-
Notifications
You must be signed in to change notification settings - Fork 3
/
evaluate_augmentedGCG.py
322 lines (259 loc) · 13.2 KB
/
evaluate_augmentedGCG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer,PreTrainedTokenizer
import torch
import hydra
from omegaconf import DictConfig, OmegaConf
from lm_components import create_targetlm,create_prompterlm
from torch.utils.data import DataLoader
import jsonlines
import os
from tqdm import tqdm
from pathlib import Path
from accelerate.utils import set_seed
from print_color import print
import json
import time
from torch.utils.data import Dataset
from itertools import chain, repeat
import random
import gc
from datetime import datetime
PROMPT_DICT = {
"q_p": (
"### Query:{q} ### Prompt:"
),
}
def unique_random_concat_combinations(lst, concat_times, sample_times):
# 生成所有可能的唯一组合
unique_combinations = [tuple(lst[i] for i in indices) for indices in itertools.combinations(range(len(lst)), concat_times)]
# 如果请求的组合数超过了总组合数,返回 None
if sample_times > len(unique_combinations):
raise NotImplementedError("False value for concat times and sample times")
# 随机选择 sample_times 个不同的组合
selected_combinations = random.sample(unique_combinations, sample_times)
# 连接选中的组合
concatenated_combinations = [' '.join(combination) for combination in selected_combinations]
return concatenated_combinations
import itertools
def repeat_texts_l(l,repeat_times=1):
return list(chain.from_iterable(repeat(item, repeat_times) for item in l))
def get_data(data_args):
if data_args.prompt_type!= "q_p":
raise NotImplementedError()
split_path = data_args.split_path
with open(split_path) as f:
splits = json.load(f)
list_qs = []
q_s = splits[data_args.split]
q_s = sorted(q_s)
for q in q_s:
list_qs.append(dict(q = q))
print("****************")
print(list_qs[0])
print("****************")
return list_qs
def attack_collate_fn(batch):
collated_batch = {}
for item in batch:
for key, value in item.items():
if key in collated_batch:
collated_batch[key].append(value)
else:
collated_batch[key] = [value]
return collated_batch
def set_pad_token(t):
if t.pad_token is None:
t.pad_token = t.eos_token
return t
def get_batch(l,bs):
for i in range(0,len(l),bs):
yield l[i: i+bs]
def do_reps(
source_texts,
num_reps
):
source_reps = []
for text in source_texts:
for _ in range(num_reps):
source_reps.append(text)
return source_reps
@hydra.main(config_path="./myconfig", config_name="config_evaluate")
def main(config: "DictConfig"):
set_seed(config.seed)
start_time = time.time()
Path(config.s_p_t_dir).mkdir(exist_ok= True, parents= True)
s_p_t_dir = config.s_p_t_dir
if config.prompt_way == "prompter":
promptway_name = config.prompt_way + "_" + config.data_args.prompt_type
decode_way = f"decode_{config.prompter_lm.generation_configs.name}"
if config.prompter_lm.generation_configs.name == "top_p":
if config.prompter_lm.generation_configs.top_p != 0.9:
decode_way += f"_{config.prompter_lm.generation_configs.top_p}"
if config.prompter_lm.generation_configs.name == "top_k":
if config.prompter_lm.generation_configs.top_k != 50:
decode_way += f"_{config.prompter_lm.generation_configs.top_k}"
if config.prompter_lm.generation_configs.name == "group_beam_search":
# config.prompter_lm.generation_configs.num_beam_groups = config.prompter_lm.generation_configs.num_beams
decode_way += f"_group_{config.prompter_lm.generation_configs.num_beam_groups}"
if config.prompter_lm.generation_configs.diversity_penalty != 1.0:
decode_way += f"_diverse_pen_{config.prompter_lm.generation_configs.diversity_penalty}"
if config.prompter_lm.generation_configs.num_return_sequences > 1:
decode_way += f"_numreturn_{config.prompter_lm.generation_configs.num_return_sequences}"
if config.prompt_concat > 1:
decode_way += f"_p_concat_{config.prompt_concat}_group_{config.num_prompt_group}"
