-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbcfnt.py
1234 lines (1008 loc) · 43.8 KB
/
bcfnt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
import argparse
import json
import math
import os.path
import struct
import sys
import png
# FINF = Font Info
# TGLP = Texture Glyph
# CWDH = Character Widths
# CMAP = Character Mapping
VERSIONS = (0x03000000,)
FFNT_HEADER_SIZE = 0x14
FINF_HEADER_SIZE = 0x20
TGLP_HEADER_SIZE = 0x20
CWDH_HEADER_SIZE = 0x10
CMAP_HEADER_SIZE = 0x14
FFNT_HEADER_MAGIC = (b'CFNT', b'CFNU')
FINF_HEADER_MAGIC = b'FINF'
TGLP_HEADER_MAGIC = b'TGLP'
CWDH_HEADER_MAGIC = b'CWDH'
CMAP_HEADER_MAGIC = b'CMAP'
FFNT_HEADER_STRUCT = '%s4s2H3I'
FINF_HEADER_STRUCT = '%s4sI2BH4B3I4B'
TGLP_HEADER_STRUCT = '%s4sI4BI6HI'
CWDH_HEADER_STRUCT = '%s4sI2HI'
CMAP_HEADER_STRUCT = '%s4sI4HI'
FORMAT_RGBA8 = 0x00
FORMAT_RGB8 = 0x01
FORMAT_RGBA5551 = 0x02
FORMAT_RGB565 = 0x03
FORMAT_RGBA4 = 0x04
FORMAT_LA8 = 0x05
FORMAT_HILO8 = 0x06
FORMAT_L8 = 0x07
FORMAT_A8 = 0x08
FORMAT_LA4 = 0x09
FORMAT_L4 = 0x0A
FORMAT_A4 = 0x0B
FORMAT_ETC1 = 0x0C
FORMAT_ETC1A4 = 0x0D
PIXEL_FORMATS = {
FORMAT_RGBA8: 'RGBA8',
FORMAT_RGB8: 'RGB8',
FORMAT_RGBA5551: 'RGBA5551',
FORMAT_RGB565: 'RGB565',
FORMAT_RGBA4: 'RGBA4',
FORMAT_LA8: 'LA8',
FORMAT_HILO8: 'HILO8',
FORMAT_L8: 'L8',
FORMAT_A8: 'A8',
FORMAT_LA4: 'LA4',
FORMAT_L4: 'L4',
FORMAT_A4: 'A4',
FORMAT_ETC1: 'ETC1',
FORMAT_ETC1A4: 'ETC1A4'
}
PIXEL_FORMAT_SIZE = {
FORMAT_RGBA8: 32,
FORMAT_RGB8: 24,
FORMAT_RGBA5551: 16,
FORMAT_RGB565: 16,
FORMAT_RGBA4: 16,
FORMAT_LA8: 16,
FORMAT_HILO8: 16,
FORMAT_L8: 8,
FORMAT_A8: 8,
FORMAT_LA4: 8,
FORMAT_L4: 4,
FORMAT_A4: 4,
FORMAT_ETC1: 64,
FORMAT_ETC1A4: 128
}
ETC_INDIV_RED1_OFFSET = 60
ETC_INDIV_GREEN1_OFFSET = 52
ETC_INDIV_BLUE1_OFFSET = 44
ETC_DIFF_RED1_OFFSET = 59
ETC_DIFF_GREEN1_OFFSET = 51
ETC_DIFF_BLUE_OFFSET = 43
ETC_RED2_OFFSET = 56
ETC_GREEN2_OFFSET = 48
ETC_BLUE2_OFFSET = 40
ETC_TABLE1_OFFSET = 37
ETC_TABLE2_OFFSET = 34
ETC_DIFFERENTIAL_BIT = 33
ETC_ORIENTATION_BIT = 32
ETC_MODIFIERS = [
[2, 8],
[5, 17],
[9, 29],
[13, 42],
[18, 60],
[24, 80],
[33, 106],
[47, 183]
]
MAPPING_DIRECT = 0x00
MAPPING_TABLE = 0x01
MAPPING_SCAN = 0x02
MAPPING_METHODS = {
MAPPING_DIRECT: 'Direct',
MAPPING_TABLE: 'Table',
MAPPING_SCAN: 'Scan'
}
TGLP_DATA_OFFSET = 0x2000
class Bffnt:
order = None
invalid = False
file_size = 0
filename = ''
font_info = {}
tglp = {}
cwdh_sections = []
cmap_sections = []
def __init__(self, verbose=False, debug=False, load_order='<'):
self.verbose = verbose
self.debug = debug
self.load_order = load_order
def read(self, filename):
data = open(filename, 'rb').read()
self.file_size = len(data)
self.filename = filename
self._parse_header(data[:FFNT_HEADER_SIZE])
position = FFNT_HEADER_SIZE
if self.invalid:
return
self._parse_finf(data[position:position + FINF_HEADER_SIZE])
