diff --git a/.gitignore b/.gitignore index bf917f79..64b64a68 100644 --- a/.gitignore +++ b/.gitignore @@ -14,3 +14,15 @@ temp_data *.egg* __pycache__ build/ +*.log + +#ignore example result +examples/**/*.h5ad +examples/tuning/**/*.yaml +examples/tuning/**/*.csv +examples/tuning/**/*.sh +examples/tuning/**/*.h5 +examples/tuning/**/*.tar.gz +examples/tuning/**/*.tif +examples/tuning/**/*.txt +examples/atlas/config/run_config.csv diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index c580386f..3af9d357 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -33,7 +33,7 @@ repos: args: [--line-width, "120", --profile, black] - repo: https://github.com/PyCQA/docformatter - rev: v1.7.5 + rev: eb1df34 hooks: - id: docformatter name: Format docstring diff --git a/README.md b/README.md index bec823f5..5d1fcfb2 100644 --- a/README.md +++ b/README.md @@ -193,14 +193,14 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | ------------------- | ------------ | ------------------------------------------------------------------------------------------------------------ | ---- | ------- | -| GNN | GraphSCI | Imputing Single-cell RNA-seq data by combining Graph Convolution and Autoencoder Neural Networks | 2021 | ✅ | +| GNN | GraphSCI | Imputing Single-cell RNA-seq data by combining Graph Convolution and Autoencoder Neural Networks | 2021 | ✅ | | GNN | scGNN (2020) | SCGNN: scRNA-seq Dropout Imputation via Induced Hierarchical Cell Similarity Graph | 2020 | P1 | -| GNN | scGNN (2021) | scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses | 2021 | ✅ | +| GNN | scGNN (2021) | scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses | 2021 | ✅ | | GNN | GNNImpute | An efficient scRNA-seq dropout imputation method using graph attention network | 2021 | P1 | | Graph Diffusion | MAGIC | MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data | 2018 | P1 | | Probabilistic Model | scImpute | An accurate and robust imputation method scImpute for single-cell RNA-seq data | 2018 | P1 | | GAN | scGAIN | scGAIN: Single Cell RNA-seq Data Imputation using Generative Adversarial Networks | 2019 | P1 | -| NN | DeepImpute | DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data | 2019 | ✅ | +| NN | DeepImpute | DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data | 2019 | ✅ | | NN + TF | Saver-X | Transfer learning in single-cell transcriptomics improves data denoising and pattern discovery | 2019 | P1 | | Model | Evaluation Metric | Mouse Brain (current/reported) | Mouse Embryo (current/reported) | PBMC (current/reported) | @@ -215,12 +215,12 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | ----------------------- | ------------- | ------------------------------------------------------------------------------------------------------------- | ---- | ------- | -| GNN | ScDeepsort | Single-cell transcriptomics with weighted GNN | 2021 | ✅ | -| Logistic Regression | Celltypist | Cross-tissue immune cell analysis reveals tissue-specific features in humans. | 2021 | ✅ | -| Random Forest | singleCellNet | SingleCellNet: a computational tool to classify single cell RNA-Seq data across platforms and across species. | 2019 | ✅ | -| Neural Network | ACTINN | ACTINN: automated identification of cell types in single cell RNA sequencing. | 2020 | ✅ | +| GNN | ScDeepsort | Single-cell transcriptomics with weighted GNN | 2021 | ✅ | +| Logistic Regression | Celltypist | Cross-tissue immune cell analysis reveals tissue-specific features in humans. | 2021 | ✅ | +| Random Forest | singleCellNet | SingleCellNet: a computational tool to classify single cell RNA-Seq data across platforms and across species. | 2019 | ✅ | +| Neural Network | ACTINN | ACTINN: automated identification of cell types in single cell RNA sequencing. | 2020 | ✅ | | Hierarchical Clustering | SingleR | Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. | 2019 | P1 | -| SVM | SVM | A comparison of automatic cell identification methods for single-cell RNA sequencing data. | 2018 | ✅ | +| SVM | SVM | A comparison of automatic cell identification methods for single-cell RNA sequencing data. | 2018 | ✅ | | Model | Evaluation Metric | Mouse Brain 2695 (current/reported) | Mouse Spleen 1759 (current/reported) | Mouse Kidney 203 (current/reported) | | ------------- | ----------------- | ----------------------------------- | ------------------------------------ | ----------------------------------- | @@ -234,12 +234,12 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | ----------- | ------------- | ------------------------------------------------------------------------------------------------------------ | ---- | ------- | -| GNN | graph-sc | GNN-based embedding for clustering scRNA-seq data | 2022 | ✅ | -| GNN | scTAG | ZINB-based Graph Embedding Autoencoder for Single-cell RNA-seq Interpretations | 2022 | ✅ | -| GNN | scDSC | Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network | 2022 | ✅ | +| GNN | graph-sc | GNN-based embedding for clustering scRNA-seq data | 2022 | ✅ | +| GNN | scTAG | ZINB-based Graph Embedding Autoencoder for Single-cell RNA-seq Interpretations | 2022 | ✅ | +| GNN | scDSC | Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network | 2022 | ✅ | | GNN | scGAC | scGAC: a graph attentional architecture for clustering single-cell RNA-seq data | 2022 | P1 | -| AutoEncoder | scDeepCluster | Clustering single-cell RNA-seq data with a model-based deep learning approach | 2019 | ✅ | -| AutoEncoder | scDCC | Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data | 2021 | ✅ | +| AutoEncoder | scDeepCluster | Clustering single-cell RNA-seq data with a model-based deep learning approach | 2019 | ✅ | +| AutoEncoder | scDCC | Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data | 2021 | ✅ | | AutoEncoder | scziDesk | Deep soft K-means clustering with self-training for single-cell RNA sequence data | 2020 | P1 | | Model | Evaluation Metric | 10x PBMC (current/reported) | Mouse ES (current/reported) | Worm Neuron (current/reported) | Mouse Bladder (current/reported) | @@ -256,12 +256,12 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | ---------------- | ------------------------ | -------------------------------------------------------------------------------------------------- | ---- | ------- | -| GNN | ScMoGCN | Graph Neural Networks for Multimodal Single-Cell Data Integration | 2022 | ✅ | +| GNN | ScMoGCN | Graph Neural Networks for Multimodal Single-Cell Data Integration | 2022 | ✅ | | GNN | ScMoLP | Link Prediction Variant of ScMoGCN | 2022 | P1 | | GNN | GRAPE | Handling Missing Data with Graph Representation Learning | 2020 | P1 | -| Generative Model | SCMM | SCMM: MIXTURE-OF-EXPERTS MULTIMODAL DEEP GENERATIVE MODEL FOR SINGLE-CELL MULTIOMICS DATA ANALYSIS | 2021 | ✅ | -| Auto-encoder | Cross-modal autoencoders | Multi-domain translation between single-cell imaging and sequencing data using autoencoders | 2021 | ✅ | -| Auto-encoder | BABEL | BABEL enables cross-modality translation between multiomic profiles at single-cell resolution | 2021 | ✅ | +| Generative Model | SCMM | SCMM: MIXTURE-OF-EXPERTS MULTIMODAL DEEP GENERATIVE MODEL FOR SINGLE-CELL MULTIOMICS DATA ANALYSIS | 2021 | ✅ | +| Auto-encoder | Cross-modal autoencoders | Multi-domain translation between single-cell imaging and sequencing data using autoencoders | 2021 | ✅ | +| Auto-encoder | BABEL | BABEL enables cross-modality translation between multiomic profiles at single-cell resolution | 2021 | ✅ | | Model | Evaluation Metric | GEX2ADT (current/reported) | ADT2GEX (current/reported) | GEX2ATAC (current/reported) | ATAC2GEX (current/reported) | | ------------------------ | ----------------- | -------------------------- | -------------------------- | --------------------------- | --------------------------- | @@ -274,10 +274,10 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | ---------------- | ------------------------ | -------------------------------------------------------------------------------------------------- | ---- | ------- | -| GNN | ScMoGCN | Graph Neural Networks for Multimodal Single-Cell Data Integration | 2022 | ✅ | +| GNN | ScMoGCN | Graph Neural Networks for Multimodal Single-Cell Data Integration | 2022 | ✅ | | GNN/Auto-ecnoder | GLUE | Multi-omics single-cell data integration and regulatory inference with graph-linked embedding | 2021 | P1 | -| Generative Model | SCMM | SCMM: MIXTURE-OF-EXPERTS MULTIMODAL DEEP GENERATIVE MODEL FOR SINGLE-CELL MULTIOMICS DATA ANALYSIS | 2021 | ✅ | -| Auto-encoder | Cross-modal autoencoders | Multi-domain translation between single-cell imaging and sequencing data using autoencoders | 2021 | ✅ | +| Generative Model | SCMM | SCMM: MIXTURE-OF-EXPERTS MULTIMODAL DEEP GENERATIVE MODEL FOR SINGLE-CELL MULTIOMICS DATA ANALYSIS | 2021 | ✅ | +| Auto-encoder | Cross-modal autoencoders | Multi-domain translation between single-cell imaging and sequencing data using autoencoders | 2021 | ✅ | | Model | Evaluation Metric | GEX2ADT (current/reported) | GEX2ATAC (current/reported) | | ------------------------ | ----------------- | -------------------------- | --------------------------- | @@ -289,11 +289,11 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | ---------------- | ------- | ----------------------------------------------------------------------------------------------------- | ---- | ------- | -| GNN | ScMoGCN | Graph Neural Networks for Multimodal Single-Cell Data Integration | 2022 | ✅ | -| Auto-encoder | scMVAE | Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data | 2020 | ✅ | -| Auto-encoder | scDEC | Simultaneous deep generative modelling and clustering of single-cell genomic data | 2021 | ✅ | +| GNN | ScMoGCN | Graph Neural Networks for Multimodal Single-Cell Data Integration | 2022 | ✅ | +| Auto-encoder | scMVAE | Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data | 2020 | ✅ | +| Auto-encoder | scDEC | Simultaneous deep generative modelling and clustering of single-cell genomic data | 2021 | ✅ | | GNN/Auto-ecnoder | GLUE | Multi-omics single-cell data integration and regulatory inference with graph-linked embedding | 2021 | P1 | -| Auto-encoder | DCCA | Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data | 2021 | ✅ | +| Auto-encoder | DCCA | Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data | 2021 | ✅ | | Model | Evaluation Metric | GEX2ADT (current/reported) | GEX2ATAC (current/reported) | | ---------- | ----------------- | -------------------------- | --------------------------- | @@ -329,11 +329,11 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | -------------------------------- | ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---- | ------- | -| GNN | SpaGCN | SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network | 2021 | ✅ | -| GNN | STAGATE | Deciphering spatial domains from spatially resolved transcriptomics with adaptive graph attention