study by including Coulomb colli-
sions, and investigating the effect of different models
of bound electron physics developed in Secs. II C 2 and
II C 3. Figure 9 shows the dependence of the bound elec-
tron model on the normalized RE current (top plot) and
energy evolution. The blue trace corresponds to the case
without collisions shown as the dark blue trace in Fig. 8,
the black trace uses the Hesslow bound electron model
from Eqns. 20a-20c, the red trace uses the R-P bound
electron model from Eqns. 23a-23c, the green trace uses
the No Bound electron model from Eqns. 11a-11c, and
the violet trace is the current from DIII-D experiment
#164409. The vertical, dashed, black line indicated the
approximate time that deconfinement begins to play a
role, as estimated from Fig. 12. Progressing from no
collisions to the No Bound, R-P, and lastly Hesslow colli-
sion models, the KORC simulated normalized RE current
more closely aligns with the experimental current.

While nearly all the KORC simulations have their nor-
malized RE current evolve qualitatively similarly, there is
great disparity in how the normalized RE energy evolves
in each case. Each model has the energy increasing until
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after confinement is lost, with the main difference being
the rate at which energy increases due to acceleration by
the toroidal electric field in each case. The collisional
slowing down is nonexistent in the no collisions simula-
tion and is so weak in the No Bound model, that both
cases still have energy increasing after loss of confine-
ment. For these parameters, it is striking how the No
Bound electron model is barely different from no colli-
sion case, pointing to the conclusion that the inclusion of
a bound electron model is essential for recovering accu-
rate simulation results. The simulating incorporating the
Hesslow model is only one to have any current dissipate
before loss of confinement, albeit at the small amount of
> 1%, and the least energy increase of 4.5% The simu-
lation using the R-P bound electron model yields simi-
lar results to that using the Hesslow model, but due to
greatly increased pitch angle scattering, by a factor of
7.15 at 10 MeV, and marginally increased collisional fric-
tion, by a factor of 1.33 at 10 MeV, in Hesslow model, as
seen in Fig. 5.

To better understand how the RE ensemble averaged
energy and current, it is instructive to directly view the
evolution of the energy and pitch angle distributions.
Figure 10 shows the evolution of the energy (top plot)
and cosine of the pitch angle (bottom plot) for the sim-
ulation using the Hesslow bound electron model. Before
REs begin to be deconfined, it is clear that the aver-
age energy is increasing, while ξ is decreasing, or rather
η is increasing. We view ξ as compared to η, because
ξ is a direct input into the calculation of the current
consistent with Eq. (37). We posit that the energy is
increasing due to REs being accelerated by the induced
toroidal electric field more than decelerated by collisional
slowing down. Comparing the approximate time rate of
change of the momentum due to the induced toroidal
field dp/dt = −eEφξ and collisional slowing down for the
initial RE energy and pitch, the electric force is initially
equal to the collisional slowing down and increases as a
larger toroidal electric field is induced. Conversely, we
posit that the pitch angle is increasing due to collisional
pitch angle scattering with the Hesslow bound electron
model greater than the pinching effect due to the induced
toroidal electric field. Comparing the time rate of change
of the cosine of the pitch angle due to the induced toroidal
field dξ/dt = −eEφ(1− ξ2)/p and collisional pitch angle
scattering for the initial RE energy and pitch, the colli-
sional pitch angle scattering is approximately 102 larger
than the electric force.

C. Parametric Modeling

Now that we have discussed the effects of deconfine-
ment and bound electron models, we turn our attention
to the parameterization of the initial RE distribution
and spatiotemporal electron and partially-ionized impu-
rity profile. Figure 11 shows the dependence of initial
RE distribution and spatiotemporal density profile on the
normalized RE current (top plot) and energy evolution
(bottom plot). The dark blue trace corresponds to the
case without collisions shown as the dark blue trace in
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FIG. 11. Comparison of evolution of normalized RE beam
current (top plot) and RE beam energy (bottom plot) for a
hierarchy of models. All calculations use the electric field
consistent with the evolving magnetic configuration and radi-
ation unless otherwise noted. The black trace is the canonical
case that includes collisions using the Hesslow bound electron
model, the broad and diffuse spatiotemporal density profile,
and an initial monoenergetic RE beam of 10 MeV. The dark
blue trace does not include collisions, the dotted, dark blue
trace does not include collisions or the dynamic toroidal elec-
tric field, the red trace uses the energy and pitch distribution
form Ref. [49], the green trace uses the narrow and dense
spatiotemporal density profile, the orange trace uses the en-
ergy and pitch distribution from Ref. [49] and the narrow and
dense spatiotemporal density profile, and the violet trace is
from DIII-D experiment #164409.

Fig. 8, the dotte4d, dark blue trace corresponds to the
case without collisions or the dynamic toroidal electric
field, the black trace labeled as the canonical case uses
the Hesslow bound electron model shown in Fig. 9, the
red trace is the canonical case using the initial RE en-
ergy and pitch distribution from Ref. [49], the green trace
is the canonical case using the narrow and dense spa-
tiotemporal density profile, and the orange trace is the
canonical case using both the initial RE energy and pitch
distribution from Ref. [49] and the narrow and dense spa-
tiotemporal density profile.

