-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSystemModel.hpp
715 lines (632 loc) · 21.4 KB
/
SystemModel.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/*
*
* Copyright (c) 2017, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
* Written by Slaven Peles <peles2@llnl.gov>.
* LLNL-CODE-718378.
* All rights reserved.
*
* This file is part of GridKit™. For details, see github.com/LLNL/GridKit
* Please also read the LICENSE file.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the disclaimer (as noted below) in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of the LLNS/LLNL nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
* SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISINGIN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* Lawrence Livermore National Laboratory is operated by Lawrence Livermore
* National Security, LLC, for the U.S. Department of Energy, National
* Nuclear Security Administration under Contract DE-AC52-07NA27344.
*
* This document was prepared as an account of work sponsored by an agency
* of the United States government. Neither the United States government nor
* Lawrence Livermore National Security, LLC, nor any of their employees
* makes any warranty, expressed or implied, or assumes any legal liability
* or responsibility for the accuracy, completeness, or usefulness of any
* information, apparatus, product, or process disclosed, or represents that
* its use would not infringe privately owned rights. Reference herein to
* any specific commercial product, process, or service by trade name,
* trademark, manufacturer, or otherwise does not necessarily constitute or
* imply its endorsement, recommendation, or favoring by the United States
* government or Lawrence Livermore National Security, LLC. The views and
* opinions of authors expressed herein do not necessarily state or reflect
* those of the United States government or Lawrence Livermore National
* Security, LLC, and shall not be used for advertising or product
* endorsement purposes.
*
*/
#ifndef _SYSTEM_MODEL_HPP_
#define _SYSTEM_MODEL_HPP_
#include <iostream>
#include <vector>
#include <cassert>
#include <ScalarTraits.hpp>
#include <ModelEvaluatorImpl.hpp>
namespace ModelLib
{
/**
* @brief Prototype for a system model class
*
* This class maps component data to system data and implements
* ModelEvaluator for the system model. This is still work in
* progress and code is not optimized.
*
* @todo Address thread safety for the system model methods.
*
*/
template <class ScalarT, typename IdxT>
class SystemModel : public ModelEvaluatorImpl<ScalarT, IdxT>
{
typedef BaseBus<ScalarT, IdxT> bus_type;
typedef ModelEvaluatorImpl<ScalarT, IdxT> component_type;
using real_type = typename ModelEvaluatorImpl<ScalarT, IdxT>::real_type;
using ModelEvaluatorImpl<ScalarT, IdxT>::size_;
using ModelEvaluatorImpl<ScalarT, IdxT>::size_quad_;
using ModelEvaluatorImpl<ScalarT, IdxT>::size_opt_;
using ModelEvaluatorImpl<ScalarT, IdxT>::nnz_;
using ModelEvaluatorImpl<ScalarT, IdxT>::time_;
using ModelEvaluatorImpl<ScalarT, IdxT>::alpha_;
using ModelEvaluatorImpl<ScalarT, IdxT>::y_;
using ModelEvaluatorImpl<ScalarT, IdxT>::yp_;
using ModelEvaluatorImpl<ScalarT, IdxT>::yB_;
using ModelEvaluatorImpl<ScalarT, IdxT>::ypB_;
using ModelEvaluatorImpl<ScalarT, IdxT>::tag_;
using ModelEvaluatorImpl<ScalarT, IdxT>::f_;
using ModelEvaluatorImpl<ScalarT, IdxT>::fB_;
using ModelEvaluatorImpl<ScalarT, IdxT>::g_;
using ModelEvaluatorImpl<ScalarT, IdxT>::gB_;
using ModelEvaluatorImpl<ScalarT, IdxT>::rtol_;
using ModelEvaluatorImpl<ScalarT, IdxT>::atol_;
using ModelEvaluatorImpl<ScalarT, IdxT>::param_;
using ModelEvaluatorImpl<ScalarT, IdxT>::param_up_;
using ModelEvaluatorImpl<ScalarT, IdxT>::param_lo_;
public:
/**
* @brief Constructor for the system model
*/
SystemModel() : ModelEvaluatorImpl<ScalarT, IdxT>(0, 0, 0)
{
// Set system model tolerances
rtol_ = 1e-7;
atol_ = 1e-9;
this->max_steps_=2000;
}
/**
* @brief Destructor for the system model
*/
virtual ~SystemModel()
{
}
/**
* @brief Allocate buses, components, and system objects.