if self.invalid:
return
# navigate to TGLP (offset skips the MAGIC+size)
position = self.tglp_offset - 8
self._parse_tglp_header(data[position:position + TGLP_HEADER_SIZE])
if self.invalid:
return
# navigate to CWDH (offset skips the MAGIC+size)
cwdh = self.cwdh_offset
while cwdh > 0:
position = cwdh - 8
cwdh = self._parse_cwdh_header(data[position:position + CWDH_HEADER_SIZE])
if self.invalid:
return
position += CWDH_HEADER_SIZE
info = self.cwdh_sections[-1]
self._parse_cwdh_data(info, data[position:position + info['size'] - CWDH_HEADER_SIZE])
# navigate to CMAP (offset skips the MAGIC+size)
cmap = self.cmap_offset
while cmap > 0:
position = cmap - 8
cmap = self._parse_cmap_header(data[position:position + CMAP_HEADER_SIZE])
if self.invalid:
return
position += CMAP_HEADER_SIZE
info = self.cmap_sections[-1]
self._parse_cmap_data(info, data[position:position + info['size'] - CMAP_HEADER_SIZE])
# convert pixels to RGBA8
self._parse_tglp_data(data)
def load(self, json_filename):
json_data = json.load(open(json_filename, 'r'))
self.order = self.load_order
self.version = json_data['version']
self.filetype = json_data['fileType']
self.font_info = json_data['fontInfo']
tex_info = json_data['textureInfo']
sheet_pixel_format = None
for value in PIXEL_FORMATS.keys():
if PIXEL_FORMATS[value] == tex_info['sheetInfo']['colorFormat']:
sheet_pixel_format = value
break
if sheet_pixel_format is None:
print('Invalid pixel format: %s' % tex_info['sheetInfo']['colorFormat'])
self.invalid = True
return
self.tglp = {
'glyph': {
'width': tex_info['glyph']['width'],
'height': tex_info['glyph']['height'],
'baseline': tex_info['glyph']['baseline']
},
'sheetCount': tex_info['sheetCount'],
'sheet': {
'cols': tex_info['sheetInfo']['cols'],
'rows': tex_info['sheetInfo']['rows'],
'width': tex_info['sheetInfo']['width'],
'height': tex_info['sheetInfo']['height'],
'format': sheet_pixel_format
}
}
widths = json_data['glyphWidths']
cwdh = {
'start': 0,
'end': 0,
'data': []
}
widest = 0
glyph_indicies = list(widths.keys())
glyph_indicies.sort(key=self._int_sort)
cwdh['end'] = int(glyph_indicies[-1], 10)
for idx in glyph_indicies:
cwdh['data'].append(widths[idx])
if widths[idx]['char'] > widest:
widest = widths[idx]['char']
self.tglp['maxCharWidth'] = widest
self.cwdh_sections = [cwdh]
glyph_map = json_data['glyphMap']
glyph_ords = list(glyph_map.keys())
glyph_ords.sort()
cmap = {
'start': ord(glyph_ords[0]),
'end': ord(glyph_ords[-1]),
'type': MAPPING_SCAN,
'entries': {}
}
for entry in range(cmap['start'], cmap['end'] + 1):
try: #Python2
utf16 = unichr(entry)
except: #Python3
utf16 = chr(entry)
if utf16 in glyph_map:
cmap['entries'][utf16] = glyph_map[utf16]
self.cmap_sections = [cmap]
def _int_sort(self, n):
return int(n, 10)
def extract(self):
if self.verbose:
print('Extracting...')