The collisionless simulation without the induced
toroidal electric field indicates that the effect of the
toroidal electric field nearly balances out collisional dis-
sipation, as it is nearly identical to the canonical case.
This reinforces our estimation of the comparison of the
two forces from the end of Sec. IV B.

It can be seen that varying the initial energy and pitch
distribution has a significant effect on current dissipation
but not energy dissipation. We posit that this is due
to lower initial mean energy, which yields a larger pitch
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FIG. 12. Time evolution of the number of confined REs (blue
traces), deconfined REs (red traces), and collisionally dissi-
pated REs (green traces), where the solid traces correspond
to the canonical simulation, the dotted traces correspond to
the simulation using the initial energy and pitch distribution
from Ref. [49], the dashed traces correspond to the simula-
tion using the narrow and dense spatiotemporal density pro-
file, and the dash-dotted traces correspond to the simulation
using both the initial RE energy and pitch distribution from
Ref. [49] and the narrow and dense spatiotemporal density
profile.

angle scattering consistent with Eq. (8b) or (10) that
varies as 1/p2 ∼ 1/E2.

Varying spatiotemporal density profile to use narrow
and dense profile has a marginal effect on current dissi-
pation but significant effect on energy dissipation. We
posit that this is due to the collisional force being ap-
proximately twice as large as the toroidal electric force
for the initial conditions for the more dense spatiotem-
poral density profile, whereas it was approximately equal
for the more diffuse spatiotemporal density profile. By it-
self, varying the spatiotemporal density profile decreases
the normalized energy before deconfinement, but only by
7%.

When the effects of the different initial energy and
pitch distribution and denser spatiotemporal density are
combined, both the current and energy are dissipated to
a higher degree than either of the effects separately. This
can be viewed as the best case scenario from the model-
ing of RE mitigation via Ne MGI in DIII-D experiment
#164409. There is, however, a shortfall in the simu-
lated current after confinement degrades for the case with
combined effects. We posit that this shortfall would be
augmented by the evolution of the companion plasma or
secondary REs generated by large-angle collisions during
this time period of larger induced toroidal electric field.
As was the case in Sec. IV A, we will discuss this further
in Sec. V.

We can also view the evolution of particles in the RE
beam, deconfined particles impacting the wall, and ther-
malized particles whose momentum fall below p < mec.
Figure 12 shows the evolution of particles in the RE beam
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FIG. 13. Comparison between the V1 interferometer diag-
nostic (blue trace) and HXR signal (red trace) for DIII-D
experiment #164409 with the RE fraction lost to the wall for
the canonical KORC calculation (solid green trace).

(blue traces), deconfined particles (red traces), and ther-
malized particles (green traces) for simulations presented
in Fig. 11, where the canonical simulation is indicated
with solid traces, the simulation with initial RE energy
and pitch distribution from Ref. [49] indicated by the dot-
ted traces, the simulation with the more dense spatiotem-
poral density profile indicated by the dashed traces, and
the simulation combining both effects by the dash-dotted
traces.

The previous results are borne out clearly in Fig. 12,
namely that the majority of REs across all simulations
are lost to the wall, rather than thermalized. The canon-
ical simulation is the most dire situation with > 0.1%
thermalized, the dense ST simulation has 2% thermal-
ized, the simulation with initial RE energy and pitch
distribution from Ref. [49] has 7% thermalized, and the
simulation with combined effects is again the best case
scenario with 35% thermalized. The simulations using
initial RE energy distribution from Ref. [49] have lower
average initial distribution energy, where the collisional
slowing down is more effective.

D. Additional Experimental Connections

In Fig. 1d, the HXR emission is observed to increase
rapidly upon the injection of Ne gas into the post-
disruption RE beam. The HXR signal (red trace) has
been reproduced in Fig. 13, and plotted with the line
integrated electron density from vertical chord V1 (blue
trace) and the simulated RE fraction lost to the wall
for the canonical KORC calculation (green trace). The
HXR detector observes radiation emitted by REs when
striking first wall or bulk ions and neutrals in plasma,
thus both sources require REs for any signal. The initial
rise in HXR correlates directly with the interferometer
signal. There is also good agreement between the HXR
signal the deconfinement of simulated REs. The final
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FIG. 14. Power flux on the inner wall calculated for the canon-
ical KORC calculation. The total number of experimental
REs was estimated and used to scale up the KORC calculated
REs to arrive at a physically significant value. The axisym-
metric magnetic field configuration leads to REs impacting
the inner wall uniformly in the toroidal direction.

spike in RE fraction lost to the wall is not seen in the
HXR signal. This indicates that future analysis is re-
quired to determine the proportionality constants to the
total HXR signal coming from RE interaction with com-
panion plasma and with wall separately. Lastly, because
the HXR signal does not fully drop to the offset value, it
indicates that there are additional REs remaining after
KORC simulations expect all REs to be deconfined. This
is further evidence that large-angle collisions are gener-
ating additional REs when the induced toroidal electric
field is large near the end of the RE beam deconfinement,
and will be discussed more in Sec. V.