*
* This method first allocates bus objects, then component objects,
* and computes system size (number of unknowns). Once the size is
* computed, system global objects are allocated.
*
* @post size_quad_ == 0 or 1
* @post size_ >= 1
* @post size_opt_ >= 0
*
*/
int allocate()
{
size_ = 0;
size_quad_ = 0;
size_opt_ = 0;
// Allocate all buses
for(const auto& bus: buses_)
{
bus->allocate();
size_ += bus->size();
size_quad_ += bus->size_quad();
size_opt_ += bus->size_opt();
}
// Allocate all components
for(const auto& component : components_)
{
component->allocate();
size_ += component->size();
size_quad_ += component->size_quad();
size_opt_ += component->size_opt();
}
// Allocate global vectors
y_.resize(size_);
yp_.resize(size_);
yB_.resize(size_);
ypB_.resize(size_);
f_.resize(size_);
fB_.resize(size_);
tag_.resize(size_);
g_.resize(size_quad_);
gB_.resize(size_quad_*size_opt_);
param_.resize(size_opt_);
param_lo_.resize(size_opt_);
param_up_.resize(size_opt_);
assert(size_quad_ == 1 or size_quad_ == 0);
return 0;
}
/**
* @brief Assume that jacobian is not avalible
*
* @return true
* @return false
*/
bool hasJacobian()
{
return false;
}
/**
* @brief Initialize buses first, then all the other components.
*
* @pre All buses and components must be allocated at this point.
* @pre Bus variables are written before component variables in the
* system variable vector.
*
* Buses must be initialized before other components, because other
* components may write to buses during the initialization.
*
* Also, generators may write to control devices (e.g. governors,
* exciters, etc.) during the initialization.
*
* @todo Implement writting to system vectors in a thread-safe way.
*/
int initialize()
{
// Set initial values for global solution vectors
IdxT varOffset = 0;
IdxT optOffset = 0;
for(const auto& bus: buses_)
{
bus->initialize();
}
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
y_[varOffset + j] = bus->y()[j];
yp_[varOffset + j] = bus->yp()[j];
}
varOffset += bus->size();
for(IdxT j=0; j<bus->size_opt(); ++j)
{
param_[optOffset + j] = bus->param()[j];
param_lo_[optOffset + j] = bus->param_lo()[j];
param_up_[optOffset + j] = bus->param_up()[j];
}
optOffset += bus->size_opt();
}
// Initialize components
for(const auto& component : components_)
{
component->initialize();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
y_[varOffset + j] = component->y()[j];
yp_[varOffset + j] = component->yp()[j];
}
varOffset += component->size();
for(IdxT j=0; j<component->size_opt(); ++j)
{
param_[optOffset + j] = component->param()[j];
param_lo_[optOffset + j] = component->param_lo()[j];
param_up_[optOffset + j] = component->param_up()[j];
}
optOffset += component->size_opt();
}
return 0;
}
/**
* @todo Tagging differential variables
*
* Identify what variables in the system of differential-algebraic
* equations are differential variables, i.e. their derivatives
* appear in the equations.
*/
int tagDifferentiable()
{
// Set initial values for global solution vectors
IdxT offset = 0;
for(const auto& bus: buses_)
{
bus->tagDifferentiable();
for(IdxT j=0; j<bus->size(); ++j)
{
tag_[offset + j] = bus->tag()[j];
}
offset += bus->size();
}
for(const auto& component: components_)
{
component->tagDifferentiable();
for(IdxT j=0; j<component->size(); ++j)
{
tag_[offset + j] = component->tag()[j];
}
offset += component->size();
}
return 0;
}
/**
* @brief Compute system residual vector
*
* First, update bus and component variables from the system solution
* vector. Next, evaluate residuals in buses and components, and
* then copy values to the global residual vector.
