-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbflim.py
executable file
·837 lines (668 loc) · 29.8 KB
/
bflim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
#!/usr/bin/python
import argparse
import math
import numpy
import os.path
import struct
import sys
import png
try:
# noinspection PyUnresolvedReferences
import cv2
except ImportError:
pass
FLIM_HEADER_SIZE = 0x14
IMAG_HEADER_SIZE = 0x14
FLIM_HEADER_MAGIC = b"FLIM"
IMAG_HEADER_MAGIC = b"imag"
FLIM_HEADER_STRUCT = "=4s2H2IH2B"
IMAG_HEADER_STRUCT = "%s4sI3H2BI"
FLIM_UNKNOWN1 = 0x07020000
FLIM_UNKNOWN2 = 0x01
FLIM_UNKNOWN3 = 0x00
FLIM_MULTIPLIER = 0
IMAG_PARSE_SIZE = 0x10
IMAG_ALIGNMENT = 0x80
FORMAT_L8 = 0x00
FORMAT_A8 = 0x01
FORMAT_LA4 = 0x02
FORMAT_LA8 = 0x03
FORMAT_HILO8 = 0x04
FORMAT_RGB565 = 0x05
FORMAT_RGB8 = 0x06
FORMAT_RGBA5551 = 0x07
FORMAT_RGBA4 = 0x08
FORMAT_RGBA8 = 0x09
FORMAT_ETC1 = 0x0A
FORMAT_ETC1A4 = 0x0B
FORMAT_L4 = 0x0C
FORMAT_A4 = 0x0D
FORMAT_ETC1_2 = 0x13
PIXEL_FORMATS = {
FORMAT_L8: 'L8',
FORMAT_A8: 'A8',
FORMAT_LA4: 'LA4',
FORMAT_LA8: 'LA8',
FORMAT_HILO8: 'HILO8',
FORMAT_RGB565: 'RGB565',
FORMAT_RGB8: 'RGB8',
FORMAT_RGBA5551: 'RGBA5551',
FORMAT_RGBA4: 'RGBA4',
FORMAT_RGBA8: 'RGBA8',
FORMAT_ETC1: 'ETC1',
FORMAT_ETC1A4: 'ETC1A4',
FORMAT_L4: 'L4',
FORMAT_A4: 'A4',
FORMAT_ETC1_2: 'ETC1'
}
PIXEL_FORMAT_SIZE = {
FORMAT_L8: 8,
FORMAT_A8: 8,
FORMAT_LA4: 8,
FORMAT_LA8: 16,
FORMAT_HILO8: 16,
FORMAT_RGB565: 16,
FORMAT_RGB8: 24,
FORMAT_RGBA5551: 16,
FORMAT_RGBA4: 16,
FORMAT_RGBA8: 32,
FORMAT_L4: 4,
FORMAT_A4: 4
}
SWIZZLE_NONE = 0x00
SWIZZLE_ROT_90 = 0x04
SWIZZLE_TRANSPOSE = 0x08
SWIZZLES = {
SWIZZLE_NONE: "None",
SWIZZLE_ROT_90: "Rotate 90deg",
SWIZZLE_TRANSPOSE: "Transpose"
}
ETC_INDIV_RED1_OFFSET = 60
ETC_INDIV_GREEN1_OFFSET = 52
ETC_INDIV_BLUE1_OFFSET = 44
ETC_DIFF_RED1_OFFSET = 59
ETC_DIFF_GREEN1_OFFSET = 51
ETC_DIFF_BLUE_OFFSET = 43
ETC_RED2_OFFSET = 56
ETC_GREEN2_OFFSET = 48
ETC_BLUE2_OFFSET = 40
ETC_TABLE1_OFFSET = 37
ETC_TABLE2_OFFSET = 34
ETC_DIFFERENTIAL_BIT = 33
ETC_ORIENTATION_BIT = 32
ETC_MODIFIERS = [
[2, 8],
[5, 17],
[9, 29],
[13, 42],
[18, 60],
[24, 80],
[33, 106],
[47, 183]
]
CV2_READ_ALPHA = -1
class Bflim:
data_size = 0
invalid = False
order = None
bmp = []
filename = ''
file_size = 0
imag = {}
def __init__(self, verbose=False, debug=False, big_endian=False, swizzle=SWIZZLE_NONE):
self.verbose = verbose
self.debug = debug
self.big_endian = big_endian
self.swizzle = swizzle
self.has_cv = 'cv2' in globals()
def read(self, filename, parse_image=True):
self.filename = filename
data = open(filename, 'rb').read()
self.file_size = len(data)
position = self.file_size - IMAG_HEADER_SIZE
position -= FLIM_HEADER_SIZE
self._parse_flim_header(data[position:position + FLIM_HEADER_SIZE])
position += FLIM_HEADER_SIZE
if self.invalid:
return
self._parse_imag_header(data[position:position + IMAG_HEADER_SIZE])
if self.invalid:
return
if parse_image:
bmp_data = data[:self.data_size]
format_ = self.imag['format']
if format_ == FORMAT_ETC1 or format_ == FORMAT_ETC1_2 or format_ == FORMAT_ETC1A4:
self.bmp = self._decompress_etc1(bmp_data)