basename_ = os.path.splitext(os.path.basename(self.filename))[0]
glyph_widths = {}
for cwdh in self.cwdh_sections:
for index in range(cwdh['start'], cwdh['end'] + 1):
glyph_widths[index] = cwdh['data'][index - cwdh['start']]
glyph_mapping = {}
for cmap in self.cmap_sections:
if cmap['type'] == MAPPING_DIRECT:
for code in range(cmap['start'], cmap['end'] + 1):
try: #Python2
glyph_mapping[unichr(code)] = code - cmap['start'] + cmap['indexOffset']
except:
glyph_mapping[chr(code)] = code - cmap['start'] + cmap['indexOffset']
elif cmap['type'] == MAPPING_TABLE:
for code in range(cmap['start'], cmap['end'] + 1):
index = cmap['indexTable'][code - cmap['start']]
if index != 0xFFFF:
try: #Python2
glyph_mapping[unichr(code)] = index
except:
glyph_mapping[chr(code)] = index
elif cmap['type'] == MAPPING_SCAN:
for code in cmap['entries'].keys():
glyph_mapping[code] = cmap['entries'][code]
# save JSON manifest
json_file_ = open('%s_manifest.json' % basename_, 'w')
json_file_.write(json.dumps({
'version': self.version,
'fileType': self.filetype,
'fontInfo': self.font_info,
'textureInfo': {
'glyph': self.tglp['glyph'],
'sheetCount': self.tglp['sheetCount'],
'sheetInfo': {
'cols': self.tglp['sheet']['cols'],
'rows': self.tglp['sheet']['rows'],
'width': self.tglp['sheet']['width'],
'height': self.tglp['sheet']['height'],
'colorFormat': PIXEL_FORMATS[self.tglp['sheet']['format']]
}
},
'glyphWidths': glyph_widths,
'glyphMap': glyph_mapping
}, indent=2, sort_keys=True))
json_file_.close()
# save sheet bitmaps
for i in range(self.tglp['sheetCount']):
sheet = self.tglp['sheets'][i]
width = sheet['width']
height = sheet['height']
png_data = []
for y in range(height):
row = []
for x in range(width):
for color in sheet['data'][x + (y * width)]:
row.append(color)
png_data.append(row)
file_ = open('%s_sheet%d.png' % (basename_, i), 'wb')
writer = png.Writer(width, height, greyscale=False, alpha=True)
writer.write(file_, png_data)
file_.close()
print('Done')
def save(self, filename):
if self.verbose:
print('Packing...')
file_ = open(filename, 'wb')
basename_ = os.path.splitext(os.path.basename(filename))[0]
section_count = 0
bom = 0
if self.order == '>':
bom = 0xFFFE
elif self.order == '<':
bom = 0xFEFF
# write header
file_size_pos = 0x0C
section_count_pos = 0x10
magic = self.filetype.upper().encode('ascii')
data = struct.pack(FFNT_HEADER_STRUCT % self.order, magic, bom, FFNT_HEADER_SIZE, self.version, 0, 0)
file_.write(data)
position = FFNT_HEADER_SIZE
# write finf
if self.verbose:
print('Writing FINF...')
font_info = self.font_info
default_width = font_info['defaultWidth']
finf_tglp_offset_pos = position + 0x10
finf_cwdh_offset_pos = position + 0x14
finf_cmap_offset_pos = position + 0x18
data = struct.pack(FINF_HEADER_STRUCT % self.order, FINF_HEADER_MAGIC, FINF_HEADER_SIZE, font_info['fontType'],
font_info['lineFeed'],
font_info['alterCharIdx'], default_width['left'], default_width['glyphWidth'],
default_width['charWidth'], font_info['encoding'], 0, 0, 0,
font_info['height'], font_info['width'], font_info['ascent'], 0)
file_.write(data)
position += FINF_HEADER_SIZE
section_count += 1
# write tglp
if self.verbose:
print('Writing TGLP...')