*
* @warning Residuals must be computed for buses, before component
* residuals are computed. Buses own residuals for active and
* power P and Q, but the contributions to these residuals come
* from components. Buses assign their residual values, while components
* add to those values by in-place adition. This is why bus residuals
* need to be computed first.
*
* @todo Here, components write to local values, which are then copied
* to global system vectors. Make components write to the system
* vectors directly.
*/
int evaluateResidual()
{
// Update variables
IdxT varOffset = 0;
IdxT optOffset = 0;
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
bus->y()[j] = y_[varOffset + j];
bus->yp()[j] = yp_[varOffset + j];
}
varOffset += bus->size();
for(IdxT j=0; j<bus->size_opt(); ++j)
{
bus->param()[j] = param_[optOffset + j];
}
optOffset += bus->size_opt();
bus->evaluateResidual();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
component->y()[j] = y_[varOffset + j];
component->yp()[j] = yp_[varOffset + j];
}
varOffset += component->size();
for(IdxT j=0; j<component->size_opt(); ++j)
{
component->param()[j] = param_[optOffset + j];
}
optOffset += component->size_opt();
component->evaluateResidual();
}
// Update residual vector
IdxT resOffset = 0;
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
f_[resOffset + j] = bus->getResidual()[j];
}
resOffset += bus->size();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
f_[resOffset + j] = component->getResidual()[j];
}
resOffset += component->size();
}
return 0;
}
/**
* @brief Evaluate system Jacobian.
*
* @todo Need to implement Jacobian. For now, using finite difference
* approximation provided by IDA. This works for dense Jacobian matrix
* only.
*
*/
int evaluateJacobian(){return 0;}
/**
* @brief Evaluate integrands for the system quadratures.
*/
int evaluateIntegrand()
{
// Update variables
IdxT varOffset = 0;
IdxT optOffset = 0;
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
bus->y()[j] = y_[varOffset + j];
bus->yp()[j] = yp_[varOffset + j];
}
varOffset += bus->size();
for(IdxT j=0; j<bus->size_opt(); ++j)
{
bus->param()[j] = param_[optOffset + j];
}
optOffset += bus->size_opt();
bus->evaluateIntegrand();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
component->y()[j] = y_[varOffset + j];
component->yp()[j] = yp_[varOffset + j];
}
varOffset += component->size();
for(IdxT j=0; j<component->size_opt(); ++j)
{
component->param()[j] = param_[optOffset + j];
}
optOffset += component->size_opt();
component->evaluateIntegrand();
}
// Update integrand vector
IdxT intOffset = 0;
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size_quad(); ++j)
{
g_[intOffset + j] = bus->getIntegrand()[j];
}
intOffset += bus->size_quad();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size_quad(); ++j)
{
g_[intOffset + j] = component->getIntegrand()[j];
}
intOffset += component->size_quad();
}
return 0;
}
/**
* @brief Initialize system adjoint.
*
* Updates variables and optimization parameters, then initializes
* adjoints locally and copies them to the system adjoint vector.
*/
int initializeAdjoint()
{
IdxT offset = 0;
IdxT optOffset = 0;
// Update bus variables and optimization parameters
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
bus->y()[j] = y_[offset + j];
bus->yp()[j] = yp_[offset + j];
}
offset += bus->size();
for(IdxT j=0; j<bus->size_opt(); ++j)
{
bus->param()[j] = param_[optOffset + j];
}
optOffset += bus->size_opt();
}
// Update component variables and optimization parameters
for(const auto& component: components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
component->y()[j] = y_[offset + j];
component->yp()[j] = yp_[offset + j];
}
offset += component->size();
for(IdxT j=0; j<component->size_opt(); ++j)
{
component->param()[j] = param_[optOffset + j];
}
optOffset += component->size_opt();
}
// Reset counter
offset = 0;
// Initialize bus adjoints
for(const auto& bus: buses_)
{
bus->initializeAdjoint();
for(IdxT j=0; j<bus->size(); ++j)
{
yB_[offset + j] = bus->yB()[j];
ypB_[offset + j] = bus->ypB()[j];
}
offset += bus->size();
}
// Initialize component adjoints
for(const auto& component: components_)
{
component->initializeAdjoint();
for(IdxT j=0; j<component->size(); ++j)
{
yB_[offset + j] = component->yB()[j];
ypB_[offset + j] = component->ypB()[j];
}
offset += component->size();
}
return 0;
}
/**
* @brief Compute adjoint residual for the system model.