else:
self.bmp = self._parse_image_data(bmp_data)
def extract(self):
width = self.imag['width']
height = self.imag['height']
png_data = []
for y in range(height):
row = []
for x in range(width):
pos = x + (y * width)
if self.has_cv:
# OpenCV keeps a BGRA format internally so swap R and B
rgba = list(self.bmp[pos])
r = rgba[0]
rgba[0] = rgba[2]
rgba[2] = r
row.append(rgba)
else:
for color in self.bmp[x + (y * width)]:
row.append(int(color))
png_data.append(row)
basename = os.path.splitext(os.path.basename(self.filename))[0]
filename = '%s.png' % basename
if self.has_cv:
img = numpy.array(png_data, dtype=numpy.uint8)
swizzle = self.imag['swizzle']
if swizzle == SWIZZLE_ROT_90:
img = self._rotate_image(img, 90, width, height)
elif swizzle == SWIZZLE_TRANSPOSE:
# the lazy transpose... rotate and flip one axis
img = self._rotate_image(img, 90, width, height)
cv2.flip(img, 0, dst=img)
cv2.imwrite(filename, img)
else:
file_ = open(filename, 'wb')
writer = png.Writer(width, height, alpha=True)
writer.write(file_, png_data)
file_.close()
# OpenCV doesn't resize around the center when rotating (since it's just working with matrices)
# so we need to do some lame canvas work to ensure a clean rotation + resize around the center
def _rotate_image(self, mat, angle, width, height):
big = max(width, height)
small = min(width, height)
center = (big / 2.0) - (small / 2.0)
trans = numpy.float32([[1, 0, 0], [0, 1, 0]])
trans2 = numpy.float32([[1, 0, 0], [0, 1, 0]])
if small == width:
trans[0, 2] = center
trans2[1, 2] = -center - 1
else:
trans[1, 2] = center
trans2[0, 2] = -center - 1
# first enlarge the image to a square, translating the pixels to the new center
mat = cv2.warpAffine(mat, trans, (big, big))
# then rotate on the new center
rot = cv2.getRotationMatrix2D((big / 2, big / 2), angle, 1)
mat = cv2.warpAffine(mat, rot, (big, big))
# finally translate back to the start and resize to the new size
return cv2.warpAffine(mat, trans2, (height, width))
def load(self, filename):
bmp = []
if self.has_cv:
img = cv2.imread(filename, CV2_READ_ALPHA)
height, width, channels = img.shape
if self.swizzle == SWIZZLE_ROT_90:
img = self._rotate_image(img, -90, width, height)
height_ = height
height = width
width = height_
elif self.swizzle == SWIZZLE_TRANSPOSE:
cv2.flip(img, 0, dst=img)
img = self._rotate_image(img, -90, width, height)
height_ = height
height = width
width = height_
for y in range(height):
for x in range(width):
# OpenCV keeps a BGRA format internally so swap R and B
bgra = list(img[y][x])
b = bgra[0]
bgra[0] = bgra[2]
bgra[2] = b
bmp.append(bgra)
else:
png_file = open(filename, 'rb')
reader = png.Reader(file=png_file)
width, height, pixels, metadata = reader.read()
png_file.close()
for row in list(pixels):
for pixel in range(len(row) / 4):
bmp.append(row[pixel * 4:pixel * 4 + 4])
self.imag = {
'width': width,
'height': height,
'format': FORMAT_RGBA8
}
self.order = '>' if self.big_endian else '<'
self.bmp = self._parse_image_data(bmp, to_bin=True, exact=False)
def save(self, output_filename):