auto-encoder | 2021 | ✅ | +| GNN | SpaGCN | SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network | 2021 | ✅ | +| GNN | STAGATE | Deciphering spatial domains from spatially resolved transcriptomics with adaptive graph attention auto-encoder | 2021 | ✅ | | Bayesian | BayesSpace | Spatial transcriptomics at subspot resolution with BayesSpace | 2021 | P1 | -| Pseudo-space-time (PST) Distance | stLearn | stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues | 2020 | ✅ | -| Heuristic | Louvain | Fast unfolding of community hierarchies in large networks | 2008 | ✅ | +| Pseudo-space-time (PST) Distance | stLearn | stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues | 2020 | ✅ | +| Heuristic | Louvain | Fast unfolding of community hierarchies in large networks | 2008 | ✅ | | Model | Evaluation Metric | 151673 (current/reported) | 151676 (current/reported) | 151507 (current/reported) | | ------- | ----------------- | ------------------------- | ------------------------- | ------------------------- | @@ -346,10 +346,10 @@ pip install -e . | BackBone | Model | Algorithm | Year | CheckIn | | -------------------------- | ------------ | ------------------------------------------------------------------------------------------------------------- | ---- | ------- | -| GNN | DSTG | DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence | 2021 | ✅ | -| logNormReg | SpatialDecon | Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data | 2022 | ✅ | -| NNMFreg | SPOTlight | SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes | 2021 | ✅ | -| NN Linear + CAR assumption | CARD | Spatially informed cell-type deconvolution for spatial transcriptomics | 2022 | ✅ | +| GNN | DSTG | DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence | 2021 | ✅ | +| logNormReg | SpatialDecon | Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data | 2022 | ✅ | +| NNMFreg | SPOTlight | SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes | 2021 | ✅ | +| NN Linear + CAR assumption | CARD | Spatially informed cell-type deconvolution for spatial transcriptomics | 2022 | ✅ | | Model | Evaluation Metric | GSE174746 (current/reported) | CARD Synthetic (current/reported) | SPOTlight Synthetic (current/reported) | | ------------ | ----------------- | ---------------------------- | --------------------------------- | -------------------------------------- | diff --git a/dance/atlas/data_dropbox_upload.py b/dance/atlas/data_dropbox_upload.py new file mode 100644 index 00000000..87b6d78e --- /dev/null +++ b/dance/atlas/data_dropbox_upload.py @@ -0,0 +1,155 @@ +import json +import os +import pathlib + +import dropbox +import numpy as np +import pandas as pd +import scanpy as sc +from dropbox.exceptions import ApiError, AuthError + +from dance.utils import logger + + +def upload_file_to_dropbox(dropbox_path, access_token, local_path): + """Upload a local file to Dropbox. + + Parameters + ---------- + dropbox_path : str + Destination path in Dropbox + access_token : str + Dropbox API access token + local_path : str or pathlib.Path + Path to local file to upload + + Returns + ------- + None + Returns None if upload fails + + """ + dbx = dropbox.Dropbox(access_token) + + # Verify access token + try: + dbx.users_get_current_account() + except AuthError as err: + print("ERROR: Invalid access token; please check your access token.") + return None + try: + file_upload(dbx=dbx, local_path=local_path, remote_path=dropbox_path) + print("Upload successful.") + except ApiError as err: + print(f"API error: {err}") + return None + + +def file_upload(dbx: dropbox.Dropbox, local_path: pathlib.Path, remote_path: str): + """Upload large files to Dropbox using chunked upload. + + Parameters + ---------- + dbx : dropbox.Dropbox + Authenticated Dropbox client + local_path : pathlib.Path + Path to local file + remote_path : str + Destination path in Dropbox + + """ + CHUNKSIZE = 100 * 1024 * 1024 + upload_session_start_result = dbx.files_upload_session_start(b'') + cursor = dropbox.files.UploadSessionCursor(session_id=upload_session_start_result.session_id, offset=0) + with local_path.open("rb") as f: + while True: + data = f.read(CHUNKSIZE) + if data == b"": + break + logger.debug("Pushing %d bytes", len(data)) + dbx.files_upload_session_append_v2(data, cursor) + cursor.offset += len(data) + commit = dropbox.files.CommitInfo(path=remote_path) + dbx.files_upload_session_finish(b'', cursor, commit) + + +def create_shared_link(dbx, dropbox_path): + """Create or get existing shared link. + + :param dbx: Dropbox object + :param dropbox_path: File path on Dropbox + :return: Shared link URL + + """ + try: + links = dbx.sharing_list_shared_links(path=dropbox_path, direct_only=True).links + if links: + # If shared link already exists, return the first one + return links[0].url + else: + # Create a new shared link + link = dbx.sharing_create_shared_link_with_settings(dropbox_path) + return link.url + except ApiError as err: + print(f"Error creating shared link: {err}") + return None + + +def get_link(data_fname, local_path, ACCESS_TOKEN, DROPBOX_DEST_PATH): + DROPBOX_DEST_PATH = DROPBOX_DEST_PATH + "/" + data_fname + + upload_file_to_dropbox(dropbox_path=DROPBOX_DEST_PATH, access_token=ACCESS_TOKEN, local_path=local_path) + + # Create Dropbox object to get shared link + dbx = dropbox.Dropbox(ACCESS_TOKEN) + # Get shared link + shared_link = create_shared_link(dbx, DROPBOX_DEST_PATH) + if shared_link: + # Dropbox shared link defaults to `dl=0` at the end, which means preview in browser. + # change it to `dl=1`. + download_link = shared_link.replace('&dl=0', '&dl=1') + print(f"Download link: {download_link}") + return download_link + else: + print("Unable to get shared link.") + + +def get_ans(data: sc.AnnData, tissue: str, dataset_id: str, local_path, ACCESS_TOKEN, DROPBOX_DEST_PATH): + """Generate metadata dictionary for dataset and upload to Dropbox. + + Parameters + ---------- + data : sc.AnnData + Annotated data matrix + tissue : str + Tissue type + dataset_id : str + Unique identifier for dataset + local_path : str or pathlib.Path + Path to local data file + ACCESS_TOKEN : str + Dropbox API access token + DROPBOX_DEST_PATH : str + Base path in Dropbox for uploads + + Returns + ------- + dict + Metadata dictionary containing dataset information and Dropbox URLs + + """ + # keys=["species","tissue","dataset","split","celltype_fname","celltype_url","data_fname","data_url"] + # Create metadata dictionary with dataset info + ans = {} + ans["species"] = "human" + ans["tissue"] = tissue.capitalize() + # Store number of observations (cells) in dataset + ans["dataset"] = data.n_obs + ans["split"] = "train" + ans["celltype_fname"] = "" + ans["celltype_url"] = "" + ans["data_fname"] = f"train_human_{tissue.capitalize()}{dataset_id}_data.h5ad" + ans["data_url"] = get_link(data_fname=ans["data_fname"].split("_", 1)[1], local_path=local_path, + ACCESS_TOKEN=ACCESS_TOKEN, DROPBOX_DEST_PATH=DROPBOX_DEST_PATH) + ans["is_ALL_Integer"] = np.all(np.equal(data.X.data, data.X.data.astype(int))) + return ans diff --git a/dance/atlas/sc_similarity/anndata_similarity.py b/dance/atlas/sc_similarity/anndata_similarity.py new file mode 100644 index 00000000..25c9fab3 --- /dev/null +++ b/dance/atlas/sc_similarity/anndata_similarity.py @@ -0,0 +1,634 @@ +# anndata_similarity.py +import re +import warnings +from typing import Dict, List, Optional + +import anndata +import anndata as ad +import numpy as np +import ot +import pandas as pd +import scanpy as sc +import scipy +import yaml +from omegaconf import OmegaConf +from scipy.linalg import sqrtm +from scipy.spatial import cKDTree +from scipy.spatial.distance import cdist, directed_hausdorff, jensenshannon +from sklearn.metrics.pairwise import cosine_similarity, rbf_kernel + +from dance import logger +from dance.settings import METADIR + +# Suppress scipy warnings for constant input in Pearson correlation +warnings.filterwarnings("ignore", message="An input array is constant") +from dance.datasets.singlemodality import CellTypeAnnotationDataset + + +def get_anndata(tissue: str = "Blood", species: str = "human", filetype: str = "h5ad", train_dataset=[], + test_dataset=[], valid_dataset=[], data_dir="../temp_data"): + + def find_dataset_in_metadata(datasets, tissue): + datasets_in_metadata = [] + for dataset_id in datasets: + all_datasets = pd.read_csv(METADIR / "scdeepsort.csv", header=0, skiprows=[i for i in range(1, 68)]) + for collect_dataset in all_datasets[all_datasets["tissue"] == tissue]["data_fname"].tolist(): + if dataset_id in collect_dataset: + datasets_in_metadata.append( + (collect_dataset.split(tissue)[1] + + (tissue + collect_dataset.split(tissue)[2] if len(collect_dataset.split(tissue)) >= 3 else '') + ).split('_')[0]) + break + return datasets_in_metadata + + train_dataset = find_dataset_in_metadata(train_dataset, tissue) + valid_dataset = find_dataset_in_metadata(valid_dataset, tissue) + test_dataset = find_dataset_in_metadata(test_dataset, tissue) + data = CellTypeAnnotationDataset(train_dataset=train_dataset, test_dataset=test_dataset, + valid_dataset=valid_dataset, data_dir=data_dir, tissue=tissue, species=species, + filetype=filetype).load_data() + return data.data + + +class AnnDataSimilarity: + """A class to compute various similarity metrics between two AnnData objects. + + Parameters + ---------- + adata1 : anndata.AnnData + First AnnData object for comparison + adata2 : anndata.AnnData + Second AnnData object for comparison + sample_size : Optional[int] + Number of cells to sample from each dataset. If None, uses min(adata1.n_obs, adata2.n_obs) + init_random_state : Optional[int] + Random seed for reproducibility + n_runs : int + Number of times to run each similarity computation + ground_truth_conf_path : Optional[str] + Path to ground truth configuration file + adata1_name : Optional[str] + Name identifier for first dataset + adata2_name : Optional[str] + Name identifier for second dataset + methods : List[str] + List of cell type annotation methods to use + tissue : str + Tissue type being analyzed + + """ + + def __init__(self, adata1: anndata.AnnData, adata2: anndata.AnnData, sample_size: Optional[int] = None, + init_random_state: Optional[int] = None, n_runs: int = 10, + ground_truth_conf_path: Optional[str] = None, adata1_name: Optional[str] = None, + adata2_name: Optional[str] = None, + methods=['cta_actinn', 'cta_celltypist', 'cta_scdeepsort', 'cta_singlecellnet'], tissue="blood"): + """Initialize the AnnDataSimilarity object and perform data preprocessing.""" + self.origin_adata1 = adata1.copy() + self.origin_adata2 = adata2.copy() + self.sample_size = sample_size + self.init_random_state = init_random_state + self.preprocess() + self.results = {} + self.ground_truth_conf_path = ground_truth_conf_path + self.adata1_name = adata1_name + self.adata2_name = adata2_name + self.methods = methods + self.tissue = tissue + self.n_runs = n_runs + + def filter_gene(self, n_top_genes=3000): + """Filter genes to keep only highly variable genes common between datasets. + + Parameters + ---------- + n_top_genes : int + Number of top variable genes to select + + """ + sc.pp.filter_genes(self.origin_adata1, min_counts=3) + sc.pp.filter_genes(self.origin_adata2, min_counts=3) + sc.pp.highly_variable_genes(self.origin_adata1, n_top_genes=n_top_genes, flavor='seurat_v3') + sc.pp.highly_variable_genes(self.origin_adata2, n_top_genes=n_top_genes, flavor='seurat_v3') + + common_hvg = self.origin_adata1.var_names[self.origin_adata1.var['highly_variable']].intersection( + self.origin_adata2.var_names[self.origin_adata2.var['highly_variable']]) + + self.origin_adata1 = self.origin_adata1[:, common_hvg].copy() + self.origin_adata2 = self.origin_adata2[:, common_hvg].copy() + self.common_genes = common_hvg + + def preprocess(self): + """Preprocess the data, including log normalization and normalization to + probability distribution.""" + self.filter_gene() + + def sample_cells(self, random_state): + """Randomly sample cells from each dataset if sample_size is specified.""" + np.random.seed(random_state) + if self.sample_size is None: + self.sample_size = min(self.adata1.n_obs, self.adata2.n_obs) #need to think + if self.adata1.n_obs > self.sample_size: + indices1 = np.random.choice(self.adata1.n_obs, size=self.sample_size, replace=False) + self.sampled_adata1 = self.adata1[indices1, :].copy() + else: + self.sampled_adata1 = self.adata1.copy() + if self.adata2.n_obs > self.sample_size: + indices2 = np.random.choice(self.adata2.n_obs, size=self.sample_size, replace=False) + self.sampled_adata2 = self.adata2[indices2, :].copy() + else: + self.sampled_adata2 = self.adata2.copy() + + def normalize_data(self): # I am not sure + """Normalize the data by total counts per cell and log-transform.""" + sc.pp.normalize_total(self.adata1, target_sum=1e4) + sc.pp.log1p(self.adata1) + sc.pp.normalize_total(self.adata2, target_sum=1e4) + sc.pp.log1p(self.adata2) + + def set_prob_data(self, sampled=False): + # Normalize the data to probability distributions + if sampled: + prob_adata1 = self.sampled_adata1.X / self.sampled_adata1.X.sum(axis=1) + prob_adata2 = self.sampled_adata2.X / self.sampled_adata2.X.sum(axis=1) + else: + prob_adata1 = self.adata1.X / self.adata1.X.sum(axis=1) + prob_adata2 = self.adata2.X / self.adata2.X.sum(axis=1) + # Handle any NaN values resulting from division by zero + self.X = np.nan_to_num(prob_adata1).toarray() + self.Y = np.nan_to_num(prob_adata2).toarray() + + def cosine_sim_sampled(self) -> pd.DataFrame: + """Computes the average cosine similarity between all pairs of cells from the + two datasets.""" + # Compute cosine similarity matrix + sim_matrix = cosine_similarity(self.sampled_adata1.X, self.sampled_adata2.X) + # Return the average similarity + return sim_matrix.mean() + + def pearson_corr_sampled(self) -> pd.DataFrame: + """Computes the average Pearson correlation coefficient between all pairs of + cells from the two datasets.""" + # Compute Pearson correlation matrix + corr_matrix = np.corrcoef(self.sampled_adata1.X.toarray(), + self.sampled_adata2.X.toarray())[:self.sampled_adata1.n_obs, + self.sampled_adata1.n_obs:] + # Return the average correlation + return np.nanmean(corr_matrix) + + def jaccard_sim_sampled(self, threshold: float = 0.5) -> pd.DataFrame: + """Computes the average Jaccard similarity between all pairs of binarized cells + from the two datasets.""" + # Binarize the data + binary_adata1 = (self.sampled_adata1.X > threshold).astype(int) + binary_adata2 = (self.sampled_adata2.X > threshold).astype(int) + # Compute Jaccard distance matrix + distance_matrix = cdist(binary_adata1.A, binary_adata2.A, metric='jaccard') + # Convert to similarity and compute the average + similarity_matrix = 1 - distance_matrix + return similarity_matrix.mean() + + def js_divergence_sampled(self) -> float: + """Computes the average Jensen-Shannon divergence between all pairs of cells + from the two datasets.""" + # Normalize the data to probability distributions + prob_adata1 = self.sampled_adata1.X / self.sampled_adata1.X.sum(axis=1) + prob_adata2 = self.sampled_adata2.X / self.sampled_adata2.X.sum(axis=1) + # Handle any NaN values resulting from division by zero + prob_adata1 = np.nan_to_num(prob_adata1).toarray() + prob_adata2 = np.nan_to_num(prob_adata2).toarray() + + # Define a function to compute JS divergence for a pair of probability vectors + def jsd(p, q): + return jensenshannon(p, q) + + # Compute JS divergence matrix + jsd_vectorized = np.vectorize(jsd, signature='(n),(n)->()') + divergence_matrix = np.zeros((prob_adata1.shape[0], prob_adata2.shape[0])) + for i in range(prob_adata1.shape[0]): + divergence_matrix[i, :] = jsd_vectorized( + np.repeat(prob_adata1[i, :], prob_adata2.shape[0], axis=0).reshape(-1, prob_adata1.shape[1]), + prob_adata2) + + # Convert divergence to similarity and compute the average + similarity_matrix = 1 - divergence_matrix + return np.nanmean(similarity_matrix) + + def compute_mmd_alternative(self) -> float: + X = self.X + Y = self.Y + gamma = 1.0 + K_XX = rbf_kernel(X, X, gamma) + K_YY = rbf_kernel(Y, Y, gamma) + K_XY = rbf_kernel(X, Y, gamma) + n_x = X.shape[0] + n_y = Y.shape[0] + mmd = (K_XX.sum() - np.trace(K_XX)) / (n_x * (n_x - 1)) \ + + (K_YY.sum() - np.trace(K_YY)) / (n_y * (n_y - 1)) \ + - 2 * K_XY.mean() + return 1 / (1 + np.sqrt(max(mmd, 0))) + + def compute_mmd(self) -> float: + """Compute Maximum Mean Discrepancy between datasets. + + Returns + ------- + float + Normalized MMD similarity score between 0 and 1 + + """ + X = self.X + Y = self.Y + kernel = "rbf" + gamma = 1.0 + if kernel == 'rbf': + K_X = np.exp(-gamma * cdist(X, X, 'sqeuclidean')) + K_Y = np.exp(-gamma * cdist(Y, Y, 'sqeuclidean')) + K_XY = np.exp(-gamma * cdist(X, Y, 'sqeuclidean')) + elif kernel == 'linear': + K_X = np.dot(X, X.T) + K_Y = np.dot(Y, Y.T) + K_XY = np.dot(X, Y.T) + else: + raise ValueError("Unsupported kernel type") + + m = X.shape[0] + n = Y.shape[0] + + sum_X = (np.sum(K_X) - np.sum(np.diag(K_X))) / (m * (m - 1)) + sum_Y = (np.sum(K_Y) - np.sum(np.diag(K_Y))) / (n * (n - 1)) + sum_XY = np.sum(K_XY) / (m * n) + + mmd_squared = sum_X + sum_Y - 2 * sum_XY + mmd = np.sqrt(max(mmd_squared, 0)) + return 1 / (1 + mmd) + + def common_genes_num(self): + return len(self.common_genes) + + def otdd(self): + """Compute the OTDD between two data sets.""" + raise NotImplementedError("OTDD!") + + def data_company(self): + raise NotImplementedError("data company") + + def wasserstein_dist(self) -> float: + """Compute Wasserstein distance between datasets. + + Returns + ------- + float + Normalized Wasserstein similarity score between 0 and 1 + + """ + X = self.X + Y = self.Y + a = np.ones((X.shape[0], )) / X.shape[0] + b = np.ones((Y.shape[0], )) / Y.shape[0] + M = ot.dist(X, Y, metric='euclidean') + wasserstein_dist = ot.emd2(a, b, M) + return 1 / (1 + wasserstein_dist) + + def get_Hausdorff(self): + X = self.X + Y = self.Y + forward = directed_hausdorff(X, Y)[0] + backward = directed_hausdorff(X, Y)[0] + hausdorff_distance = max(forward, backward) + normalized_hausdorff = hausdorff_distance / np.sqrt(X.shape[1]) + similarity = 1 - normalized_hausdorff + return similarity + + def chamfer_distance(self): + X = self.X + Y = self.Y + tree_A = cKDTree(X) + tree_B = cKDTree(Y) + + distances_A_to_B, _ = tree_A.query(Y) + distances_B_to_A, _ = tree_B.query(X) + + chamfer_A_to_B = np.mean(distances_A_to_B) + chamfer_B_to_A = np.mean(distances_B_to_A) + distance = chamfer_A_to_B + chamfer_B_to_A + normalized_chamfer = distance / np.sqrt(X.shape[1]) + similarity = 1 - normalized_chamfer + return similarity + + def energy_distance_metric(self): + X = self.X + Y = self.Y + XX = cdist(X, X, 'euclidean') + YY = cdist(Y, Y, 'euclidean') + XY = cdist(X, Y, 'euclidean') + distance = 2 * np.mean(XY) - np.mean(XX) - np.mean(YY) + return 1 / (1 + distance) + + def get_sinkhorn2(self): + X = self.X + Y = self.Y + a = np.ones(X.shape[0]) / X.shape[0] + b = np.ones(Y.shape[0]) / Y.shape[0] + M = ot.dist(X, Y, metric='euclidean') + reg = 0.1 + sinkhorn_dist = ot.sinkhorn2(a, b, M, reg) + return 1 / (1 + sinkhorn_dist) + + def bures_distance(self): + X = self.X + Y = self.Y + C1 = np.cov(X, rowvar=False) + C2 = np.cov(Y, rowvar=False) + sqrt_C1 = sqrtm(C1) + product = sqrt_C1 @ C2 @ sqrt_C1 + sqrt_product = sqrtm(product) + trace = np.trace(C1) + np.trace(C2) - 2 * np.trace(sqrt_product) + return 1 / (1 + np.sqrt(max(trace, 0))) + + def spectral_distance(self): + X = self.X + Y = self.Y + C1 = np.cov(X, rowvar=False) + C2 = np.cov(Y, rowvar=False) + eig_A = np.linalg.eigvalsh(C1) + eig_B = np.linalg.eigvalsh(C2) + return 1 / (1 + np.linalg.norm(eig_A - eig_B)) + + def get_dataset_meta_sim(self): + """Compute metadata similarity between datasets based on discrete and continuous + features. + + Returns + ------- + float + Average similarity score across all metadata features + + """ + # dis_cols=['assay', 'cell_type', 'development_stage','disease','is_primary_data','self_reported_ethnicity','sex', 'suspension_type', 'tissue','tissue_type', 'tissue_general'] + con_cols = [ + "nnz_mean", "nnz_var", "nnz_counts_mean", "nnz_counts_var", "n_measured_vars", "n_counts_mean", + "n_counts_var", "var_n_counts_mean", "var_n_counts_var" + ] + dis_cols = ['assay', 'tissue'] + + def get_discrete_sim(col_list1, col_list2): + set1 = set(col_list1) + set2 = set(col_list2) + intersection = len(set1.intersection(set2)) + union = len(set1.union(set2)) + return intersection / union + + def get_con_sim(con_data_1, con_data_2): + return abs(con_data_1 - con_data_2) / max(con_data_1, con_data_2) + + def get_dataset_info(data: ad.AnnData): + con_sim = {} + con_sim["nnz_mean"] = np.mean(data.obs["nnz"]) + con_sim["nnz_var"] = np.var(data.obs["nnz"]) + nnz_values = data.X[data.X.nonzero()] + con_sim["nnz_counts_mean"] = np.mean(nnz_values) + con_sim["nnz_counts_var"] = np.var(nnz_values) + con_sim["n_measured_vars"] = np.mean(data.obs["n_measured_vars"]) + con_sim["cell_num"] = len(data.obs) + con_sim["gene_num"] = len(data.var) + if "n_counts" not in data.obs.columns: + if scipy.sparse.issparse(data.X): + cell_counts = np.array(data.X.sum(axis=1)).flatten() + else: + cell_counts = data.X.sum(axis=1) + data.obs["n_counts"] = cell_counts + con_sim["n_counts_mean"] = np.mean(data.obs["n_counts"]) + con_sim["n_counts_var"] = np.var(data.obs["n_counts"]) + # if "n_counts" not in data.var.columns: + if scipy.sparse.issparse(data.X): + gene_counts = np.array(data.X.sum(axis=0)).flatten() + else: + gene_counts = data.X.sum(axis=0) + data.var["n_counts"] = gene_counts + data.var["n_counts"] = data.var["n_counts"].astype(float) + con_sim["var_n_counts_mean"] = np.mean(data.var["n_counts"]) + con_sim["var_n_counts_var"] = np.var(data.var["n_counts"]) + data.uns["con_sim"] = con_sim + return data + + data_1 = self.adata1.copy() + data_2 = self.adata2.copy() + data_1 = get_dataset_info(data_1) + data_2 = get_dataset_info(data_2) + ans = {} + obs_1 = data_1.obs + obs_2 = data_2.obs + con_sim_1 = data_1.uns["con_sim"] + con_sim_2 = data_2.uns["con_sim"] + for dis_col in dis_cols: + ans[f"{dis_col}_sim"] = get_discrete_sim(obs_1[dis_col].values, obs_2[dis_col].values) + for con_col in con_cols: + ans[f"{con_col}_sim"] = get_con_sim(con_sim_1[con_col], con_sim_2[con_col]) + return np.mean(list(ans.values())) + + def get_ground_truth(self): + assert self.ground_truth_conf_path is not None + assert self.adata1_name is not None + assert self.adata2_name is not None + ground_truth_conf = pd.read_excel(self.ground_truth_conf_path, sheet_name=self.tissue, index_col=0) + + def get_targets(dataset_truth: str): + dataset_truth = OmegaConf.create(fix_yaml_string(dataset_truth)) + targets = [] + for item in dataset_truth: + targets.append(item["target"]) + return targets + + sim_targets = [] + for method in self.methods: + query_dataset_truth = ground_truth_conf.loc[ground_truth_conf["dataset_id"] == self.adata1_name, + f"{method}_step2_best_yaml"].iloc[0] + atlas_dataset_truth = ground_truth_conf.loc[ground_truth_conf["dataset_id"] == self.adata2_name, + f"{method}_step2_best_yaml"].iloc[0] + if (type(atlas_dataset_truth) == float + and np.isnan(atlas_dataset_truth)) or (type(query_dataset_truth) == float + and np.isnan(query_dataset_truth)): + return 0 + + query_targets = get_targets(query_dataset_truth) + atlas_targets = get_targets(atlas_dataset_truth) + assert len(query_targets) == len(atlas_targets) + sim_targets.append((sum(a == b for a, b in zip(query_targets, atlas_targets)), len(query_targets))) + sim_targets.append((sum(x for x, y in sim_targets), sum(y for x, y in sim_targets))) + return sim_targets + + def compute_similarity( + self, random_state: int, methods: List[str] = [ + 'cosine', 'pearson', 'jaccard', 'js_distance', 'otdd', 'common_genes_num', "ground_truth", "metadata_sim" + ] + ) -> Dict[str, float]: + """Compute multiple similarity metrics between datasets. + + Parameters + ---------- + random_state : int + Random seed for cell sampling + methods : List[str] + List of similarity methods to compute + + Returns + ------- + Dict[str, float] + Dictionary mapping method names to similarity scores + + """ + self.adata1 = self.origin_adata1.copy() + self.adata2 = self.origin_adata2.copy() + self.normalize_data() + self.sample_cells(random_state) + self.set_prob_data() + + results = {} + for method in methods: + logger.info(f"method: {method}") + if method == 'cosine': + results['cosine'] = self.cosine_sim_sampled() + elif method == 'pearson': + results['pearson'] = self.pearson_corr_sampled() + elif method == 'jaccard': + results['jaccard'] = self.jaccard_sim_sampled() + elif method == 'js_distance': + results['js_distance'] = self.js_divergence_sampled() + elif method == 'wasserstein': + results['wasserstein'] = self.wasserstein_dist() + elif method == "common_genes_num": + results["common_genes_num"] = self.common_genes_num() + elif method == "Hausdorff": + results["Hausdorff"] = self.get_Hausdorff() + elif method == "chamfer": + results["chamfer"] = self.chamfer_distance() + elif method == "energy": + results["energy"] = self.energy_distance_metric() + elif method == "sinkhorn2": + results["sinkhorn2"] = self.get_sinkhorn2() + elif method == "bures": + results["bures"] = self.bures_distance() + elif method == "spectral": + results["spectral"] = self.spectral_distance() + elif method == "otdd": + results['otdd'] = self.otdd() + elif method == "ground_truth": + results["ground_truth"] = self.get_ground_truth() + elif method == "metadata_sim": + results["metadata_sim"] = self.get_dataset_meta_sim() + elif method == "mmd": + results["mmd"] = self.compute_mmd() + else: + raise ValueError(f"Unsupported similarity method: {method}") + return results + + def get_similarity_matrix_A2B( + self, methods: List[str] = [ + "wasserstein", "Hausdorff", "chamfer", "energy", "sinkhorn2", "bures", "spectral", "common_genes_num", + "ground_truth", "metadata_sim", "mmd" + ] + ) -> Dict[str, float]: + """Same as compute_similarity, keeping method name consistency.""" + cumulative_results = {method: 0.0 for method in methods} + + for run in range(self.n_runs): + # Update random state for each run + if self.init_random_state is not None: + current_random_state = self.init_random_state + run + else: + current_random_state = None + run_results = self.compute_similarity(methods=methods, random_state=current_random_state) + for method in methods: + if method in ["ground_truth"]: + cumulative_results[method] = run_results[method] + else: + cumulative_results[method] += run_results[method] + # Average the results over the number of runs + averaged_results = { + method: + cumulative_results[method] if method in ["ground_truth"] else cumulative_results[method] / self.n_runs + for method in methods + } + return averaged_results + + # def get_max_similarity_A_to_B(self): + # if self.results is None: + # raise ValueError(f"need results!") + # else: + # self.results_score = {} + # for key in self.results: + # if key not in ["common_genes_num", "ground_truth", "metadata_sim"]: + # self.results_score[key] = self._get_max_similarity(self.results[key]) + # else: + # self.results_score[key] = self.results[key] + # return self.results_score + + # def _get_max_similarity(self, similarity_matrix: pd.DataFrame): + # """Maximum matching average similarity score.""" + # matched_values = [ + # similarity_matrix.loc[label, + # label] if label in similarity_matrix.columns else similarity_matrix.loc[label].max() + # for label in similarity_matrix.index + # ] # need to ask + # overall_similarity = np.mean(matched_values) + # return overall_similarity + + +def extract_type_target_params(item_text): + lines = item_text.strip().split('\n') + item_dict = {} + params_dict = {} + current_param_key = None + in_params = False + for line in lines: + stripped_line = line.strip() + if stripped_line.startswith('- type:'): + item_dict['type'] = stripped_line.split(':', 1)[1].strip() + elif stripped_line.startswith('target:'): + item_dict['target'] = stripped_line.split(':', 1)[1].strip() + elif stripped_line.startswith('params:'): + params_content = stripped_line.split(':', 1)[1].strip() + if params_content == '{}': + params_dict = {} + in_params = False + else: + params_dict = {} + in_params = True + elif in_params: + if re.match(r'^\w+:$', stripped_line): + current_param_key = stripped_line[:-1].strip() + params_dict[current_param_key] = {} + elif re.match(r'^- ', stripped_line): + list_item = stripped_line[2:].strip() + if current_param_key: + if not isinstance(params_dict[current_param_key], list): + params_dict[current_param_key] = [] + params_dict[current_param_key].append(list_item) + elif ':' in stripped_line: + key, value = map(str.strip, stripped_line.split(':', 1)) + if current_param_key and isinstance(params_dict.get(current_param_key, None), dict): + params_dict[current_param_key][key] = yaml.safe_load(value) + else: + params_dict[key] = yaml.safe_load(value) + item_dict['params'] = params_dict + return item_dict + + +def fix_yaml_string(original_str): + #It will be deleted + + yaml_str = original_str.replace('\\n', '\n').strip() + items = re.split(r'(?=-\s*type:)', yaml_str) + config_list = [] + for item in items: + if not item.strip(): + continue + if not item.strip().startswith('- type:'): + print(item) + print("Warning: An item does not start with '- type:', skipping this item.") + continue + item_dict = extract_type_target_params(item) + config_list.append(item_dict) + fixed_yaml = yaml.dump(config_list, sort_keys=False) + return fixed_yaml diff --git a/dance/datasets/multimodality.py b/dance/datasets/multimodality.py index 477aff94..87c8689c 100644 --- a/dance/datasets/multimodality.py +++ b/dance/datasets/multimodality.py @@ -7,7 +7,10 @@ import mudata as md import numpy as np import scanpy as sc +import scipy import scipy.sparse as sp +import sklearn +from sklearn.utils import issparse from dance import logger from dance.data import Data @@ -572,6 +575,7 @@ def __init__(self, subtask, root="./data", preprocess=None, normalize=False, pre def _raw_to_dance(self, raw_data): mod1, mod2, meta1, meta2, test_sol = self._maybe_preprocess(raw_data) + self._to_csr([mod1, mod2, meta1, meta2, test_sol]) assert all(mod2.obs_names == mod1.obs_names), "Modalities not aligned" mdata = md.MuData({"mod1": mod1, "mod2": mod2, "meta1": meta1, "meta2": meta2, "test_sol": test_sol}) @@ -581,6 +585,17 @@ def _raw_to_dance(self, raw_data): return data + def _to_csr(self, datas): + for data in datas: + if scipy.sparse.issparse(data.X): + if not isinstance(data.X, scipy.sparse.csr_matrix): + data.X = data.X.tocsr() + # data.X = np.array(data.X.todense()).astype(float) + if "counts" in data.layers and scipy.sparse.issparse(data.layers["counts"]): + if not isinstance(data.layers["counts"], scipy.sparse.csr_matrix): + data.layers["counts"] = data.layers["counts"].tocsr() + # data.layers["counts"] = np.array(data.layers["counts"].todense()).astype(float) + def _maybe_preprocess(self, raw_data): if self.preprocess is None: return raw_data @@ -744,7 +759,7 @@ def _maybe_preprocess(self, raw_data): if mod1.shape[1] > self.selection_threshold: sc.pp.highly_variable_genes(mod1, layer="counts", flavor="seurat_v3", n_top_genes=self.selection_threshold, span=self.span) - mod1 = mod1[:, mod1.var["highly_variable"]] + mod1 = mod1[:, mod1.var["highly_variable"]] # Equivalent to subset=True and _inplace_subset_var if mod2.shape[1] > self.selection_threshold: sc.pp.highly_variable_genes(mod2, layer="counts", flavor="seurat_v3", n_top_genes=self.selection_threshold, span=self.span) diff --git a/dance/datasets/singlemodality.py b/dance/datasets/singlemodality.py index 60998be7..302b44b8 100644 --- a/dance/datasets/singlemodality.py +++ b/dance/datasets/singlemodality.py @@ -53,7 +53,7 @@ class CellTypeAnnotationDataset(BaseDataset): def __init__(self, full_download=False, train_dataset=None, test_dataset=None, species=None, tissue=None, valid_dataset=None, train_dir="train", test_dir="test", valid_dir="valid", map_path="map", - data_dir="./", train_as_valid=False, val_size=0.2): + data_dir="./", train_as_valid=False, val_size=0.2, test_size=0.2, filetype: str = "csv"): super().__init__(data_dir, full_download) self.data_dir = data_dir @@ -73,6 +73,8 @@ def __init__(self, full_download=False, train_dataset=None, test_dataset=None, s self.valid_dataset = train_dataset self.train2valid() self.val_size = val_size + self.test_size = test_size + self.filetype = filetype def train2valid(self): logger.info("Copy train_dataset and use it as valid_dataset") @@ -109,12 +111,12 @@ def download_all(self): pass os.rename(download_path, move_path) - def get_all_filenames(self, filetype: str = "csv", feat_suffix: str = "data", label_suffix: str = "celltype"): + def get_all_filenames(self, feat_suffix: str = "data", label_suffix: str = "celltype"): filenames = [] - for id in self.train_dataset + self.test_dataset + (self.valid_dataset - if self.valid_dataset is not None else []): - filenames.append(f"{self.species}_{self.tissue}{id}_{feat_suffix}.