s_p_t_dir = os.path.join(s_p_t_dir,f"{config.data_args.split}|prompter_{config.prompter_lm.show_name}|{decode_way}|promptway_{promptway_name}")
if config.seed != 42:
s_p_t_dir += f"_seed_{config.seed}"
if config.q_rep!=1:
s_p_t_dir += "|" + f"q_rep_{config.q_rep}"
if config.q_prefix.choice in ["long","short","medium"]:
s_p_t_dir += "|" + f"q_prefix_{config.q_prefix.choice}"
if config.q_s_position in ["prompter_lm=processed|target_lm=processed","prompter_lm=raw|target_lm=processed"]:
if config.q_s_position == "prompter_lm=raw|target_lm=processed":
s_p_t_dir += "|" + f"q_s_position_{config.q_s_position}"
else:
raise ValueError("The q_s_position is not defined")
if config.w_affirm_suffix:
s_p_t_dir += "|" + f"w_affirm_suffix"
if config.prompter_w_system:
s_p_t_dir += "|" + f"prompter_w_system"
if config.sys_msg.choice is not None:
if config.sys_msg.choice in ["no_persuasive"]:
s_p_t_dir += "|" + f"sys_msg_{config.sys_msg.choice}"
else:
raise ValueError(f"The {config.sys_msg.choice} is not defined")
elif config.prompt_way == "own":
assert config.prompt_own_list is not None
assert config.prompt_own_list_name is not None
promptway_name = config.prompt_way + "_" + config.data_args.prompt_type
s_p_t_dir = os.path.join(s_p_t_dir,f"{config.data_args.split}|prompter_None|promptway_{promptway_name}|prompt_own_list_name_{config.prompt_own_list_name}")
if config.sys_msg.choice is not None:
if config.sys_msg.choice in ["no_persuasive"]:
s_p_t_dir += "|" + f"sys_msg_{config.sys_msg.choice}"
else:
raise ValueError(f"The {config.sys_msg.choice} is not defined")
if not config.target_lm.model_name.startswith("gpt-"):
s_p_t_dir = os.path.join(s_p_t_dir,f"{config.target_lm.show_name}|max_new_tokens_{config.target_lm.generation_configs.max_new_tokens}")
else:
s_p_t_dir = os.path.join(s_p_t_dir,f"{config.target_lm.show_name}|temp={config.target_lm.temperature}_topp={config.target_lm.top_p}")
Path(s_p_t_dir).mkdir(exist_ok= True, parents= True)
save_path = os.path.join(s_p_t_dir,f"targetlm.jsonl")
exist_lens = 0
if os.path.exists(save_path):
exist_lens = len(open(save_path).readlines())
# if exist_lens != 0:
# print("file exists, so skip")
# return
fp = jsonlines.open(save_path,mode = "a",flush= True)
processed_data = get_data(config.data_args)
print(len(processed_data),'len(processed_data)')
exist_lens = exist_lens // config.prompter_lm.generation_configs.num_return_sequences
if config.force_append:
exist_lens = 0
processed_data = processed_data[exist_lens:]
print(len(processed_data),'len(processed_data)')
if len(processed_data) == 0:
print("Already get all data, skip")
return
print(OmegaConf.to_yaml(config), color='red')
if config.target_lm.model_name.startswith("gpt-"):
from utility import OpenaiModel
target_lm_fn = OpenaiModel(model_name=config.target_lm.model_name,system_message = config.target_lm.system_message,template = config.target_lm.template, top_p = config.target_lm.top_p, temperature = config.target_lm.temperature)
else:
target_lm_fn = create_targetlm(config)
if config.sys_msg.choice is not None:
target_lm_fn.replace_sys_msg(config.sys_msg[config.sys_msg.choice])
prompter_lm_fn = None
if config.prompt_way == "prompter":
prompter_lm_fn = create_prompterlm(config)
evaluate_fn(target_lm_fn,prompter_lm_fn,processed_data,config,fp)
elif config.prompt_way == "own":
with open(config.prompt_own_list) as f:
prompt_own_list = json.load(f)
print('len(prompt_own_list[config.prompt_own_list_name])',len(prompt_own_list[config.prompt_own_list_name]))
for own_prompt in prompt_own_list[config.prompt_own_list_name]:
print('own_prompt:\n',own_prompt)
evaluate_fn(target_lm_fn,prompter_lm_fn,processed_data,config,fp,own_prompt)
fp.close()
end_time = time.time()
# 计算运行时间
elapsed_time = end_time - start_time
print(f"elapsed_time: {elapsed_time}秒")
@torch.no_grad()