file_ = open(output_filename, 'wb')
file_.write(self.bmp)
if self.big_endian:
bom = 0xFFFE
else:
bom = 0xFEFF
size_offset = file_.tell() + 0x0C
flim_header = struct.pack(FLIM_HEADER_STRUCT, FLIM_HEADER_MAGIC, bom, FLIM_HEADER_SIZE, FLIM_UNKNOWN1, 0,
FLIM_UNKNOWN2, FLIM_MULTIPLIER, FLIM_UNKNOWN3)
file_.write(flim_header)
imag_header = struct.pack(IMAG_HEADER_STRUCT % self.order, IMAG_HEADER_MAGIC, IMAG_PARSE_SIZE,
self.imag['height'], self.imag['width'], IMAG_ALIGNMENT, self.imag['format'],
self.swizzle, len(self.bmp))
file_.write(imag_header)
size = file_.tell()
file_.seek(size_offset)
file_.write(struct.pack('%sI' % self.order, size))
file_.close()
print('All done!')
def _parse_flim_header(self, data):
magic, bom, header_size, unknown1, file_size, unknown2, multiplier, unknown3 = struct.unpack(FLIM_HEADER_STRUCT,
data)
if magic != FLIM_HEADER_MAGIC:
print('Invalid FLIM magic bytes: %s (expected %s)' % (magic, FLIM_HEADER_MAGIC))
self.invalid = True
return
if bom == 0xFFFE:
self.order = '>'
elif bom == 0xFEFF:
self.order = '<'
if self.order is None:
print('Invalid Byte-order marker: 0x%x (expected either 0xFFFE or 0xFEFF)' % bom)
self.invalid = True
return
if header_size != FLIM_HEADER_SIZE:
print('Invalid/unknown header size: %d (expected %d)' % (header_size, FLIM_HEADER_SIZE))
self.invalid = True
return
if self.file_size != file_size:
print('Warning: header disagrees with OS file size: OS: %d; Header: %d' % (self.file_size, file_size))
self.flim = {
'multiplier': multiplier,
'unknown1': unknown1,
'unknown2': unknown2
}
if self.debug:
print('FLIM Magic bytes: %s' % magic)
print('FLIM Byte-order marker: 0x%x' % bom)
print('FLIM Header size: %d' % header_size)
print('FLIM File size: %d' % file_size)
print('FLIM Multiplier: %d' % multiplier)
print('\nFLIM Unknown1: 0x%x' % unknown1)
print('FLIM Unknown2: 0x%x' % unknown2)
print('FLIM Unknown3: 0x%x\n' % unknown3)
def _parse_imag_header(self, data):
magic, parse_size, height, width, alignment, format_, swizzle, data_size \
= struct.unpack(IMAG_HEADER_STRUCT % self.order, data)
if magic != IMAG_HEADER_MAGIC:
print('Invalid imag magic bytes: %s (expected %s)' % (magic, IMAG_HEADER_MAGIC))
self.invalid = True
return
self.data_size = data_size
self.imag = {
'parse_size': parse_size,
'width': width,
'height': height,
'alignment': alignment,
'format': format_,
'swizzle': swizzle
}
if self.debug:
print('imag Magic bytes: %s' % magic)
print('imag Parse info size: %d' % parse_size)
print('imag Width: %d' % width)
print('imag Height: %d' % height)
print('imag Alignment: 0x%x' % alignment)
print('imag Format: %s' % PIXEL_FORMATS[self.imag['format']])
print('imag Swizzle: %s (0x%x)' % (SWIZZLES[swizzle], swizzle))
print('imag Data size: %d' % data_size)
def _decompress_etc1(self, data):
with_alpha = self.imag['format'] == FORMAT_ETC1A4
width = self.imag['width']
height = self.imag['height']
block_size = 16 if with_alpha else 8
bmp = [[0, 0, 0, 0]] * width * height
tile_width = int(math.ceil(width / 8.0))
tile_height = int(math.ceil(height / 8.0))