tglp = self.tglp
sheet = tglp['sheet']
tglp_size_pos = position + 0x04
tglp_data_size = int(sheet['width'] * sheet['height'] * (PIXEL_FORMAT_SIZE[sheet['format']] / 8.0))
file_.seek(finf_tglp_offset_pos)
file_.write(struct.pack('%sI' % self.order, position + 8))
file_.seek(position)
tglp_start_pos = position
data = struct.pack(TGLP_HEADER_STRUCT % self.order, TGLP_HEADER_MAGIC, 0, tglp['glyph']['width'],
tglp['glyph']['height'], tglp['glyph']['baseline'], tglp['maxCharWidth'], tglp_data_size, tglp['sheetCount'],
sheet['format'], sheet['cols'], sheet['rows'], sheet['width'],
sheet['height'], TGLP_DATA_OFFSET)
file_.write(data)
file_.seek(TGLP_DATA_OFFSET)
position = TGLP_DATA_OFFSET
section_count += 1
for idx in range(tglp['sheetCount']):
sheet_filename = '%s_sheet%d.png' % (basename_, idx)
sheet_file_ = open(sheet_filename, 'rb')
reader = png.Reader(file=sheet_file_)
width, height, pixels, metadata = reader.read()
if width != sheet['width'] or height != sheet['height']:
print('Invalid sheet PNG:\nexpected an image size of %dx%d but %s is %dx%d' %
(sheet['width'], sheet['height'], sheet_filename, width, height))
self.invalid = True
return
if metadata['bitdepth'] != 8 or metadata['alpha'] != True:
print('Invalid sheet PNG:\nexpected a PNG8 with alpha')
self.tglp['sheet']['size'] = tglp_data_size
bmp = []
for row in list(pixels):
for pixel in range(len(row) // 4):
bmp.append(row[pixel * 4:pixel * 4 + 4])
data = self._sheet_to_bitmap(bmp, to_tglp=True)
file_.write(data)
position += len(data)
sheet_file_.close()
file_.seek(tglp_size_pos)
file_.write(struct.pack('%sI' % self.order, position - tglp_start_pos))
file_.seek(finf_cwdh_offset_pos)
file_.write(struct.pack('%sI' % self.order, position + 8))
file_.seek(position)
# write cwdh
if self.verbose:
print('Writing CWDH...')
prev_cwdh_offset_pos = 0
for cwdh in self.cwdh_sections:
section_count += 1
if prev_cwdh_offset_pos > 0:
file_.seek(prev_cwdh_offset_pos)
file_.write(struct.pack('%sI' % self.order, position + 8))
file_.seek(position)
size_pos = position + 0x04
prev_cwdh_offset_pos = position + 0x0C
start_pos = position
data = struct.pack(CWDH_HEADER_STRUCT % self.order, CWDH_HEADER_MAGIC, 0, cwdh['start'], cwdh['end'] - 1, 0)
file_.write(data)
position += CWDH_HEADER_SIZE
for code in range(cwdh['start'], cwdh['end'] + 1):
widths = cwdh['data'][code]
for key in ('left', 'glyph', 'char'):
file_.write(struct.pack('=b', widths[key]))
position += 1
file_.seek(size_pos)
file_.write(struct.pack('%sI' % self.order, position - start_pos))
file_.seek(position)
file_.seek(finf_cmap_offset_pos)
file_.write(struct.pack('%sI' % self.order, position + 8))
file_.seek(position)
# write cmap
if self.verbose:
print('Writing CMAP...')
prev_cmap_offset_pos = 0
for cmap in self.cmap_sections:
section_count += 1
if prev_cmap_offset_pos > 0:
file_.seek(prev_cmap_offset_pos)
file_.write(struct.pack('%sI' % self.order, position + 8))
file_.seek(position)
size_pos = position + 0x04
prev_cmap_offset_pos = position + 0x10
start_pos = position
data = struct.pack(CMAP_HEADER_STRUCT % self.order, CMAP_HEADER_MAGIC, 0, cmap['start'], cmap['end'],
cmap['type'], 0, 0)
file_.write(data)
position += CMAP_HEADER_SIZE
file_.write(struct.pack('%sH' % self.order, len(cmap['entries'])))
position += 2
if cmap['type'] == MAPPING_DIRECT:
file_.write(struct.pack('%sH' % self.order, cmap['indexOffset']))
position += 2
elif cmap['type'] == MAPPING_TABLE:
for index in cmap['indexTable']:
file_.write(struct.pack('%sH' % self.order, index))
position += 2
elif cmap['type'] == MAPPING_SCAN:
keys = list(cmap['entries'].keys())
keys.sort()
for code in keys:
index = cmap['entries'][code]
file_.write(struct.pack('%s2H' % self.order, ord(code), index))
position += 4
file_.seek(size_pos)
file_.write(struct.pack('%sI' % self.order, position - start_pos))
file_.seek(position)
# fill in size/offset placeholders
file_.seek(file_size_pos)
file_.write(struct.pack('%sI' % self.order, position))
file_.seek(section_count_pos)
file_.write(struct.pack('%sI' % self.order, section_count))
if self.verbose:
print('Done!')