def evaluate_fn(target_lm_fn,prompter_lm_fn,processed_data,config,fp,own_prompt = None):
prompt_template = PROMPT_DICT[config.data_args.prompt_type]
progress_keys = tqdm(processed_data, total=len(processed_data),desc="keys iteration")
for batch in get_batch(processed_data,config.batch_size):
batch = attack_collate_fn(batch)
raw_q_s = batch["q"]
processed_q_s = [" ".join([_] * config.q_rep) for _ in batch["q"]]
if config.q_prefix.choice in ["long","short","medium"]:
processed_q_s = [config.q_prefix[config.q_prefix.choice] + " " + _ for _ in processed_q_s]
print("*"*50)
print("This is prompter lm")
print("Current Time:", datetime.now())
# if config.q_s_position == "prompter_lm=processed|target_lm=processed":
if config.q_s_position == "prompter_lm=raw|target_lm=processed":
for_promptlm_q_s = raw_q_s
for_targetlm_q_s = processed_q_s
elif config.q_s_position == "prompter_lm=processed|target_lm=processed":
for_promptlm_q_s = processed_q_s
for_targetlm_q_s = processed_q_s
else:
raise ValueError("The q_s_position is not defined")
if config.prompter_w_system:
for_promptlm_q_s = [target_lm_fn.system_message + " " + _ for _ in for_promptlm_q_s]
print("for_promptlm_q_s[0]:",for_promptlm_q_s[0])
if config.prompt_way == "prompter":
if config.data_args.prompt_type == "q_p":
prompter_lm_inputs = [prompt_template.format(q = for_promptlm_q_s[index]) for index in range(len(for_promptlm_q_s))]
prompt_lm_start_time = time.time()
p_s = prompter_lm_fn.get_prompter_lm_generation(prompter_lm_inputs)
prompt_lm_end_time = time.time()
print('prompt_lm_time for one query',round((prompt_lm_end_time - prompt_lm_start_time)/len(for_promptlm_q_s),2))
assert len(for_promptlm_q_s)*config.prompter_lm.generation_configs.num_return_sequences == len(p_s)
print("prompter lm num_returns",config.prompter_lm.generation_configs.num_return_sequences)
if config.prompt_concat > 1:
_p_s = []
for k in range(0,len(p_s),config.prompter_lm.generation_configs.num_return_sequences):
tmp_l = unique_random_concat_combinations(p_s[k:k+config.prompter_lm.generation_configs.num_return_sequences],concat_times=config.prompt_concat,sample_times=config.num_prompt_group)
_p_s.extend(tmp_l)
p_s = _p_s
repeat_for_targetlm_q_s = repeat_texts_l(for_targetlm_q_s,config.num_prompt_group)
repeat_prompter_lm_inputs = repeat_texts_l(prompter_lm_inputs,config.num_prompt_group)
else:
repeat_for_targetlm_q_s = repeat_texts_l(for_targetlm_q_s,config.prompter_lm.generation_configs.num_return_sequences)
repeat_prompter_lm_inputs = repeat_texts_l(prompter_lm_inputs,config.prompter_lm.generation_configs.num_return_sequences)
assert len(repeat_for_targetlm_q_s) == len(p_s)
elif config.prompt_way == "own":
prompter_lm_inputs = [None] * len(for_promptlm_q_s)
assert own_prompt is not None
p_s = [own_prompt] * len(for_promptlm_q_s)
print('config.prompt_way == "own"')
print(p_s[0])
repeat_prompter_lm_inputs = prompter_lm_inputs
repeat_for_targetlm_q_s = for_targetlm_q_s
else:
raise NotImplementedError()
gc.collect()
torch.cuda.empty_cache()
if config.w_affirm_suffix:
p_s = [_ + " " + config.affirm_suffix for _ in p_s]
print("*"*50)
print("This is target lm")
print("Current Time:", datetime.now())
target_lm_generations = target_lm_fn.get_target_lm_generation(repeat_for_targetlm_q_s,p_s)
gc.collect()
torch.cuda.empty_cache()
ppl_q_p = [None for _ in range(len(repeat_for_targetlm_q_s))]
if config.ppl == True:
print("This is ppl run")
ppl_q_p = target_lm_fn.ppl_run(repeat_for_targetlm_q_s,p_s)
for i in range(len(target_lm_generations)):
save_d = dict(q = repeat_for_targetlm_q_s[i],p = p_s[i],target_lm_generation = target_lm_generations[i],ppl_q_p = ppl_q_p[i],prompter_lm_inputs = repeat_prompter_lm_inputs[i])
fp.write(save_d)
progress_keys.update(config.batch_size)
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
main()