# here's the kicker: there will always be a power-of-two amount of tiles
tile_width = 1 << int(math.ceil(math.log(tile_width, 2)))
tile_height = 1 << int(math.ceil(math.log(tile_height, 2)))
pos = 0
# texture is composed of 8x8 tiles
for tile_y in range(tile_height):
for tile_x in range(tile_width):
# in ETC1 mode each tile is composed of 2x2, compressed sub-tiles, 4x4 pixels each
for block_y in range(2):
for block_x in range(2):
data_pos = pos
pos += block_size
block = data[data_pos:data_pos + block_size]
alphas = 0xFFffFFffFFffFFff
if with_alpha:
alphas = struct.unpack('%sQ' % self.order, block[:8])[0]
block = block[8:]
pixels = struct.unpack('%sQ' % self.order, block)[0]
# how colors are stored in the high-order 32 bits
differential = (pixels >> ETC_DIFFERENTIAL_BIT) & 0x01 == 1
# how the sub blocks are divided, 0 = 2x4, 1 = 4x2
horizontal = (pixels >> ETC_ORIENTATION_BIT) & 0x01 == 1
# once the colors are decoded for the sub block this determines how to shift the colors
# which modifier row to use for sub block 1
table1 = ETC_MODIFIERS[(pixels >> ETC_TABLE1_OFFSET) & 0x07]
# which modifier row to use for sub block 2
table2 = ETC_MODIFIERS[(pixels >> ETC_TABLE2_OFFSET) & 0x07]
color1 = [0, 0, 0]
color2 = [0, 0, 0]
if differential:
# grab the 5-bit code words
r = ((pixels >> ETC_DIFF_RED1_OFFSET) & 0x1F)
g = ((pixels >> ETC_DIFF_GREEN1_OFFSET) & 0x1F)
b = ((pixels >> ETC_DIFF_BLUE_OFFSET) & 0x1F)
# extends from 5 to 8 bits by duplicating the 3 most significant bits
color1[0] = (r << 3) | ((r >> 2) & 0x07)
color1[1] = (g << 3) | ((g >> 2) & 0x07)
color1[2] = (b << 3) | ((b >> 2) & 0x07)
# add the 2nd block, 3-bit code words to the original words (2's complement!)
r += self._complement((pixels >> ETC_RED2_OFFSET) & 0x07, 3)
g += self._complement((pixels >> ETC_GREEN2_OFFSET) & 0x07, 3)
b += self._complement((pixels >> ETC_BLUE2_OFFSET) & 0x07, 3)
# extend from 5 to 8 bits like before
color2[0] = (r << 3) | ((r >> 2) & 0x07)
color2[1] = (g << 3) | ((g >> 2) & 0x07)
color2[2] = (b << 3) | ((b >> 2) & 0x07)
else:
# 4 bits per channel, 16 possible values
# 1st block
color1[0] = ((pixels >> ETC_INDIV_RED1_OFFSET) & 0x0F) * 0x11
color1[1] = ((pixels >> ETC_INDIV_GREEN1_OFFSET) & 0x0F) * 0x11
color1[2] = ((pixels >> ETC_INDIV_BLUE1_OFFSET) & 0x0F) * 0x11
# 2nd block
color2[0] = ((pixels >> ETC_RED2_OFFSET) & 0x0F) * 0x11
color2[1] = ((pixels >> ETC_GREEN2_OFFSET) & 0x0F) * 0x11
color2[2] = ((pixels >> ETC_BLUE2_OFFSET) & 0x0F) * 0x11
# now that we have two sub block pixel colors to start from,
# each pixel is read as a modifier value
# 16 pixels are described with 2 bits each,
# one selecting the sign, the second the value
amounts = pixels & 0xFFFF
signs = (pixels >> 16) & 0xFFFF
for pixel_y in range(4):
for pixel_x in range(4):
x = pixel_x + (block_x * 4) + (tile_x * 8)
y = pixel_y + (block_y * 4) + (tile_y * 8)
if x >= width:
continue
if y >= height:
continue
offset = pixel_x * 4 + pixel_y
if horizontal:
table = table1 if pixel_y < 2 else table2
color = color1 if pixel_y < 2 else color2
else:
table = table1 if pixel_x < 2 else table2