def _parse_header(self, data):
bom = struct.unpack_from('>H', data, 4)[0]
if bom == 0xFFFE:
self.order = '<'
elif bom == 0xFEFF:
self.order = '>'
if self.order is None:
print('Invalid byte-order marker: 0x%x (expected 0xFFFE or 0xFEFF)' % bom)
self.invalid = True
return
magic, bom, header_size, self.version, file_size, sections = struct.unpack(FFNT_HEADER_STRUCT % self.order, data)
if magic not in FFNT_HEADER_MAGIC:
print('Invalid FFNT magic bytes: %s (expected %s)' % (magic, FFNT_HEADER_MAGIC))
self.invalid = True
return
self.filetype = magic.decode('ascii').lower()
if self.version not in VERSIONS:
print('Unknown version: 0x%08x (expected 0x%08x)' % (version, VERSION))
self.invalid = True
return
if header_size != FFNT_HEADER_SIZE:
print('Invalid header size: %d (expected %d)' % (header_size, FFNT_HEADER_SIZE))
self.invalid = True
return
if file_size != self.file_size:
print('Invalid file size: %d (expected %d)' % (file_size, self.file_size))
self.invalid = True
return
self.sections = sections
if self.debug:
print('FFNT Magic: %s' % magic)
print('FFNT BOM: %s (0x%x)' % (self.order, bom))
print('FFNT Header Size: %d' % header_size)
print('FFNT Version: 0x%08x' % self.version)
print('FFNT File Size: %d' % file_size)
print('FFNT Sections: %d\n' % sections)
def _parse_finf(self, data):
magic, section_size, font_type, line_feed, alter_char_idx, def_left, def_glyph_width, def_char_width, encoding, tglp_offset, cwdh_offset, cmap_offset, height, width, ascent, reserved = struct.unpack(FINF_HEADER_STRUCT % self.order, data)
if magic != FINF_HEADER_MAGIC:
print('Invalid FINF magic bytes: %s (expected %s)' % (magic, FINF_HEADER_MAGIC))
self.invalid = True
return
if section_size != FINF_HEADER_SIZE:
print('Invalid FINF size: %d (expected %d)' % (section_size, FINF_HEADER_SIZE))
self.invalid = True
return
self.font_info = {
'height': height,
'width': width,
'ascent': ascent,
'lineFeed': line_feed,
'alterCharIdx': alter_char_idx,
'defaultWidth': {
'left': def_left,
'glyphWidth': def_glyph_width,
'charWidth': def_char_width
},
'fontType': font_type,
'encoding': encoding
}
self.tglp_offset = tglp_offset
self.cwdh_offset = cwdh_offset
self.cmap_offset = cmap_offset
if self.debug:
print('FINF Magic: %s' % magic)
print('FINF Section Size: %d' % section_size)
print('FINF Font Type: 0x%x' % font_type)
print('FINF Height: %d' % height)
print('FINF Width: %d' % width)
print('FINF Ascent: %d' % ascent)
print('FINF Line feed: %d' % line_feed)
print('FINF Alter Character Index: %d' % alter_char_idx)
print('FINF Default Width, Left: %d' % def_left)
print('FINF Default Glyph Width: %d' % def_glyph_width)
print('FINF Default Character Width: %d' % def_char_width)
print('FINF Encoding: %d' % encoding)
print('FINF TGLP Offset: 0x%08x' % tglp_offset)
print('FINF CWDH Offset: 0x%08x' % cwdh_offset)
print('FINF CMAP Offset: 0x%08x\n' % cmap_offset)
def _parse_tglp_header(self, data):
magic, section_size, cell_width, cell_height, baseline_position, max_char_width, sheet_size, num_sheets, sheet_pixel_format, num_sheet_cols, num_sheet_rows, sheet_width, sheet_height, sheet_data_offset = struct.unpack(TGLP_HEADER_STRUCT % self.order, data)
if magic != TGLP_HEADER_MAGIC:
print('Invalid TGLP magic bytes: %s (expected %s)' % (magic, TGLP_HEADER_MAGIC))
self.invalid = True
return
self.tglp = {
'size': section_size,
'glyph': {
'width': cell_width,
'height': cell_height,
'baseline': baseline_position
},