Because KORC evolves the momentum and location
of all simulated particles, it is possible to calculate the
power flux to the wall when REs are deconfined. As
there are of the order 1016 REs in a standard RE beam
for DIII-D parameters, and only 2.5×104 REs simulated
with KORC, it is necessary to calculate a scaling fac-
tor to calculate an experimental relevant power flux. We
scale the initial current from DIII-D experiment #164409
I0 = 2.813 × 105 A, by that calculated using Eq. (37)
IRE(0) = 1.15× 10−7 to get a ratio of 2.45× 1012. In our
calculations of the power flux, we assume every particle
represents a physical number of particles equal to the cal-
culated ratio. As the magnetic configuration is axisym-
metric, so is the RE deposition on the inner wall (not
shown). The power flux is calculated by binning in the
Z direction in [−0.3, 0.1] m, and summing up the particle
energy deposited in a given bin per 0.5 ms. The calcula-
tion of the power flux varies as the spatial bin width is
varied (not shown); the results presented in Fig. 14 are
for 35 bins of width 1.1 cm. Future work will include com-
paring these deposition power fluxes to infrared camera
images.

V. CONCLUSIONS AND DISCUSSION

Simulations performed with the kinetic RE code
KORC incorporate experimentally-reconstructed, time-
dependent magnetic and electric fields, and line inte-
grated electron density data to construct spatiotemporal
models of electron and partially-ionized impurity trans-
port in the companion plasma. We use KORC to model
DIII-D experiment #164409 that injects Ne MGI in or-
der to mitigate a post-disruption, vertically-controlled,
RE beam. Comparison of KORC results and experimen-
tal current evolution are performed including Coulomb
collisions with different models of partially-ionized impu-
rity physics, and it is found that the model presented in
Ref. [7] most closely reproduce the experimental current
evolution. Comparison of KORC results and experimen-
tal current evolution are performed for different models
of initial RE energy and pitch angle distributions and dif-
ferent spatiotemporal electron and partially-ionized im-
purity transport. The majority of KORC calculations in-
dicate that while the RE beam current is decreasing, the
RE beam energy increases until confinement degrades.
We posit that collisional pitch angle scattering is primar-
ily responsible for decreasing the current, while the elec-
tric field accelerates REs more than collisional friction
slows them down. The current decay lowers the rota-
tional transform, which leads to deconfinement of REs.
Using KORC results on the RE energy when striking the
first wall, we make predictions of the power flux on the
inner wall during RE deconfinement.

The contained results have immediate relevance for
present fusion research, ITER, and future reactor level
tokamaks. This work quantifies the efficacy of RE mit-
igation via injected impurities, and yields a relative im-
portance of effects. The zeroth order effect is the dynamic
magnetic field configuration that determines confinement
of REs as summarized by Fig. 8 in Sec. IV A. First order
effects are the inductive toroidal electric field as viewed
in Fig. 11 of Sec. IV C, the partially-ionized impurity
model as viewed in Fig. 9 of Sec. IV B, spatiotempo-
ral density and partially-ionized impurity transport as
viewed in Fig. 11 of Sec. IV C, and initial RE energy and
pitch distribution as viewed in Fig. 11 of Sec. IV C. Syn-
chrotron and bremsstrahlung radiation are much smaller
effects for the dissipation process in DIII-D experiment
#164409 and are not shown. A major contribution of
the present study is the identification of the critical role
played by loss of confinement in comparison with the rel-
atively slow collisional damping.

This work is just the beginning of the necessary model-
ing effort of important effects still to be explored. Addi-
tional preliminary studies are underway of the spatiotem-
poral transport of injected impurities, separately looking
at Ar injection, varying the amount of injected impuri-
ties, SPI injection technology, and injection into different
tokamaks, such as JET and KSTAR. An important next
development for KORC is the implementation of a large-
angle collision operator. The magnetic to kinetic energy
conversion by large-angle collisions upon the termination
of the RE beam is an ongoing topic of research [14, 37, 51–
53]. The injection of impurities provides additional elec-
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trons to knock-on [54], and the induced toroidal electric
field is greatest when magnetic configuration is rapidly
deconfining. The large RE losses can induce a large
toroidal electric field that may increase the Ohmic cur-
rent, possibly explaining the results in Secs. IV A,IV C,
and IV D. Because large-angle collisions produces REs at
large pitch angles [55], these REs could potentially add
a significant amount of energy to the RE beam without
an associated increase in current. Lastly, tight coupling
with an MHD code having impurity and ablation models
is ultimately necessary for robust, predictive modeling of
RE evolution. Such simulations will require calculation of
the self-consistent, induced electric field as the RE ensem-
ble evolves, and the resulting evolution of the magnetic
configuration evolving with RE current and companion
plasma.
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