color = color1 if pixel_x < 2 else color2
# determine the amount to shift the color
amount = table[(amounts >> offset) & 0x01]
# and in which direction. 1 = -, 0 = +
sign = (signs >> offset) & 0x01
if sign == 1:
amount *= -1
red = max(min(color[0] + amount, 0xFF), 0)
green = max(min(color[1] + amount, 0xFF), 0)
blue = max(min(color[2] + amount, 0xFF), 0)
alpha = ((alphas >> (offset * 4)) & 0x0F) * 0x11
pixel_pos = y * width + x
bmp[pixel_pos] = [red, green, blue, alpha]
return bmp
def _complement(self, input_, bits):
if input_ >> (bits - 1) == 0:
return input_
return input_ - (1 << bits)
def _parse_image_data(self, data, to_bin=False, exact=True):
width = self.imag['width']
height = self.imag['height']
format_ = self.imag['format']
data_width = width
data_height = height
# increase the output image size to show the empty padding
if not exact:
# increase the size of the image to a power-of-two boundary, if necessary
width = 1 << int(math.ceil(math.log(width, 2)))
height = 1 << int(math.ceil(math.log(height, 2)))
if self.debug and (width != data_width or height != data_height):
print('Expanding output size: %dx%d' % (width, height))
# textures are stored as power-of-two images
if not to_bin and (data_width * data_height * (PIXEL_FORMAT_SIZE[format_] / 8.0)) < len(data):
data_width = 1 << int(math.ceil(math.log(data_width, 2)))
data_height = 1 << int(math.ceil(math.log(data_height, 2)))
if self.debug:
print('Expanding input size: %dx%d' % (data_width, data_height))
if to_bin:
# initialize binary data memory
output = [0] * int(width * height * (PIXEL_FORMAT_SIZE[format_] / 8.0))
if self.debug:
print('RGBA -> Binary')
else:
# initialize empty bitmap memory (RGBA8)
output = [[0, 0, 0, 0]] * (width * height)
if self.debug:
print('Binary -> RGBA')
tile_width = int(math.ceil(width / 8.0))
tile_height = int(math.ceil(height / 8.0))
if self.debug:
print('Tiles: %dx%d' % (tile_width, tile_height))
# texture is composed of 8x8 pixel tiles
for tile_y in range(tile_height):
for tile_x in range(tile_width):
# tile is composed of 2x2 sub-tiles
for y in range(2):
for x in range(2):
# sub-tile is composed of 2x2 pixel groups
for y2 in range(2):
for x2 in range(2):
# pixel group is composed of 2x2 pixels (finally)
for y3 in range(2):
for x3 in range(2):
pixel_x = (x3 + (x2 * 2) + (x * 4) + (tile_x * 8))
pixel_y = (y3 + (y2 * 2) + (y * 4) + (tile_y * 8))
# if the final y value is beyond the input data's height then don't read it
if pixel_y >= data_height or pixel_y >= height:
continue
# same for the x and the input data width
if pixel_x >= data_width or pixel_x >= width:
continue
if to_bin:
# data consists of (r, g, b, a) elements
pix_pos = pixel_x + pixel_y * data_width
data_x = (x3 + (x2 * 4) + (x * 16) + (tile_x * 64))
data_y = ((y3 * 2) + (y2 * 8) + (y * 32) + (tile_y * width * 8))
data_pos = data_x + data_y
pixel_data = data[pixel_x + pixel_y * data_width]
# output is array of bytes
pixel = self._get_binary_pixel(pixel_data, format_, pix_pos)
byte_len = len(pixel)