'sheetCount': num_sheets,
'sheet': {
'size': sheet_size,
'cols': num_sheet_cols,
'rows': num_sheet_rows,
'width': sheet_width,
'height': sheet_height,
'format': sheet_pixel_format
},
'sheetOffset': sheet_data_offset
}
if self.debug:
print('TGLP Magic: %s' % magic)
print('TGLP Section Size: %d' % section_size)
print('TGLP Cell Width: %d' % cell_width)
print('TGLP Cell Height: %d' % cell_height)
print('TGLP Sheet Count: %d' % num_sheets)
print('TGLP Max Character Width: %d' % max_char_width)
print('TGLP Sheet Size: %d' % sheet_size)
print('TGLP Baseline Position: %d' % baseline_position)
print('TGLP Sheet Image Format: 0x%x (%s)' % (sheet_pixel_format, PIXEL_FORMATS[sheet_pixel_format]))
print('TGLP Sheet Rows: %d' % num_sheet_rows)
print('TGLP Sheet Columns: %d' % num_sheet_cols)
print('TGLP Sheet Width: %d' % sheet_width)
print('TGLP Sheet Height: %d' % sheet_height)
print('TGLP Sheet Data Offset: 0x%08x\n' % sheet_data_offset)
def _parse_tglp_data(self, data):
position = self.tglp['sheetOffset']
self.tglp['sheets'] = []
format_ = self.tglp['sheet']['format']
for i in range(self.tglp['sheetCount']):
sheet = data[position:position + self.tglp['sheet']['size']]
if format_ == FORMAT_ETC1 or format_ == FORMAT_ETC1A4:
bmp_data = self._decompress_etc1(sheet)
else:
bmp_data = self._sheet_to_bitmap(sheet)
self.tglp['sheets'].append({
'width': self.tglp['sheet']['width'],
'height': self.tglp['sheet']['height'],
'data': bmp_data
})
position = position + self.tglp['sheet']['size']
def _decompress_etc1(self, data):
width = self.tglp['sheet']['width']
height = self.tglp['sheet']['height']
with_alpha = self.tglp['sheet']['format'] == FORMAT_ETC1A4
block_size = 16 if with_alpha else 8
bmp = [[0, 0, 0, 0]] * width * height
tile_width = int(math.ceil(width / 8.0))
tile_height = int(math.ceil(height / 8.0))
# here's the kicker: there will always be a power-of-two amount of tiles
tile_width = 1 << int(math.ceil(math.log(tile_width, 2)))
tile_height = 1 << int(math.ceil(math.log(tile_height, 2)))
pos = 0
# texture is composed of 8x8 tiles
for tile_y in range(tile_height):
for tile_x in range(tile_width):
# in ETC1 mode each tile is composed of 2x2, compressed sub-tiles, 4x4 pixels each
for block_y in range(2):
for block_x in range(2):
data_pos = pos
pos += block_size
block = data[data_pos:data_pos + block_size]
alphas = 0xFFffFFffFFffFFff
if with_alpha:
alphas = struct.unpack('%sQ' % self.order, block[:8])[0]
block = block[8:]
pixels = struct.unpack('%sQ' % self.order, block)[0]
# how colors are stored in the high-order 32 bits
differential = (pixels >> ETC_DIFFERENTIAL_BIT) & 0x01 == 1
# how the sub blocks are divided, 0 = 2x4, 1 = 4x2
horizontal = (pixels >> ETC_ORIENTATION_BIT) & 0x01 == 1
# once the colors are decoded for the sub block this determines how to shift the colors
# which modifier row to use for sub block 1
table1 = ETC_MODIFIERS[(pixels >> ETC_TABLE1_OFFSET) & 0x07]
# which modifier row to use for sub block 2
table2 = ETC_MODIFIERS[(pixels >> ETC_TABLE2_OFFSET) & 0x07]
color1 = [0, 0, 0]
color2 = [0, 0, 0]
if differential:
# grab the 5-bit code words
r = ((pixels >> ETC_DIFF_RED1_OFFSET) & 0x1F)
g = ((pixels >> ETC_DIFF_GREEN1_OFFSET) & 0x1F)
b = ((pixels >> ETC_DIFF_BLUE_OFFSET) & 0x1F)
# extends from 5 to 8 bits by duplicating the 3 most significant bits
color1[0] = (r << 3) | ((r >> 2) & 0x07)
color1[1] = (g << 3) | ((g >> 2) & 0x07)
color1[2] = (b << 3) | ((b >> 2) & 0x07)