*
* @warning Components write to bus residuals. Do not copy bus residuals
* to system vectors before components computed their residuals.
*
*/
int evaluateAdjointResidual()
{
IdxT varOffset = 0;
IdxT optOffset = 0;
// Update variables in component models
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
bus->y()[j] = y_[varOffset + j];
bus->yp()[j] = yp_[varOffset + j];
bus->yB()[j] = yB_[varOffset + j];
bus->ypB()[j] = ypB_[varOffset + j];
}
varOffset += bus->size();
for(IdxT j=0; j<bus->size_opt(); ++j)
{
bus->param()[j] = param_[optOffset + j];
}
optOffset += bus->size_opt();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
component->y()[j] = y_[varOffset + j];
component->yp()[j] = yp_[varOffset + j];
component->yB()[j] = yB_[varOffset + j];
component->ypB()[j] = ypB_[varOffset + j];
}
varOffset += component->size();
for(IdxT j=0; j<component->size_opt(); ++j)
{
component->param()[j] = param_[optOffset + j];
}
optOffset += component->size_opt();
}
for(const auto& bus: buses_)
{
bus->evaluateAdjointResidual();
}
for(const auto& component : components_)
{
component->evaluateAdjointResidual();
}
// Update residual vector
IdxT resOffset = 0;
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
fB_[resOffset + j] = bus->getAdjointResidual()[j];
}
resOffset += bus->size();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
fB_[resOffset + j] = component->getAdjointResidual()[j];
}
resOffset += component->size();
}
return 0;
}
//int evaluateAdjointJacobian(){return 0;}
/**
* @brief Evaluate adjoint integrand for the system model.
*
* @pre Assumes there are no integrands in bus models.
* @pre Assumes integrand is implemented in only _one_ component.
*
*/
int evaluateAdjointIntegrand()
{
// First, update variables
IdxT varOffset = 0;
IdxT optOffset = 0;
for(const auto& bus: buses_)
{
for(IdxT j=0; j<bus->size(); ++j)
{
bus->y()[j] = y_[varOffset + j];
bus->yp()[j] = yp_[varOffset + j];
bus->yB()[j] = yB_[varOffset + j];
bus->ypB()[j] = ypB_[varOffset + j];
}
varOffset += bus->size();
for(IdxT j=0; j<bus->size_opt(); ++j)
{
bus->param()[j] = param_[optOffset + j];
}
optOffset += bus->size_opt();
}
for(const auto& component : components_)
{
for(IdxT j=0; j<component->size(); ++j)
{
component->y()[j] = y_[varOffset + j];
component->yp()[j] = yp_[varOffset + j];
component->yB()[j] = yB_[varOffset + j];
component->ypB()[j] = ypB_[varOffset + j];
}
varOffset += component->size();
for(IdxT j=0; j<component->size_opt(); ++j)
{
component->param()[j] = param_[optOffset + j];
}
optOffset += component->size_opt();
}
// Evaluate integrand and update global vector
for(const auto& component : components_)
{
if(component->size_quad() == 1)
{
component->evaluateAdjointIntegrand();
for(IdxT j=0; j<size_opt_; ++j)
{
gB_[j] = component->getAdjointIntegrand()[j];
}
break;
}
}
return 0;
}
void updateTime(real_type t, real_type a)
{
for(const auto& component : components_)
{
component->updateTime(t, a);
}
}
void addBus(bus_type* bus)
{
buses_.push_back(bus);
}
void addComponent(component_type* component)
{
components_.push_back(component);
}
private:
std::vector<bus_type*> buses_;
std::vector<component_type*> components_;
}; // class SystemModel
} // namespace ModelLib
#endif // _SYSTEM_MODEL_HPP_