# adjust for half-byte formats
if PIXEL_FORMAT_SIZE[format_] == 4:
data_pos /= 2
start = data_pos * byte_len
end = start + byte_len
# ensure endianness
if not self.big_endian:
pixel.reverse()
# OR single-byte formats in case they're half-byte formats
if byte_len == 1:
output[start] |= pixel
else:
output[start:end] = pixel
else: # from bin
# data consists of binary pixel data
data_x = (x3 + (x2 * 4) + (x * 16) + (tile_x * 64))
data_y = ((y3 * 2) + (y2 * 8) + (y * 32) + (tile_y * data_width * 8))
pix_pos = pixel_x + (pixel_y * width)
data_pos = data_x + data_y
# output constists of (r, g, b, a) elements
pixel = self._get_rgba_pixel(data, format_, data_pos)
output[pix_pos] = pixel
if to_bin:
return struct.pack('%dB' % len(output), *output)
else:
return output
def _get_rgba_pixel(self, data, format_, index):
red = green = blue = alpha = 0
# rrrrrrrr gggggggg bbbbbbbb aaaaaaaa
if format_ == FORMAT_RGBA8:
color = struct.unpack('%sI' % self.order, data[index * 4:index * 4 + 4])[0]
red = (color >> 24) & 0xFF
green = (color >> 16) & 0xFF
blue = (color >> 8) & 0xFF
alpha = color & 0xFF
# rrrrrrrr gggggggg bbbbbbbb
elif format_ == FORMAT_RGB8:
red, green, blue = struct.unpack('3B', data[index * 3:index * 3 + 3])
alpha = 255
# rrrrrgg gggbbbbba
elif format_ == FORMAT_RGBA5551:
b1, b2 = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = ((b1 >> 3) & 0x1F)
green = (b1 & 0x07) | ((b2 >> 6) & 0x03)
blue = (b2 >> 1) & 0x1F
alpha = (b2 & 0x01) * 255
# rrrrrggg gggbbbbb
elif format_ == FORMAT_RGB565:
b1, b2 = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = (b1 >> 3) & 0x1F
green = (b1 & 0x7) | ((b2 >> 5) & 0x7)
blue = (b2 & 0x1F)
alpha = 255
# rrrrgggg bbbbaaaa
elif format_ == FORMAT_RGBA4:
b1, b2 = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = ((b1 >> 4) & 0x0F) * 0x11
green = (b1 & 0x0F) * 0x11
blue = ((b2 >> 4) & 0x0F) * 0x11
alpha = (b2 & 0x0F) * 0x11
# llllllll aaaaaaaa
elif format_ == FORMAT_LA8:
l, alpha = struct.unpack('2B', data[index * 2:index * 2 + 2])
red = green = blue = l
# ??
elif format_ == FORMAT_HILO8:
# TODO
pass
# llllllll
elif format_ == FORMAT_L8:
red = green = blue = struct.unpack('B', data[index:index + 1])[0]
alpha = 255
# aaaaaaaa
elif format_ == FORMAT_A8:
alpha = struct.unpack('B', data[index:index + 1])[0]
red = green = blue = 255
# llllaaaa
elif format_ == FORMAT_LA4:
la = struct.unpack('B', data[index:index + 1])[0]
red = green = blue = ((la >> 4) & 0x0F) * 0x11
alpha = (la & 0x0F) * 0x11
# llll
elif format_ == FORMAT_L4:
l = struct.unpack('B', data[index / 2])[0]
shift = (index & 1) * 4
red = green = blue = ((l >> shift) & 0x0F) * 0x11
alpha = 255
# aaaa
elif format_ == FORMAT_A4:
byte = ord(data[index / 2])
shift = (index & 1) * 4
alpha = ((byte >> shift) & 0x0F) * 0x11
green = red = blue = 0xFF
return red, green, blue, alpha
def _get_binary_pixel(self, pixel, format_, index):
# bmp data: tuple (r, g, b, a)
# output: list of bytes: [255, 255]
red, green, blue, alpha = pixel
if format_ == FORMAT_RGBA8:
return [red, green, blue, alpha]
elif format_ == FORMAT_RGB8:
return [red, green, blue]