# add the 2nd block, 3-bit code words to the original words (2's complement!)
r += self._complement((pixels >> ETC_RED2_OFFSET) & 0x07, 3)
g += self._complement((pixels >> ETC_GREEN2_OFFSET) & 0x07, 3)
b += self._complement((pixels >> ETC_BLUE2_OFFSET) & 0x07, 3)
# extend from 5 to 8 bits like before
color2[0] = (r << 3) | ((r >> 2) & 0x07)
color2[1] = (g << 3) | ((g >> 2) & 0x07)
color2[2] = (b << 3) | ((b >> 2) & 0x07)
else:
# 4 bits per channel, 16 possible values
# 1st block
color1[0] = ((pixels >> ETC_INDIV_RED1_OFFSET) & 0x0F) * 0x11
color1[1] = ((pixels >> ETC_INDIV_GREEN1_OFFSET) & 0x0F) * 0x11
color1[2] = ((pixels >> ETC_INDIV_BLUE1_OFFSET) & 0x0F) * 0x11
# 2nd block
color2[0] = ((pixels >> ETC_RED2_OFFSET) & 0x0F) * 0x11
color2[1] = ((pixels >> ETC_GREEN2_OFFSET) & 0x0F) * 0x11
color2[2] = ((pixels >> ETC_BLUE2_OFFSET) & 0x0F) * 0x11
# now that we have two sub block pixel colors to start from,
# each pixel is read as a modifier value
# 16 pixels are described with 2 bits each,
# one selecting the sign, the second the value
amounts = pixels & 0xFFFF
signs = (pixels >> 16) & 0xFFFF
for pixel_y in range(4):
for pixel_x in range(4):
x = pixel_x + (block_x * 4) + (tile_x * 8)
y = pixel_y + (block_y * 4) + (tile_y * 8)
if x >= width:
continue
if y >= height:
continue
offset = pixel_x * 4 + pixel_y
if horizontal:
table = table1 if pixel_y < 2 else table2
color = color1 if pixel_y < 2 else color2
else:
table = table1 if pixel_x < 2 else table2
color = color1 if pixel_x < 2 else color2
# determine the amount to shift the color
amount = table[(amounts >> offset) & 0x01]
# and in which direction. 1 = -, 0 = +
sign = (signs >> offset) & 0x01
if sign == 1:
amount *= -1
red = max(min(color[0] + amount, 0xFF), 0)
green = max(min(color[1] + amount, 0xFF), 0)
blue = max(min(color[2] + amount, 0xFF), 0)
alpha = ((alphas >> (offset * 4)) & 0x0F) * 0x11
pixel_pos = y * width + x
bmp[pixel_pos] = [red, green, blue, alpha]
return bmp
def _complement(self, input_, bits):
if input_ >> (bits - 1) == 0:
return input_
return input_ - (1 << bits)
def _sheet_to_bitmap(self, data, to_tglp=False):
width = self.tglp['sheet']['width']
height = self.tglp['sheet']['height']
format_ = self.tglp['sheet']['format']
data_width = width
data_height = height
# increase the size of the image to a power-of-two boundary, if necessary
width = 1 << int(math.ceil(math.log(width, 2)))
height = 1 << int(math.ceil(math.log(height, 2)))
if to_tglp:
bmp = data
data = [0] * self.tglp['sheet']['size']
else:
# initialize empty bitmap memory (RGBA8)
bmp = [[0, 0, 0, 0]] * (width * height)
tile_width = width // 8
tile_height = height // 8
# sheet is composed of 8x8 pixel tiles
for tile_y in range(tile_height):
for tile_x in range(tile_width):
# tile is composed of 2x2 sub-tiles
for y in range(2):
for x in range(2):
# sub-tile is composed of 2x2 pixel groups
for y2 in range(2):
for x2 in range(2):
# pixel group is composed of 2x2 pixels (finally)
for y3 in range(2):
for x3 in range(2):
# if the final y value is beyond the input data's height then don't read it
if tile_y + y + y2 + y3 >= data_height:
continue
# same for the x and the input data width
if tile_x + x + x2 + x3 >= data_width:
continue
pixel_x = (x3 + (x2 * 2) + (x * 4) + (tile_x * 8))