# rrrrrggg ggbbbbba
elif format_ == FORMAT_RGBA5551:
r5 = (red / 8) & 0x1F
g5 = (green / 8) & 0x1F
b5 = (blue / 8) & 0x1F
a = 1 if alpha > 0 else 0
b1 = (r5 << 3) | (g5 >> 2)
b2 = ((g5 << 6) | (b5 << 1) | a) & 0xFF
return [b1, b2]
# rrrrrggg gggbbbbb
elif format_ == FORMAT_RGB565:
r5 = (red / 8) & 0x1F
g6 = (green / 4) & 0x3F
b5 = (blue / 8) & 0x1F
b1 = (r5 << 3) | (g6 >> 3)
b2 = ((g6 << 5) | b5) & 0xFF
return [b1, b2]
# rrrrgggg bbbbaaaa
elif format_ == FORMAT_RGBA4:
r4 = (red / 0x11) & 0x0F
g4 = (green / 0x11) & 0x0F
b4 = (blue / 0x11) & 0x0F
a4 = (alpha / 0x11) & 0x0F
b1 = (r4 << 4) | g4
b2 = (b4 << 4) | a4
return [b1, b2]
# llllllll aaaaaaaa
elif format_ == FORMAT_LA8:
l = int((red * 0.2126) + (green * 0.7152) + (blue * 0.0722))
return [l, alpha]
elif format_ == FORMAT_HILO8:
# TODO
pass
# llllllll
elif format_ == FORMAT_L8:
l = int((red * 0.2126) + (green * 0.7152) + (blue * 0.0722))
return [l]
# aaaaaaaa
elif format_ == FORMAT_A8:
return [alpha]
# llllaaaa
elif format_ == FORMAT_LA4:
l = int((red * 0.2126) + (green * 0.7152) + (blue * 0.0722)) / 0x11
a = (alpha / 0x11) & 0x0F
b = (l << 4) | a
return [b]
# llll
elif format_ == FORMAT_L4:
l = int((red * 0.2126) + (green * 0.7152) + (blue * 0.0722))
shift = (index & 1) * 4
return [l << shift]
# aaaa
elif format_ == FORMAT_A4:
alpha = (alpha / 0x11) & 0xF
shift = (index & 1) * 4
return [alpha << shift]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BFLIM Converter')
parser.add_argument('-v', '--verbose', help='print more data when working', action='store_true', default=False)
parser.add_argument('-d', '--debug', help='print debug information', action='store_true', default=False)
parser.add_argument('-y', '--yes', help='answer yes to any questions (overwriting files)', action='store_true',
default=False)
group = parser.add_mutually_exclusive_group()
group.add_argument('-l', '--little-endian', help='use Little Endian when reading/writing (default)',
action='store_true', default=True)
group.add_argument('-b', '--big-endian', help='use Big Endian when reading/writing', action='store_true',
default=False)
parser.add_argument('-s', '--swizzle',
help='set the swizzle type of the output BFLIM (default: 0)\n'
'0 - none; 4 - rotate 90 degrees; 8 - transpose',
type=int, choices=SWIZZLES.keys(), default=SWIZZLE_NONE)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-c', '--create', metavar='png', help='create BFLIM file from PNG', default=False)
group.add_argument('-x', '--extract', help='convert BFLIM to PNG', action='store_true', default=False)
group.add_argument('-i', '--info', help='just list debug info and quit', action='store_true', default=False)
parser.add_argument('bflim_file', help='FLIM file')
args = parser.parse_args()
bflim = Bflim(verbose=args.verbose, debug=args.debug, big_endian=args.big_endian, swizzle=args.swizzle)
if args.extract or args.info:
bflim.read(args.bflim_file, parse_image=args.extract)
if bflim.invalid:
print('Invalid file')
sys.exit(1)
if args.extract:
bflim.extract()
else:
bflim.load(args.create)
bflim.save(args.bflim_file)