pixel_y = (y3 + (y2 * 2) + (y * 4) + (tile_y * 8))
data_x = (x3 + (x2 * 4) + (x * 16) + (tile_x * 64))
data_y = ((y3 * 2) + (y2 * 8) + (y * 32) + (tile_y * width * 8))
data_pos = data_x + data_y
bmp_pos = pixel_x + (pixel_y * width)
if to_tglp:
# OR the data since there are pixel formats which use the same byte for
# multiple pixels (A4/L4)
bytes_ = self._get_tglp_pixel_data(bmp, format_, bmp_pos)
if len(bytes_) > 1:
data[data_pos:data_pos + len(bytes_)] = bytes_
else:
if PIXEL_FORMAT_SIZE[format_] == 4:
data_pos //= 2
data[data_pos] |= bytes_[0]
else:
bmp[bmp_pos] = self._get_pixel_data(data, format_, data_pos)
if to_tglp:
return struct.pack('%dB' % len(data), *data)
else:
return bmp
def _get_pixel_data(self, data, format_, index):
red = green = blue = alpha = 0
# rrrrrrrr gggggggg bbbbbbbb aaaaaaaa
if format_ == FORMAT_RGBA8:
red, green, blue, alpha = struct.unpack('4B', data[index * 4:index * 4 + 4])
# rrrrrrrr gggggggg bbbbbbbb
elif format_ == FORMAT_RGB8:
red, green, blue = struct.unpack('3B', data[index * 3:index * 3 + 3])
alpha = 255
# rrrrrgg gggbbbbba
elif format_ == FORMAT_RGBA5551:
b1, b2 = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = ((b1 >> 3) & 0x1F)
green = (b1 & 0x07) | ((b2 >> 6) & 0x03)
blue = (b2 >> 1) & 0x1F
alpha = (b2 & 0x01) * 255
# rrrrrggg gggbbbbb
elif format_ == FORMAT_RGB565:
b1, b2 = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = (b1 >> 3) & 0x1F
green = (b1 & 0x7) | ((b2 >> 5) & 0x7)
blue = (b2 & 0x1F)
alpha = 255
# rrrrgggg bbbbaaaa
elif format_ == FORMAT_RGBA4:
b1, b2 = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = ((b1 >> 4) & 0x0F) * 0x11
alpha = (b1 & 0x0F) * 0x11
blue = ((b2 >> 4) & 0x0F) * 0x11
green = (b2 & 0x0F) * 0x11
# llllllll aaaaaaaa
elif format_ == FORMAT_LA8:
l, alpha = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = green = blue = l
# ??
elif format_ == FORMAT_HILO8:
# TODO
pass
# llllllll
elif format_ == FORMAT_L8:
red = green = blue = struct.unpack('B', data[index:index + 1])[0]
alpha = 255
# aaaaaaaa
elif format_ == FORMAT_A8:
alpha = struct.unpack('B', data[index:index + 1])[0]
red = green = blue = 255
# llllaaaa
elif format_ == FORMAT_LA4:
la = struct.unpack('B', data[index:index + 1])[0]
red = green = blue = ((la >> 4) & 0x0F) * 0x11
alpha = (la & 0x0F) * 0x11
# llll
elif format_ == FORMAT_L4:
l = struct.unpack('B', data[index // 2])[0]
shift = (index & 1) * 4
red = green = blue = ((l >> shift) & 0x0F) * 0x11
alpha = 255
# aaaa
elif format_ == FORMAT_A4:
try: #Python2:
byte = ord(data[index // 2])
except:
byte = data[index // 2]
shift = (index & 1) * 4
alpha = ((byte >> shift) & 0x0F) * 0x11
green = red = blue = 0xFF
return red, green, blue, alpha
def _get_tglp_pixel_data(self, bmp, format_, index):
# bmp data: tuple (r, g, b, a)
# output: list of bytes: [255, 255]
red, green, blue, alpha = bmp[index]
if format_ == FORMAT_RGBA8:
return [red, green, blue, alpha]
elif format_ == FORMAT_RGB8:
return [red, green, blue]
# rrrrrggg ggbbbbba
elif format_ == FORMAT_RGBA5551:
r5 = (red // 8) & 0x1F
g5 = (green // 8) & 0x1F
b5 = (blue // 8) & 0x1F
a = 1 if alpha > 0 else 0
b1 = (r5 << 3) | (g5 >> 2)
b2 = ((g5 << 6) | (b5 << 1) | a) & 0xFF
return [b1, b2]
# rrrrrggg gggbbbbb
elif format_ == FORMAT_RGB565:
r5 = (red // 8) & 0x1F
g6 = (green // 4) & 0x3F
b5 = (blue // 8) & 0x1F