{filetype}") - filenames.append(f"{self.species}_{self.tissue}{id}_{label_suffix}.{filetype}") + for id in self.train_dataset + (self.test_dataset if self.test_dataset is not None else + []) + (self.valid_dataset if self.valid_dataset is not None else []): + filenames.append(f"{self.species}_{self.tissue}{id}_{feat_suffix}.{self.filetype}") + filenames.append(f"{self.species}_{self.tissue}{id}_{label_suffix}.{self.filetype}") return filenames def download(self, download_map=True): @@ -175,6 +177,8 @@ def _load_raw_data(self, ct_col: str = "Cell_type") -> Tuple[ad.AnnData, List[Se species = self.species tissue = self.tissue valid_feat = None + if self.test_dataset is None or self.test_dataset == []: + return self._load_raw_data_single_h5ad() if self.valid_dataset is not None: train_dataset_ids = self.train_dataset test_dataset_ids = self.test_dataset @@ -270,6 +274,72 @@ def _load_raw_data(self, ct_col: str = "Cell_type") -> Tuple[ad.AnnData, List[Se return adata, labels, idx_to_label, train_size, 0 + def _load_raw_data_single_h5ad(self, + ct_col: str = "cell_type") -> Tuple[ad.AnnData, List[Set[str]], List[str], int]: + species = self.species + tissue = self.tissue + valid_feat = None + data_dir = self.data_dir + train_dir = osp.join(data_dir, self.train_dir) + data_path = osp.join(train_dir, species, f"{species}_{tissue}{self.train_dataset[0]}_data.h5ad") + adata = sc.read_h5ad(data_path) + map_path = osp.join(data_dir, self.map_path, self.species) + X_train_temp, X_test = train_test_split(adata, test_size=0.2) + X_train, X_val = train_test_split(X_train_temp, test_size=0.25) + train_feat, valid_feat, test_feat = X_train.X, X_val.X, X_test.X + train_label, valid_label, test_label = X_train.obs, X_val.obs, X_test.obs + if valid_feat is not None: + # Combine features (only use features that are present in the training data) + train_size = train_feat.shape[0] + valid_size = valid_feat.shape[0] + # Convert cell type labels and map test cell type names to train + cell_types = set(train_label[ct_col].unique()) + idx_to_label = sorted(cell_types) + cell_type_mappings: Dict[str, Set[str]] = self.get_map_dict(map_path, tissue) + train_labels, valid_labels, test_labels = train_label[ct_col].tolist(), [], [] + for i in valid_label[ct_col]: + valid_labels.append(i if i in cell_types else cell_type_mappings.get(i)) + for i in test_label[ct_col]: + test_labels.append(i if i in cell_types else cell_type_mappings.get(i)) + labels: List[Set[str]] = train_labels + valid_labels + test_labels + + logger.debug("Mapped valid cell-types:") + for i, j, k in zip(valid_label.index, valid_label[ct_col], valid_labels): + logger.debug(f"{i}:{j}\t-> {k}") + + logger.debug("Mapped test cell-types:") + for i, j, k in zip(test_label.index, test_label[ct_col], test_labels): + logger.debug(f"{i}:{j}\t-> {k}") + + logger.info(f"Loaded expression data: {adata}") + logger.info(f"Number of training samples: {train_feat.shape[0]:,}") + logger.info(f"Number of valid samples: {valid_feat.shape[0]:,}") + logger.info(f"Number of testing samples: {test_feat.shape[0]:,}") + logger.info(f"Cell-types (n={len(idx_to_label)}):\n{pprint.pformat(idx_to_label)}") + + return adata, labels, idx_to_label, train_size, valid_size + else: + # Combine features (only use features that are present in the training data) + train_size = train_feat.shape[0] + cell_types = set(train_label[ct_col].unique()) + idx_to_label = sorted(cell_types) + cell_type_mappings: Dict[str, Set[str]] = self.get_map_dict(map_path, tissue) + train_labels, test_labels = train_label[ct_col].tolist(), [] + for i in test_label[ct_col]: + test_labels.append(i if i in cell_types else cell_type_mappings.get(i)) + labels: List[Set[str]] = train_labels + test_labels + + logger.debug("Mapped test cell-types:") + for i, j, k in zip(test_label.index, test_label[ct_col], test_labels): + logger.debug(f"{i}:{j}\t-> {k}") + + logger.info(f"Loaded expression data: {adata}") + logger.info(f"Number of training samples: {train_feat.shape[0]:,}") + logger.info(f"Number of testing samples: {test_feat.shape[0]:,}") + logger.info(f"Cell-types (n={len(idx_to_label)}):\n{pprint.pformat(idx_to_label)}") + + return adata, labels, idx_to_label, train_size, 0 + def _raw_to_dance(self, raw_data): adata, cell_labels, idx_to_label, train_size, valid_size = raw_data adata.obsm["cell_type"] = cell_label_to_df(cell_labels, idx_to_label, index=adata.obs.index) diff --git a/dance/metadata/scdeepsort.csv b/dance/metadata/scdeepsort.csv index 79dfc5c1..97e0acc6 100644 --- a/dance/metadata/scdeepsort.csv +++ b/dance/metadata/scdeepsort.csv @@ -66,3 +66,141 @@ mouse,Brain,3285,train,train_mouse_Brain3285_celltype.csv,https://www.dropbox.co mouse,Brain,753,train,train_mouse_Brain753_celltype.csv,https://www.dropbox.com/s/x2katwk93z06sgw?dl=1,train_mouse_Brain753_data.csv,https://www.dropbox.com/s/3f3wbplgo3xa4ww?dl=1 mouse,Kidney,4682,train,train_mouse_Kidney4682_celltype.csv,https://www.dropbox.com/s/3plrve7g9v428ec?dl=1,train_mouse_Kidney4682_data.csv,https://www.dropbox.com/s/olf5nirtieu1ikq?dl=1 mouse,Spleen,1970,train,train_mouse_Spleen1970_celltype.csv,https://www.dropbox.com/s/3ea64vk546fjxvr?dl=1,train_mouse_Spleen1970_data.csv,https://www.dropbox.com/s/c4te0fr1qicqki8?dl=1 +human,Blood,5749,train,,,train_human_Blood471647b3-04fe-4c76-8372-3264feb950e8_data.h5ad,https://www.dropbox.com/scl/fi/sjcrmdpjrfhcd7642igc0/human_Blood471647b3-04fe-4c76-8372-3264feb950e8_data.h5ad?rlkey=8gn9esy6osdikumzbq0tk3stv&st=656m2nhu&dl=1 +human,Blood,5608,train,,,train_human_Blood84230ea4-998d-4aa8-8456-81dd54ce23af_data.h5ad,https://www.dropbox.com/scl/fi/h58s7qzb897p7iytkfkaa/human_Blood84230ea4-998d-4aa8-8456-81dd54ce23af_data.h5ad?rlkey=cfgq0o9vyjrez24162u3z0yjb&st=6h4dcda2&dl=1 +human,Blood,4232,train,,,train_human_Blood8a554710-08bc-4005-87cd-da9675bdc2e7_data.h5ad,https://www.dropbox.com/scl/fi/3msp96ja6jfh5xlmw7a9x/human_Blood8a554710-08bc-4005-87cd-da9675bdc2e7_data.h5ad?rlkey=jpwwi9qs67zsnx1zu854an8q3&st=6c2xelpk&dl=1 +human,Blood,7142,train,,,train_human_Bloodd3566d6a-a455-4a15-980f-45eb29114cab_data.h5ad,https://www.dropbox.com/scl/fi/rkihpmulg6mxg0a1o223b/human_Bloodd3566d6a-a455-4a15-980f-45eb29114cab_data.h5ad?rlkey=ez8p7a99a265u1g997m4e0xje&st=eenwcwfp&dl=1 +human,Blood,9337,train,,,train_human_Bloodeeacb0c1-2217-4cf6-b8ce-1f0fedf1b569_data.h5ad,https://www.dropbox.com/scl/fi/s9scv6cscspqifttksy6i/human_Bloodeeacb0c1-2217-4cf6-b8ce-1f0fedf1b569_data.h5ad?rlkey=yuyu1u2qhm21y9on5i4b8o9rq&st=g19couz6&dl=1 +human,Heart,2834,train,,,train_human_Heart5a11f879-d1ef-458a-910c-9b0bdfca5ebf_data.h5ad,https://www.dropbox.com/scl/fi/xfs40azio1v07rs7f6uuy/human_Heart5a11f879-d1ef-458a-910c-9b0bdfca5ebf_data.h5ad?rlkey=1qnbtnlb0n9p38csc8un6voef&st=4oqen4p6&dl=1 +human,Blood,10000,train,,,train_human_Blood01209dce-3575-4bed-b1df-129f57fbc031_data.h5ad,https://www.dropbox.com/scl/fi/wqfbtld761iu33xydjih1/human_Blood01209dce-3575-4bed-b1df-129f57fbc031_data.h5ad?rlkey=6fpf8eu9lm6orczc4lzlhu22f&st=joo51ad1&dl=1 +human,Blood,10000,train,,,train_human_Blood055ca631-6ffb-40de-815e-b931e10718c0_data.h5ad,https://www.dropbox.com/scl/fi/d60o68h6gr42di9x1ogv7/human_Blood055ca631-6ffb-40de-815e-b931e10718c0_data.h5ad?rlkey=hpofxqr2gdue3avafqa09fyw7&st=ykswto0h&dl=1 +human,Blood,10000,train,,,train_human_Blood2a498ace-872a-4935-984b-1afa70fd9886_data.h5ad,https://www.dropbox.com/scl/fi/krlqfjj15wrw8qvz5ra0s/human_Blood2a498ace-872a-4935-984b-1afa70fd9886_data.h5ad?rlkey=4jxlruy78g3hp9yr608pmvs9s&st=org7vf5t&dl=1 +human,Blood,10000,train,,,train_human_Blood2adb1f8a-a6b1-4909-8ee8-484814e2d4bf_data.h5ad,https://www.dropbox.com/scl/fi/xfw2youc9jb2ob9oun26c/human_Blood2adb1f8a-a6b1-4909-8ee8-484814e2d4bf_data.h5ad?rlkey=imvru6vfwile7rrwqjedevhnm&st=khi36f85&dl=1 +human,Blood,10000,train,,,train_human_Blood3faad104-2ab8-4434-816d-474d8d2641db_data.h5ad,https://www.dropbox.com/scl/fi/gygnlfkfdxd0av7vrvub3/human_Blood3faad104-2ab8-4434-816d-474d8d2641db_data.h5ad?rlkey=s3uobbze9qhbrrd2u3qkqbtw6&st=2ignoyi8&dl=1 +human,Blood,10000,train,,,train_human_Blood4c4cd77c-8fee-4836-9145-16562a8782fe_data.h5ad,https://www.dropbox.com/scl/fi/lgqrq59631rxrwrajkii5/human_Blood4c4cd77c-8fee-4836-9145-16562a8782fe_data.h5ad?rlkey=3a1176le2rorzd82rf4mmswyz&st=2bpcrwsq&dl=1 +human,Blood,10000,train,,,train_human_Bloodae29ebd0-1973-40a4-a6af-d15a5f77a80f_data.h5ad,https://www.dropbox.com/scl/fi/ax97ls2ojm3x5asoip2ji/human_Bloodae29ebd0-1973-40a4-a6af-d15a5f77a80f_data.h5ad?rlkey=k51mhhavmzfy4xq8gx52tjtq8&st=14tfycvk&dl=1 +human,Blood,10000,train,,,train_human_Bloodbc260987-8ee5-4b6e-8773-72805166b3f7_data.h5ad,https://www.dropbox.com/scl/fi/md5mqb2dh0w9655v0c281/human_Bloodbc260987-8ee5-4b6e-8773-72805166b3f7_data.h5ad?rlkey=afdyzlpcmd44lo7tl5gnzw8u3&st=gt2fdipz&dl=1 +human,Blood,10000,train,,,train_human_Bloodbc2a7b3d-f04e-477e-96c9-9d5367d5425c_data.h5ad,https://www.dropbox.com/scl/fi/1cih4y8h03dboijqieheg/human_Bloodbc2a7b3d-f04e-477e-96c9-9d5367d5425c_data.h5ad?rlkey=yupm1kblpt9a8qlmksz1u3xob&st=9jurnfn4&dl=1 +human,Blood,10000,train,,,train_human_Bloodd9b4bc69-ed90-4f5f-99b2-61b0681ba436_data.h5ad,https://www.dropbox.com/scl/fi/b2hvwk1xmbc6ifhouz4kv/human_Bloodd9b4bc69-ed90-4f5f-99b2-61b0681ba436_data.h5ad?rlkey=82vzr0qcii75tm4sjsn2xw89g&st=6pwjmxnk&dl=1 +human,Blood,549,train,,,train_human_Blood71be997d-ff75-41b9-8a9f-1288c865f921_data.h5ad,https://www.dropbox.com/scl/fi/26c6t2yk44kxqmc54djfz/human_Blood71be997d-ff75-41b9-8a9f-1288c865f921_data.h5ad?rlkey=kfv9p7kvx5vgdiav9ew9nj2me&st=af7wxs06&dl=1 +human,Blood,1324,train,,,train_human_Blooda5d95a42-0137-496f-8a60-101e17f263c8_data.h5ad,https://www.dropbox.com/scl/fi/kbuvlttd8dfmvx1v94fr4/human_Blooda5d95a42-0137-496f-8a60-101e17f263c8_data.h5ad?rlkey=v1ne1dg2gl8b4j6qj3j3ry6fy&st=gy9vb5q6&dl=1 +human,Blood,10000,train,,,train_human_Bloodc7775e88-49bf-4ba2-a03b-93f00447c958_data.h5ad,https://www.dropbox.com/scl/fi/8wq8eaod0xuvgwhsjoapa/human_Bloodc7775e88-49bf-4ba2-a03b-93f00447c958_data.h5ad?rlkey=b6u3b7335l7baricjlgbwthb3&st=cw7mjmx5&dl=1 +human,Blood,10000,train,,,train_human_Blood456e8b9b-f872-488b-871d-94534090a865_data.h5ad,https://www.dropbox.com/scl/fi/7gszhapz281uah6ytc615/human_Blood456e8b9b-f872-488b-871d-94534090a865_data.h5ad?rlkey=28ywz595f00ppjqwg6054tdqj&st=7bxft78n&dl=1 +human,Blood,10000,train,,,train_human_Blood738942eb-ac72-44ff-a64b-8943b5ecd8d9_data.h5ad,https://www.dropbox.com/scl/fi/kgay0bhk4er6qjx96okrz/human_Blood738942eb-ac72-44ff-a64b-8943b5ecd8d9_data.h5ad?rlkey=m5ax0vhx3vh7ylo4pc74tx9ky&st=sbhonz18&dl=1 +human,Heart,10000,train,,,train_human_Heart1c739a3e-c3f5-49d5-98e0-73975e751201_data.h5ad,https://www.dropbox.com/scl/fi/ymqp6iki4vu2ur9jw56fp/human_Heart1c739a3e-c3f5-49d5-98e0-73975e751201_data.h5ad?rlkey=o6cladni7kfsfigvni5hk01n7&st=zcxajdyt&dl=1 +human,Heart,10000,train,,,train_human_Heart4ed927e9-c099-49af-b8ce-a2652d069333_data.h5ad,https://www.dropbox.com/scl/fi/ml4fvp9v9nufot215m9tl/human_Heart4ed927e9-c099-49af-b8ce-a2652d069333_data.h5ad?rlkey=nzfgqj7lb943tvxt2mgtg6o8m&st=4jn8mo66&dl=1 +human,Heart,2834,train,,,train_human_Heart5a11f879-d1ef-458a-910c-9b0bdfca5ebf_data.h5ad,https://www.dropbox.com/scl/fi/w2oe3csvt50riz9afrr1g/human_Heart5a11f879-d1ef-458a-910c-9b0bdfca5ebf_data.h5ad?rlkey=auhxwg79r0xkixttj9f33ho9t&st=0584ksnu&dl=1 +human,Heart,2839,train,,,train_human_Heart83b5e943-a1d5-4164-b3f2-f7a37f01b524_data.h5ad,https://www.dropbox.com/scl/fi/o8vppxwumzh58her9ifxu/human_Heart83b5e943-a1d5-4164-b3f2-f7a37f01b524_data.h5ad?rlkey=iyr5mrhxeisrj5n6pfs2ogdwd&st=vlkpmn65&dl=1 +human,Heart,1089,train,,,train_human_Heart97a17473-e2b1-4f31-a544-44a60773e2dd_data.h5ad,https://www.dropbox.com/scl/fi/x84r3fzkgfcnn8nsnvmyz/human_Heart97a17473-e2b1-4f31-a544-44a60773e2dd_data.h5ad?rlkey=vzv8xknnfawjfzwv635p5cj8l&st=3jjdb83q&dl=1 +human,Heart,10000,train,,,train_human_Heart572f3f3e-d3e4-4d13-8e2b-88215e508481_data.h5ad,https://www.dropbox.com/scl/fi/rjv6hv7f14exz1lbh2n9m/human_Heart572f3f3e-d3e4-4d13-8e2b-88215e508481_data.h5ad?rlkey=fszfqswjpe9aspm30x1js05sb&st=35ij2wom&dl=1 +human,Heart,3961,train,,,train_human_Heart1009f384-b12d-448e-ba9f-1b7d2ecfbb4e_data.h5ad,https://www.dropbox.com/scl/fi/a2mooa1bszno3xh4o6sew/human_Heart1009f384-b12d-448e-ba9f-1b7d2ecfbb4e_data.h5ad?rlkey=k9x23whyta1z0g9org4zdrsmm&st=k1z51tdw&dl=1 +human,Heart,10000,train,,,train_human_Heart1062c0f2-2a44-4cf9-a7c8-b5ed58b4728d_data.h5ad,https://www.dropbox.com/scl/fi/86e8yrjglgo714p02jozm/human_Heart1062c0f2-2a44-4cf9-a7c8-b5ed58b4728d_data.h5ad?rlkey=ff7y5amtc8hovujepsqtvyki6&st=dtsskar4&dl=1 +human,Heart,10000,train,,,train_human_Heart1252c5fb-945f-42d6-b1a8-8a3bd864384b_data.h5ad,https://www.dropbox.com/scl/fi/ulhxkmys6q8cxiucrsc7q/human_Heart1252c5fb-945f-42d6-b1a8-8a3bd864384b_data.h5ad?rlkey=z8lbxq7hevqh6vjozlu9pmfzu&st=wml2yxfx&dl=1 +human,Heart,10000,train,,,train_human_Heart9434b020-de42-43eb-bcc4-542b2be69015_data.h5ad,https://www.dropbox.com/scl/fi/tus9c1k07fh12ggq7s8v4/human_Heart9434b020-de42-43eb-bcc4-542b2be69015_data.h5ad?rlkey=l3qetjv2iedp9be2yi7x7060k&st=sasyq4k0&dl=1 +human,Heart,10000,train,,,train_human_Hearta68b64d8-aee3-4947-81b7-36b8fe5a44d2_data.h5ad,https://www.dropbox.com/scl/fi/ud57pptc2vucgfzbumhi0/human_Hearta68b64d8-aee3-4947-81b7-36b8fe5a44d2_data.h5ad?rlkey=foifku28abrsjmn7fyeo3nzlq&st=2o88drh7&dl=1 +human,Heart,2576,train,,,train_human_Heartbdf69f8d-5a96-4d6f-a9f5-9ee0e33597b7_data.h5ad,https://www.dropbox.com/scl/fi/3yyr268to8d5z2v1ybph5/human_Heartbdf69f8d-5a96-4d6f-a9f5-9ee0e33597b7_data.h5ad?rlkey=tavfun6ztdeuz7gw93r80u3f2&st=lypmrhf9&dl=1 +human,Heart,1067,train,,,train_human_Heartc5d88abe-f23a-45fa-a534-788985e93dad_data.h5ad,https://www.dropbox.com/scl/fi/4t7rimzdbu614qicv7ac1/human_Heartc5d88abe-f23a-45fa-a534-788985e93dad_data.h5ad?rlkey=eih47wtd6txwtchaobnwb13qu&st=3zflcxrk&dl=1 +human,Heart,10000,train,,,train_human_Heartd4e69e01-3ba2-4d6b-a15d-e7048f78f22e_data.h5ad,https://www.dropbox.com/scl/fi/932xsn8bkxeppy4xnuy81/human_Heartd4e69e01-3ba2-4d6b-a15d-e7048f78f22e_data.h5ad?rlkey=yhgjmo6vcbwcfbfpsnnbxc4np&st=p5asp1ad&dl=1 +human,Heart,10000,train,,,train_human_Heartd567b692-c374-4628-a508-8008f6778f22_data.h5ad,https://www.dropbox.com/scl/fi/okl5stq86etyx6zhfaex9/human_Heartd567b692-c374-4628-a508-8008f6778f22_data.h5ad?rlkey=eg9u06l5k0ycw9t4hf9rlz9rh&st=r3henhn9&dl=1 +human,Heart,10000,train,,,train_human_Hearte6a11140-2545-46bc-929e-da243eed2cae_data.h5ad,https://www.dropbox.com/scl/fi/qv88ufwdqb89boz79t4w8/human_Hearte6a11140-2545-46bc-929e-da243eed2cae_data.h5ad?rlkey=s5u32dymnqzpczp67f2vopdxp&st=8u7airt8&dl=1 +human,Heart,10000,train,,,train_human_Heartf15e263b-6544-46cb-a46e-e33ab7ce8347_data.h5ad,https://www.dropbox.com/scl/fi/xddt54xc5bujkkvhql5nv/human_Heartf15e263b-6544-46cb-a46e-e33ab7ce8347_data.h5ad?rlkey=fnlrns7gupn548zfa6g6s11iw&st=42qx454t&dl=1 +human,Heart,3799,train,,,train_human_Heartf75f2ff4-2884-4c2d-b375-70de37a34507_data.h5ad,https://www.dropbox.com/scl/fi/82mmm9drh008r4faduuvd/human_Heartf75f2ff4-2884-4c2d-b375-70de37a34507_data.h5ad?rlkey=u4iwlbm6e6laaht8ey7950fqh&st=v8u040to&dl=1 +human,Heart,10000,train,,,train_human_Heartf7995301-7551-4e1d-8396-ffe3c9497ace_data.h5ad,https://www.dropbox.com/scl/fi/uiufoyquxt0hea9dgf0l2/human_Heartf7995301-7551-4e1d-8396-ffe3c9497ace_data.h5ad?rlkey=7mu54uqnqrbqtuyfxnqdexmc5&st=2k45pou1&dl=1 +human,Heart,10000,train,,,train_human_Heartfa27492b-82ff-4ab7-ac61-0e2b184eee67_data.h5ad,https://www.dropbox.com/scl/fi/kkgg4abyidaylwxkut2bx/human_Heartfa27492b-82ff-4ab7-ac61-0e2b184eee67_data.h5ad?rlkey=77wmk5knn1oenbffwxo9a6zkk&st=bxemfdf6&dl=1 +human,Heart,10000,train,,,train_human_Heart2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Heart)_data.h5ad,https://www.dropbox.com/scl/fi/nxd9awxshy5y4ps6ctsqr/human_Heart2adb1f8a-a6b1-4909-8ee8-484814e2d4bf-Heart-_data.h5ad?rlkey=g7je5vl6kaany80tw8jwsioxr&st=2n66z9yc&dl=1 +human,Heart,10000,train,,,train_human_Heart65badd7a-9262-4fd1-9ce2-eb5dc0ca8039_data.h5ad,https://www.dropbox.com/scl/fi/uxd1yhbc98ayx4f0ap4h8/human_Heart65badd7a-9262-4fd1-9ce2-eb5dc0ca8039_data.h5ad?rlkey=aa7f5rylwxzxyc7ue0efvc1kb&st=0rt0d1lr&dl=1 +human,Heart,10000,train,,,train_human_Heartf7c1c579-2dc0-47e2-ba19-8165c5a0e353_data.h5ad,https://www.dropbox.com/scl/fi/gb98ycqcu24ewonalqjpo/human_Heartf7c1c579-2dc0-47e2-ba19-8165c5a0e353_data.h5ad?rlkey=u8d2ovqkrhptigqmucm7qijde&st=dxhu640r&dl=1 +human,Heart,10000,train,,,train_human_Hearted852810-a003-4386-9846-1638362cee39_data.h5ad,https://www.dropbox.com/scl/fi/mz5jq1ig0zp36w7xmv1pe/human_Hearted852810-a003-4386-9846-1638362cee39_data.h5ad?rlkey=g6gjodg99l1ba0swr678h8kb0&st=hugh3bpt&dl=1 +human,Brain,10000,train,,,train_human_Brain0bc7235a-ae5a-479d-a487-510435377e55_data.h5ad,https://www.dropbox.com/scl/fi/hu35a45qk3b4m2ep17poa/human_Brain0bc7235a-ae5a-479d-a487-510435377e55_data.h5ad?rlkey=zbb9otp1tu6kvlkxsc7absfih&st=p9nwvnjo&dl=1 +human,Brain,10000,train,,,train_human_Brain2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Brain)_data.h5ad,https://www.dropbox.com/scl/fi/f3l26pxi1d6bmtzzvugxr/human_Brain2adb1f8a-a6b1-4909-8ee8-484814e2d4bf-Brain-_data.h5ad?rlkey=qn3hip8pk0be91uyrfvdf78uh&st=rsr9vb0j&dl=1 +human,Brain,10000,train,,,train_human_Brain9c63201d-bfd9-41a8-bbbc-18d947556f3d_data.h5ad,https://www.dropbox.com/scl/fi/8hw6yprqqc3tk7k2g03nj/human_Brain9c63201d-bfd9-41a8-bbbc-18d947556f3d_data.h5ad?rlkey=urxy3hu4omlt2824l2epdsl70&st=dqmdsxac&dl=1 +human,Brain,10000,train,,,train_human_Brain52f18bc3-52d9-487b-bf8f-f0b7aa684b09_data.h5ad,https://www.dropbox.com/scl/fi/hth8if16ri6y64yfabe66/human_Brain52f18bc3-52d9-487b-bf8f-f0b7aa684b09_data.h5ad?rlkey=eiyf474thqawso5ltjn0pnwko&st=54qn18ky&dl=1 +human,Brain,10000,train,,,train_human_Brain56c4912d-2bae-4b64-98f2-af8a84389208_data.h5ad,https://www.dropbox.com/scl/fi/a3te6jw55cv4mujujq4ir/human_Brain56c4912d-2bae-4b64-98f2-af8a84389208_data.h5ad?rlkey=scj4lcv1y00yh7bk18bztl0fz&st=yarlckox&dl=1 +human,Brain,10000,train,,,train_human_Brain43b7e156-65b3-4a7b-8c7a-08528e4b21d0_data.h5ad,https://www.dropbox.com/scl/fi/b9uqvab7lderxnrd8c0e9/human_Brain43b7e156-65b3-4a7b-8c7a-08528e4b21d0_data.h5ad?rlkey=heobzdft1rcl1ttn0wvi9ra5y&st=q0xewgnf&dl=1 +human,Brain,10000,train,,,train_human_Brain07760522-707a-4a1c-8891-dbd1226d6b27_data.h5ad,https://www.dropbox.com/scl/fi/fdg72e3smhtbnen0njt1p/human_Brain07760522-707a-4a1c-8891-dbd1226d6b27_data.h5ad?rlkey=fcus37nuvqvur8qwqhxdayo9r&st=2e00lvxu&dl=1 +human,Brain,10000,train,,,train_human_Brain146216e1-ec30-4fee-a1fb-25defe801e2d_data.h5ad,https://www.dropbox.com/scl/fi/m55bqo60paasb7hbuhvex/human_Brain146216e1-ec30-4fee-a1fb-25defe801e2d_data.h5ad?rlkey=a1zz2xe6lsk20g5nie9c2ft6d&st=100jl011&dl=1 +human,Brain,10000,train,,,train_human_Brain22658f4f-9268-41ad-8828-cc53f4baa9fa_data.h5ad,https://www.dropbox.com/scl/fi/t5vnklfwn8eu2ht5ph4fd/human_Brain22658f4f-9268-41ad-8828-cc53f4baa9fa_data.h5ad?rlkey=latl59ppqnr4bif69xxt92sss&st=yhhuzvrf&dl=1 +human,Brain,10000,train,,,train_human_Brain421e5f54-5de7-425f-b399-34ead0651ce1_data.h5ad,https://www.dropbox.com/scl/fi/wmysnkpfbdjteospe0jjx/human_Brain421e5f54-5de7-425f-b399-34ead0651ce1_data.h5ad?rlkey=xdx6g6cisyi2gfohckjhud46g&st=zxu0jhp7&dl=1 +human,Brain,10000,train,,,train_human_Brain595c9010-99ec-462d-b6a1-2b2fe5407871_data.h5ad,https://www.dropbox.com/scl/fi/598qwju5349fc8z1zuskh/human_Brain595c9010-99ec-462d-b6a1-2b2fe5407871_data.h5ad?rlkey=8848cndanq1bun59yvggbjvnx&st=nnasrgud&dl=1 +human,Brain,10000,train,,,train_human_Brain700aed19-c16e-4ba8-9191-07da098a8626_data.h5ad,https://www.dropbox.com/scl/fi/h4lcjdl04mpgtkuthgc94/human_Brain700aed19-c16e-4ba8-9191-07da098a8626_data.h5ad?rlkey=hi0fk5rxia7shu6m4twky2tay&st=uw6trm86&dl=1 +human,Brain,10000,train,,,train_human_Brain70e4f35b-c98c-45a1-9aa9-2053b07315dd_data.h5ad,https://www.dropbox.com/scl/fi/ubqn57ate29dfuvapx4qi/human_Brain70e4f35b-c98c-45a1-9aa9-2053b07315dd_data.h5ad?rlkey=5p5wnukkq5lb6c8v0s5itcv2j&st=730w6nsz&dl=1 +human,Brain,10000,train,,,train_human_Brain72822932-10f6-466f-baf3-a2c1d89364bc_data.h5ad,https://www.dropbox.com/scl/fi/llmit9a77dkby69p5eki5/human_Brain72822932-10f6-466f-baf3-a2c1d89364bc_data.h5ad?rlkey=o294joyf2yrwi403qll905bak&st=m95dzpp5&dl=1 +human,Brain,10000,train,,,train_human_Brain9372df2d-13d6-4fac-980b-919a5b7eb483_data.h5ad,https://www.dropbox.com/scl/fi/kkgq2ry1nyzqp3aq9mag6/human_Brain9372df2d-13d6-4fac-980b-919a5b7eb483_data.h5ad?rlkey=yek0em9f7cal5bhq4h4xtjnxc&st=x3isnepq&dl=1 +human,Brain,10000,train,,,train_human_Brain94c41723-b2c4-4b59-a49a-64c9b851903e_data.h5ad,https://www.dropbox.com/scl/fi/q6vtn80sf8jpkvte55zpm/human_Brain94c41723-b2c4-4b59-a49a-64c9b851903e_data.h5ad?rlkey=6ca2gf47w5r53rw5y5h5b53e8&st=3wkp779m&dl=1 +human,Brain,10000,train,,,train_human_Brain9813a1d4-d107-459e-9b2e-7687be935f69_data.h5ad,https://www.dropbox.com/scl/fi/nl14mhuuwlq9zmjntot7g/human_Brain9813a1d4-d107-459e-9b2e-7687be935f69_data.h5ad?rlkey=o158zcyq781w4rj71pfsw8yf1&st=ds6kabvk&dl=1 +human,Brain,10000,train,,,train_human_Brainc893ddc3-f25b-45e2-8c9e-155918b4261c_data.h5ad,https://www.dropbox.com/scl/fi/pyphmfixfeyu2wzyr216p/human_Brainc893ddc3-f25b-45e2-8c9e-155918b4261c_data.h5ad?rlkey=sd6su8cmlc4g4k3hixihg1zo9&st=99diymvk&dl=1 +human,Brain,10000,train,,,train_human_Braine8681d74-ac9e-4be5-be14-1cf1bbd54dd7_data.h5ad,https://www.dropbox.com/scl/fi/0v3auavah96csg1f486f2/human_Braine8681d74-ac9e-4be5-be14-1cf1bbd54dd7_data.h5ad?rlkey=72cwgt8wh1421v32l3fsg6mvx&st=3fghbaz3&dl=1 +human,Brain,10000,train,,,train_human_Brain364348b4-bc34-4fe1-a851-60d99e36cafa_data.h5ad,https://www.dropbox.com/scl/fi/ne31m4apt1q90942cvfpy/human_Brain364348b4-bc34-4fe1-a851-60d99e36cafa_data.h5ad?rlkey=46s37qp2qpf8rqwfeef0gw5p2&st=8npktyyr&dl=1 +human,Brain,10000,train,,,train_human_Brain93cb76aa-a84b-4a92-8e6c-66a914e26d4c_data.h5ad,https://www.dropbox.com/scl/fi/g9yrnvpj68nohpq97psoq/human_Brain93cb76aa-a84b-4a92-8e6c-66a914e26d4c_data.h5ad?rlkey=tkqnbytv0yl7v0f0gngml83jq&st=a7lynn7i&dl=1 +human,Blood,6368,train,,,train_human_Bloodfe52003e-1460-4a65-a213-2bb1a508332f_data.h5ad,https://www.dropbox.com/scl/fi/esqgoi7vgwwt9j6apipn3/human_Bloodfe52003e-1460-4a65-a213-2bb1a508332f_data.h5ad?rlkey=i5tw4dsprwonypls9q1sjv6z1&st=rvpv0bx4&dl=1 +human,Blood,10000,train,,,train_human_Bloodc2a461b1-0c15-4047-9fcb-1f966fe55100_data.h5ad,https://www.dropbox.com/scl/fi/2ze4zzjl9ho0yioypet94/human_Bloodc2a461b1-0c15-4047-9fcb-1f966fe55100_data.h5ad?rlkey=4tjvgzj69eqnwqt34y6ykjxx7&st=6eazya61&dl=1 +human,Blood,10000,train,,,train_human_Bloodb0e547f0-462b-4f81-b31b-5b0a5d96f537_data.h5ad,https://www.dropbox.com/scl/fi/ppmitw72imo7hoiqk02uj/human_Bloodb0e547f0-462b-4f81-b31b-5b0a5d96f537_data.h5ad?rlkey=qkvls3xesyu4wdc4f46ayy9wc&st=8wc95ewv&dl=1 +human,Blood,10000,train,,,train_human_Bloodd7d7e89c-c93a-422d-8958-9b4a90b69558_data.h5ad,https://www.dropbox.com/scl/fi/troppy0ouk9w60xx3gucv/human_Bloodd7d7e89c-c93a-422d-8958-9b4a90b69558_data.h5ad?rlkey=vm77ead52n9fy9e4lp9kpt8y3&st=zjdzi0rs&dl=1 +human,Brain,8077,train,,,train_human_Braind5452b83-7c3d-4d7c-ab7a-c7fece7196c5_data.h5ad,https://www.dropbox.com/scl/fi/yqk7qe9qynbysy2qzuymp/human_Braind5452b83-7c3d-4d7c-ab7a-c7fece7196c5_data.h5ad?rlkey=9zbbwyewq97ff9eaermqx8ers&st=j1ordew8&dl=1 +human,Brain,3581,train,,,train_human_Brain774c18c5-efa1-4dc5-9e5e-2c824bab2e34_data.h5ad,https://www.dropbox.com/scl/fi/6jvi5wnl28u4dw6notnpo/human_Brain774c18c5-efa1-4dc5-9e5e-2c824bab2e34_data.h5ad?rlkey=5cmvurxmnv9u2gmigw5cc250s&st=id2kc01n&dl=1 +human,Brain,1318,train,,,train_human_Brain3d044b52-140a-4528-bf0d-a2dbef9e1f40_data.h5ad,https://www.dropbox.com/scl/fi/ocowzkh5d6jlo7stam48h/human_Brain3d044b52-140a-4528-bf0d-a2dbef9e1f40_data.h5ad?rlkey=rjkcpggc3btgsti8sx0tychif&st=z79g3sv1&dl=1 +human,Brain,6877,train,,,train_human_Brainf6d9f2ad-5ec7-4d53-b7f0-ceb0e7bcd181_data.h5ad,https://www.dropbox.com/scl/fi/jem4d9yaa7ovg4ahhxken/human_Brainf6d9f2ad-5ec7-4d53-b7f0-ceb0e7bcd181_data.h5ad?rlkey=xjzehuoucxjamouyw7tfyo54h&st=0ti1j2kq&dl=1 +human,Brain,5070,train,,,train_human_Brainf64e1be1-de15-4d27-8da4-82225cd4c035_data.h5ad,https://www.dropbox.com/scl/fi/xutjy05pxtqlt2nyk35kp/human_Brainf64e1be1-de15-4d27-8da4-82225cd4c035_data.h5ad?rlkey=34ahhk9g9cxrugt8canfmfl3u&st=ia53zjuo&dl=1 +human,Brain,6044,train,,,train_human_Brain576f193c-75d0-4a11-bd25-8676587e6dc2_data.h5ad,https://www.dropbox.com/scl/fi/e4r8d8nfoogzzkeleocle/human_Brain576f193c-75d0-4a11-bd25-8676587e6dc2_data.h5ad?rlkey=oyici6185mp45rwahx870wiwf&st=93274l53&dl=1 +human,Brain,8573,train,,,train_human_Brained11cc3e-2947-407c-883c-c53b043917c3_data.h5ad,https://www.dropbox.com/scl/fi/06j981vjht86i5pmy7oqy/human_Brained11cc3e-2947-407c-883c-c53b043917c3_data.h5ad?rlkey=c93stddc1kylxyrgme7448sva&st=pwxnqclk&dl=1 +human,Intestine,10000,train,,,train_human_Intestine2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Intestine)_data.h5ad,https://www.dropbox.com/scl/fi/iofy51et57gmuayf8rcg4/human_Intestine2adb1f8a-a6b1-4909-8ee8-484814e2d4bf-Intestine-_data.h5ad?rlkey=u6j55oe6rj4nuocjz3cag56uw&st=nay2m851&dl=1 +human,Intestine,10000,train,,,train_human_Intestinef7c1c579-2dc0-47e2-ba19-8165c5a0e353(Intestine)_data.h5ad,https://www.dropbox.com/scl/fi/42brjtap331l6a04ev85i/human_Intestinef7c1c579-2dc0-47e2-ba19-8165c5a0e353-Intestine-_data.h5ad?rlkey=10zmxwpvtnzkz77embs997lw2&st=odk1wce6&dl=1 +human,Intestine,6444,train,,,train_human_Intestinee40c6272-af77-4a10-9385-62a398884f27_data.h5ad,https://www.dropbox.com/scl/fi/6rd98oo0z68dmqpuhn7ap/human_Intestinee40c6272-af77-4a10-9385-62a398884f27_data.h5ad?rlkey=v6zz40z2f73h4oivfx67y7cgr&dl=1 +human,Intestine,2720,train,,,train_human_Intestine6a270451-b4d9-43e0-aa89-e33aac1ac74b_data.h5ad,https://www.dropbox.com/scl/fi/u57hnsh6nv88r8nnrwfnl/human_Intestine6a270451-b4d9-43e0-aa89-e33aac1ac74b_data.h5ad?rlkey=suzpw1ikma8kpr3uxkv7nosue&dl=1 +human,Intestine,10000,train,,,train_human_Intestinefa27492b-82ff-4ab7-ac61-0e2b184eee67(Intestine)_data.h5ad,https://www.dropbox.com/scl/fi/zygwfo73ukmc5mt260ni8/human_Intestinefa27492b-82ff-4ab7-ac61-0e2b184eee67-Intestine-_data.h5ad?rlkey=48nu6ho30540pirxxznzfdgs1&st=u1nnlhbw&dl=1 +human,Intestine,7443,train,,,train_human_Intestined6dfdef1-406d-4efb-808c-3c5eddbfe0cb_data.h5ad,https://www.dropbox.com/scl/fi/i9271g8nx3kmxi6rb12iv/human_Intestined6dfdef1-406d-4efb-808c-3c5eddbfe0cb_data.h5ad?rlkey=2vfdh7k5amnul3d786g2zmr6g&dl=1 +human,Kidney,10000,train,,,train_human_Kidneya51c6ece-5731-4128-8c1e-5060e80c69e4_data.h5ad,https://www.dropbox.com/scl/fi/3zfgu6g7mzv2v7f7qpwvq/human_Kidneya51c6ece-5731-4128-8c1e-5060e80c69e4_data.h5ad?rlkey=euso7cvuwcpauk21o3yme3959&dl=1 +human,Kidney,10000,train,,,train_human_Kidneyfa27492b-82ff-4ab7-ac61-0e2b184eee67(Kidney)_data.h5ad,https://www.dropbox.com/scl/fi/cqtulramrepe6rzvmjvh7/human_Kidneyfa27492b-82ff-4ab7-ac61-0e2b184eee67-Kidney-_data.h5ad?rlkey=qe991uhuf6m3o0yabjev1gepr&st=jwhicxrp&dl=1 +human,Kidney,10000,train,,,train_human_Kidneyf7c1c579-2dc0-47e2-ba19-8165c5a0e353(Kidney)_data.h5ad,https://www.dropbox.com/scl/fi/krhe97shrnuofdlthnopj/human_Kidneyf7c1c579-2dc0-47e2-ba19-8165c5a0e353-Kidney-_data.h5ad?rlkey=0lft0ebfaz4e0rzo1xpotmt79&st=7ie3uc6i&dl=1 +human,Kidney,10000,train,,,train_human_Kidney105c7dad-0468-4628-a5be-2bb42c6a8ae4_data.h5ad,https://www.dropbox.com/scl/fi/mhr92khp2j4ydit9mjiky/human_Kidney105c7dad-0468-4628-a5be-2bb42c6a8ae4_data.h5ad?rlkey=9eg9ota05td575buw4vh6qdjd&dl=1 +human,Kidney,10000,train,,,train_human_Kidney5af90777-6760-4003-9dba-8f945fec6fdf_data.h5ad,https://www.dropbox.com/scl/fi/29d15brkbpsx14tr9qt0w/human_Kidney5af90777-6760-4003-9dba-8f945fec6fdf_data.h5ad?rlkey=sxzcd0btog8nhm13sf36r0q78&dl=1 +human,Kidney,10000,train,,,train_human_Kidneydea717d4-7bc0-4e46-950f-fd7e1cc8df7d_data.h5ad,https://www.dropbox.com/scl/fi/gkqbvzh99bhegjar2b9q0/human_Kidneydea717d4-7bc0-4e46-950f-fd7e1cc8df7d_data.h5ad?rlkey=emfdlopj8v08yqqp9c82n16je&dl=1 +human,Kidney,10000,train,,,train_human_Kidney9df60c57-fdf3-4e93-828e-fe9303f20438_data.h5ad,https://www.dropbox.com/scl/fi/0uc53tlnh0c38kjtmoa76/human_Kidney9df60c57-fdf3-4e93-828e-fe9303f20438_data.h5ad?rlkey=633zoidj6app2k616pue50d7u&dl=1 +human,Kidney,10000,train,,,train_human_Kidneybe39785b-67cb-4177-be19-a40ee3747e45_data.h5ad,https://www.dropbox.com/scl/fi/uo55loqew4nsh2yntiec6/human_Kidneybe39785b-67cb-4177-be19-a40ee3747e45_data.h5ad?rlkey=z2qc037d8g6nc3rbgkchnsv1v&dl=1 +human,Kidney,10000,train,,,train_human_Kidney32b9bdce-2481-4c85-ba1b-6ad5fcea844c_data.h5ad,https://www.dropbox.com/scl/fi/ugqjbf78tlc5g55dygysz/human_Kidney32b9bdce-2481-4c85-ba1b-6ad5fcea844c_data.h5ad?rlkey=h0d4nxyftqt9ktsh7s1tn623e&dl=1 +human,Kidney,10000,train,,,train_human_Kidney0b4a15a7-4e9e-4555-9733-2423e5c66469_data.h5ad,https://www.dropbox.com/scl/fi/aql02yzq6rosod8071qlu/human_Kidney0b4a15a7-4e9e-4555-9733-2423e5c66469_data.h5ad?rlkey=0oaq4962yw2642wa7mlxpkzab&dl=1 +human,Kidney,9641,train,,,train_human_Kidney53d208b0-2cfd-4366-9866-c3c6114081bc_data.h5ad,https://www.dropbox.com/scl/fi/bqnrkyjzmbppgnej9l1qq/human_Kidney53d208b0-2cfd-4366-9866-c3c6114081bc_data.h5ad?rlkey=co1531kyzzbghf4bvcqgg5rjn&dl=1 +human,Kidney,86,train,,,train_human_Kidney6a30bf44-c490-41ac-965b-0bb58432b10a_data.h5ad,https://www.dropbox.com/scl/fi/8vs3bwrk84shbekth3the/human_Kidney6a30bf44-c490-41ac-965b-0bb58432b10a_data.h5ad?rlkey=kbcz4p48v0rhu18hb8r2y47hq&dl=1 +human,Kidney,6044,train,,,train_human_Kidneyf801b7a9-80a6-4d09-9161-71474deb58ae_data.h5ad,https://www.dropbox.com/scl/fi/60uxtvicy2n8srhqfmub3/human_Kidneyf801b7a9-80a6-4d09-9161-71474deb58ae_data.h5ad?rlkey=x0im2udw8litcyzcsywipm49u&dl=1 +human,Kidney,7802,train,,,train_human_Kidney20d87640-4be8-487f-93d4-dce38378d00f_data.h5ad,https://www.dropbox.com/scl/fi/xmzomvt0c8bza3fy8me0p/human_Kidney20d87640-4be8-487f-93d4-dce38378d00f_data.h5ad?rlkey=iqzword5254z5rujjdey1u8hc&dl=1 +human,Kidney,6847,train,,,train_human_Kidney2d31c0ca-0233-41ce-bd1a-05aa8404b073_data.h5ad,https://www.dropbox.com/scl/fi/rhngz2alde48jotpy5c5v/human_Kidney2d31c0ca-0233-41ce-bd1a-05aa8404b073_data.h5ad?rlkey=u0x4dsnt569wq07l3h1rqjzum&dl=1 +human,Kidney,10000,train,,,train_human_Kidneyfd072bc3-2dfb-46f8-b4e3-467cb3223182_data.h5ad,https://www.dropbox.com/scl/fi/ybml7y2bth0qjnv3x1ieg/human_Kidneyfd072bc3-2dfb-46f8-b4e3-467cb3223182_data.h5ad?rlkey=qkjgdqttk3s10ht54109a4cad&dl=1 +human,Kidney,10000,train,,,train_human_Kidney2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Kidney)_data.h5ad,https://www.dropbox.com/scl/fi/553s0af5q2nibafj4nkux/human_Kidney2adb1f8a-a6b1-4909-8ee8-484814e2d4bf-Kidney-_data.h5ad?rlkey=p85qlsjixsuuutgwnms3w4y30&st=igznlz90&dl=1 +human,Kidney,10000,train,,,train_human_Kidney0b75c598-0893-4216-afe8-5414cab7739d_data.h5ad,https://www.dropbox.com/scl/fi/feklth6jvnc5qqwvgaydy/human_Kidney0b75c598-0893-4216-afe8-5414cab7739d_data.h5ad?rlkey=28vpy2m90lnri9aekfthrsvr1&dl=1 +human,Kidney,5848,train,,,train_human_Kidney2aa1c93c-4ef3-4e9a-98e7-0bd37933953c_data.h5ad,https://www.dropbox.com/scl/fi/1jq1wrqo1rcl041antcm8/human_Kidney2aa1c93c-4ef3-4e9a-98e7-0bd37933953c_data.h5ad?rlkey=ssgfsiobqfah3pxgqnrsaff6l&dl=1 +human,Kidney,9641,train,,,train_human_Kidney2423ce2c-3149-4cca-a2ff-cf682ea29b5f_data.h5ad,https://www.dropbox.com/scl/fi/o2cnntkrd5j6coeqehv8b/human_Kidney2423ce2c-3149-4cca-a2ff-cf682ea29b5f_data.h5ad?rlkey=5tbupfd3cdvqzy2rix6scvwzu&dl=1 +human,Lung,10000,train,,,train_human_Lungfa27492b-82ff-4ab7-ac61-0e2b184eee67(Lung)_data.h5ad,https://www.dropbox.com/scl/fi/w0n6axa32nej87tw4rk49/human_Lungfa27492b-82ff-4ab7-ac61-0e2b184eee67_data-Lung.h5ad?rlkey=8lgoi54y9wtxtfwpmnumpmzex&st=1ofxszp7&dl=1 +human,Lung,10000,train,,,train_human_Lungf72958f5-7f42-4ebb-98da-445b0c6de516_data.h5ad,https://www.dropbox.com/scl/fi/dqhei15s96dg3q8bdd31b/human_Lungf72958f5-7f42-4ebb-98da-445b0c6de516_data.h5ad?rlkey=ykpxbucys97t327fwehflkoa2&dl=1 +human,Lung,10000,train,,,train_human_Lung3de0ad6d-4378-4f62-b37b-ec0b75a50d94_data.h5ad,https://www.dropbox.com/scl/fi/pwhyse079mo9radk2xzuw/human_Lung3de0ad6d-4378-4f62-b37b-ec0b75a50d94_data.h5ad?rlkey=t60bp7w5mf3k877q1i430oc14&dl=1 +human,Lung,10000,train,,,train_human_Lung1e5bd3b8-6a0e-4959-8d69-cafed30fe814_data.h5ad,https://www.dropbox.com/scl/fi/w2r13kqrkzdxecvhizm0i/human_Lung1e5bd3b8-6a0e-4959-8d69-cafed30fe814_data.h5ad?rlkey=6s4wbv2ii1d8ged5l8s8lwt6l&dl=1 +human,Lung,10000,train,,,train_human_Lung4ed927e9-c099-49af-b8ce-a2652d069333(Lung)_data.h5ad,https://www.dropbox.com/scl/fi/ubcw0cyn5uvaq034ysgxl/human_Lung4ed927e9-c099-49af-b8ce-a2652d069333-Lung-_data.h5ad?rlkey=m57pb8bx4936fnao2yyljqdgz&st=hz86nc4q&dl=1 +human,Lung,10000,train,,,train_human_Lung01209dce-3575-4bed-b1df-129f57fbc031(Lung)_data.h5ad,https://www.dropbox.com/scl/fi/0vqe7wmb0afoubwnb5srb/human_Lung01209dce-3575-4bed-b1df-129f57fbc031-Lung-_data.h5ad?rlkey=7necb5o9afgpnppsj74tga5y2&st=1a1tjz2c&dl=1 +human,Lung,10000,train,,,train_human_Lungc5d88abe-f23a-45fa-a534-788985e93dad(Lung)_data.h5ad,https://www.dropbox.com/scl/fi/sbe6h2v5dijlu36qd6nyw/human_Lungc5d88abe-f23a-45fa-a534-788985e93dad-Lung-_data.h5ad?rlkey=gunxweprd7r8e0xlk9mo2kkv3&st=yn1er34y&dl=1 +human,Lung,10000,train,,,train_human_Lung9968be68-ab65-4a38-9e1a-c9b6abece194_data.h5ad,https://www.dropbox.com/scl/fi/mz6umlbnjoxynhqklwyxg/human_Lung9968be68-ab65-4a38-9e1a-c9b6abece194_data.h5ad?rlkey=upom03ch71gebjvxq15x59gk9&dl=1 +human,Lung,10000,train,,,train_human_Lung1e6a6ef9-7ec9-4c90-bbfb-2ad3c3165fd1_data.h5ad,https://www.dropbox.com/scl/fi/b2e6gr542wah0t5xtgshh/human_Lung1e6a6ef9-7ec9-4c90-bbfb-2ad3c3165fd1_data.h5ad?rlkey=7pkq1kh7wz6z0qzj4wdj94i79&dl=1 +human,Lung,10000,train,,,train_human_Lung486486d4-9462-43e5-9249-eb43fa5a49a6_data.h5ad,https://www.dropbox.com/scl/fi/ymmdfevzihlcyjosugyuq/human_Lung486486d4-9462-43e5-9249-eb43fa5a49a6_data.h5ad?rlkey=71rly1fkb21yl8gxy8af42ke7&dl=1 +human,Lung,4138,train,,,train_human_Lung7b3368a5-c1a0-4973-9e75-d95b4150c7da_data.h5ad,https://www.dropbox.com/scl/fi/kkfqus7bbbc5fyammhvs6/human_Lung7b3368a5-c1a0-4973-9e75-d95b4150c7da_data.h5ad?rlkey=7pi96515hn1wp6vdb2mgx5wke&dl=1 +human,Lung,8657,train,,,train_human_Lunge04daea4-4412-45b5-989e-76a9be070a89_data.h5ad,https://www.dropbox.com/scl/fi/3yi17ckqej50wbvrhrmev/human_Lunge04daea4-4412-45b5-989e-76a9be070a89_data.h5ad?rlkey=dhvki1bayogmxfvwbgdmr63m0&dl=1 +human,Lung,9784,train,,,train_human_Lunge9175006-8978-4417-939f-819855eab80e_data.h5ad,https://www.dropbox.com/scl/fi/1n3ztjbo8v7pksbwocwvt/human_Lunge9175006-8978-4417-939f-819855eab80e_data.h5ad?rlkey=x7mhr3hqee4yon8iiqncjxzlv&dl=1 +human,Lung,6947,train,,,train_human_Lung0ba16f4b-cb87-4fa3-9363-19fc51eec6e7_data.h5ad,https://www.dropbox.com/scl/fi/u1l3vw5jfjzo5j438hns0/human_Lung0ba16f4b-cb87-4fa3-9363-19fc51eec6e7_data.h5ad?rlkey=bdrqcl1rnqj3ckzae2nivdryk&dl=1 +human,Lung,1135,train,,,train_human_Lunga68b64d8-aee3-4947-81b7-36b8fe5a44d2(Lung)_data.h5ad,https://www.dropbox.com/scl/fi/wzajeyqibto1nmg6lcnnu/human_Lunga68b64d8-aee3-4947-81b7-36b8fe5a44d2-Lung-_data.h5ad?rlkey=yaj6fw3lmf4gj2om9myv2xqe2&st=vsw5mlb2&dl=1 +human,Lung,10000,train,,,train_human_Lung8c42cfd0-0b0a-46d5-910c-fc833d83c45e_data.h5ad,https://www.dropbox.com/scl/fi/0octhu7p45vhm141xpxho/human_Lung8c42cfd0-0b0a-46d5-910c-fc833d83c45e_data.h5ad?rlkey=f2god56i85fy7kbicd3omlcrr&dl=1 +human,Lung,10000,train,,,train_human_Lung2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Lung)_data.h5ad,https://www.dropbox.com/scl/fi/h943ko4tvioc5nbf74xh4/human_Lung2adb1f8a-a6b1-4909-8ee8-484814e2d4bf-Lung-_data.h5ad?rlkey=8tr5zd09f5w6bh81do2plszem&st=ut604b1h&dl=1 +human,Lung,10000,train,,,train_human_Lungd8da613f-e681-4c69-b463-e94f5e66847f_data.h5ad,https://www.dropbox.com/scl/fi/87y1haxwnvw18ip34fuc3/human_Lungd8da613f-e681-4c69-b463-e94f5e66847f_data.h5ad?rlkey=zhxl8bv8ttize8x0iomrln7bu&dl=1 +human,Lung,9096,train,,,train_human_Lung4023a2bc-6325-47db-bfdf-9639e91042c2_data.h5ad,https://www.dropbox.com/scl/fi/5lyw275vtgivn93cvryho/human_Lung4023a2bc-6325-47db-bfdf-9639e91042c2_data.h5ad?rlkey=0bbi53hwtg0bpche9zmsbe3bb&dl=1 +human,Lung,329,train,,,train_human_Lung71be997d-ff75-41b9-8a9f-1288c865f921(Lung)_data.h5ad,https://www.dropbox.com/scl/fi/322l1c9u9yw96m5jcrgx2/human_Lung71be997d-ff75-41b9-8a9f-1288c865f921-Lung-_data.h5ad?rlkey=no8s8y76yfh0h5rj2oycto9e4&st=e1xgn8ys&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreas53d208b0-2cfd-4366-9866-c3c6114081bc(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/isf2fm5xy6ymlxmy28j42/human_Pancreas53d208b0-2cfd-4366-9866-c3c6114081bc-Pancreas-_data.h5ad?rlkey=sr9rmdejoqevjl7nfy5eieg1h&st=4uvf8ks3&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreas78f10833-3e61-4fad-96c9-4bbd4f14bdfa_data.h5ad,https://www.dropbox.com/scl/fi/6euec8e6la5lb536eca9v/human_Pancreas78f10833-3e61-4fad-96c9-4bbd4f14bdfa_data.h5ad?rlkey=h048sako37cm7fldz0qyanbbt&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreasf7c1c579-2dc0-47e2-ba19-8165c5a0e353(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/13dwwcqh8uxne0fkv1nec/human_Pancreasf7c1c579-2dc0-47e2-ba19-8165c5a0e353-Pancreas-_data.h5ad?rlkey=71velvjv1y9xp433ite74lc4o&st=2p2908ig&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreas37b21763-7f0f-41ae-9001-60bad6e2841d_data.h5ad,https://www.dropbox.com/scl/fi/4saarn2fj0p9m1wz31oqm/human_Pancreas37b21763-7f0f-41ae-9001-60bad6e2841d_data.h5ad?rlkey=at8y4ydgoldzxo45dwd8r5q63&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreas9c4c8515-8f82-4c72-b0c6-f87647b00bbe_data.h5ad,https://www.dropbox.com/scl/fi/xie7wdjl99rijwubmkm8v/human_Pancreas9c4c8515-8f82-4c72-b0c6-f87647b00bbe_data.h5ad?rlkey=ev0t2j0oug6jn5lx3217nfilv&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreasfa27492b-82ff-4ab7-ac61-0e2b184eee67(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/m57p32xedb57iy039t2u7/human_Pancreasfa27492b-82ff-4ab7-ac61-0e2b184eee67-Pancreas-_data.h5ad?rlkey=biux7hptrp8dkiu4bt5xsibdh&st=aryynwxa&dl=1 +human,Pancreas,2126,train,,,train_human_Pancreasb07e5164-baf6-43d2-bdba-5a249d0da879_data.h5ad,https://www.dropbox.com/scl/fi/eklbb3ecg87j4ioh7j3yj/human_Pancreasb07e5164-baf6-43d2-bdba-5a249d0da879_data.h5ad?rlkey=d4rjld6ngijy8ozavipf62k7j&dl=1 +human,Pancreas,2742,train,,,train_human_Pancreasc5d88abe-f23a-45fa-a534-788985e93dad(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/wkmrwsu12z50p10knvhij/human_Pancreasc5d88abe-f23a-45fa-a534-788985e93dad-Pancreas-_data.h5ad?rlkey=k4uaaq8dj1glvwjtw7dguhffu&st=832t3phu&dl=1 +human,Pancreas,440,train,,,train_human_Pancreasa68b64d8-aee3-4947-81b7-36b8fe5a44d2(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/96fmfcse1tkek9fmt3l9i/human_Pancreasa68b64d8-aee3-4947-81b7-36b8fe5a44d2-Pancreas-_data.h5ad?rlkey=iblncgxaczniac0tdhwluv3hd&st=2puzd9so&dl=1 +human,Pancreas,2100,train,,,train_human_Pancreas5a11f879-d1ef-458a-910c-9b0bdfca5ebf(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/l437mlea7j4kndeuqmgfc/human_Pancreas5a11f879-d1ef-458a-910c-9b0bdfca5ebf-Pancreas-_data.h5ad?rlkey=hf9cp43iokqzr3zkt7xhji46o&st=f88xgl62&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreas3294d050-6eeb-4a00-b24c-71aacc9b777f_data.h5ad,https://www.dropbox.com/scl/fi/vu8iqocybwv1ntyfvniq0/human_Pancreas3294d050-6eeb-4a00-b24c-71aacc9b777f_data.h5ad?rlkey=t8kg0khgxloxvppl8n5yck5qw&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreas2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/1ohvymmbhbnuxztcg073v/human_Pancreas2adb1f8a-a6b1-4909-8ee8-484814e2d4bf-Pancreas-_data.h5ad?rlkey=4wqv2ep9tw0962rk3wit5qf1l&st=47i7q514&dl=1 +human,Pancreas,10000,train,,,train_human_Pancreasff45e623-7f5f-46e3-b47d-56be0341f66b_data.h5ad,https://www.dropbox.com/scl/fi/zg4zyy9g3ana3aozo8wpx/human_Pancreasff45e623-7f5f-46e3-b47d-56be0341f66b_data.h5ad?rlkey=os9h57ravoaw8dg4mav9qahxm&dl=1 +human,Pancreas,2544,train,,,train_human_Pancreas66d15835-5dc8-4e96-b0eb-f48971cb65e8_data.h5ad,https://www.dropbox.com/scl/fi/p2zo6qt4j0hq2xtd8yudn/human_Pancreas66d15835-5dc8-4e96-b0eb-f48971cb65e8_data.h5ad?rlkey=hum53j5mvk3vs3ybqwe0fb2r1&dl=1 +human,Pancreas,8215,train,,,train_human_Pancreas97a17473-e2b1-4f31-a544-44a60773e2dd(Pancreas)_data.h5ad,https://www.dropbox.com/scl/fi/43r5btoo1z1r43xwlg1st/human_Pancreas97a17473-e2b1-4f31-a544-44a60773e2dd-Pancreas-_data.h5ad?rlkey=2zlbl33carcm5xsyp9dbazn84&st=hhpl86bj&dl=1 diff --git a/dance/modules/multi_modality/joint_embedding/dcca.py b/dance/modules/multi_modality/joint_embedding/dcca.py index b5356ada..bb6d9a69 100644 --- a/dance/modules/multi_modality/joint_embedding/dcca.py +++ b/dance/modules/multi_modality/joint_embedding/dcca.py @@ -11,6 +11,7 @@ import collections import math import os +import sys import time import warnings from collections import OrderedDict @@ -385,7 +386,7 @@ def fit(self, train_loader, test_loader, total_loader, model_pre, args, criterio train_loss_list = [] reco_epoch_test = 0 - test_like_max = 100000 + test_like_max = sys.maxsize flag_break = 0 patience_epoch = 0 @@ -394,7 +395,7 @@ def fit(self, train_loader, test_loader, total_loader, model_pre, args, criterio model_pre.eval() start = time.time() - + best_dict = None for epoch in range(1, args.max_epoch + 1): self.train() @@ -636,7 +637,7 @@ def fit(self, train_loader, test_loader, total_loader, model_pre, args, criterio break duration = time.time() - start - self.load_state_dict(best_dict) + self.load_state_dict(best_dict if best_dict is not None else self.state_dict()) print('Finish training, total time is: ' + str(duration) + 's') self.eval() diff --git a/dance/modules/multi_modality/joint_embedding/scmogcn.py b/dance/modules/multi_modality/joint_embedding/scmogcn.py index f0567293..a5fd4bd0 100644 --- a/dance/modules/multi_modality/joint_embedding/scmogcn.py +++ b/dance/modules/multi_modality/joint_embedding/scmogcn.py @@ -116,7 +116,7 @@ def fit(self, g_mod1, g_mod2, train_size, cell_type, batch_label, phase_score): Bipartite expression feature graph for modality 1. g_mod2 : dgl.DGLGraph Bipartite expression feature graph for modality 2. - train_size : int + train_size : int or array_like Number of training samples. labels : torch.Tensor Labels for training samples. diff --git a/dance/modules/multi_modality/joint_embedding/scmvae.py b/dance/modules/multi_modality/joint_embedding/scmvae.py index 3905f2fe..0173ea39 100644 --- a/dance/modules/multi_modality/joint_embedding/scmvae.py +++ b/dance/modules/multi_modality/joint_embedding/scmvae.py @@ -369,7 +369,7 @@ def _inference(self, X1=None, X2=None): if X1 is not None: if self.log_variational: - X1_ = torch.log(X1_ + 1) + X1_ = torch.log(torch.clamp(X1_, min=1e-7) + 1) mean_l, logvar_l, library = self.X1_encoder_l(X1_) @@ -380,7 +380,8 @@ def _inference(self, X1=None, X2=None): if self.Type == 'ZINB': if self.log_variational: - X2_ = torch.log(X2_ + 1) + # X2_ = torch.log(X2_ + 1) + X2_ = torch.log(torch.clamp(X2_, min=1e-7) + 1) mean_l2, logvar_l2, library2 = self.X2_encoder_l(X2_) means, logvar = self._encode_modalities(X1_, X2_) diff --git a/dance/pipeline.py b/dance/pipeline.py index d831ab10..aa4a0c00 100644 --- a/dance/pipeline.py +++ b/dance/pipeline.py @@ -8,6 +8,7 @@ from operator import mul from pprint import pformat +import omegaconf import pandas as pd from omegaconf import DictConfig, OmegaConf @@ -793,6 +794,14 @@ def _params_search_space(self) -> Dict[str, Dict[str, Optional[Union[str, float] def wandb_sweep_config(self) -> Dict[str, Any]: if self.wandb_config is None: raise ValueError("wandb config not specified in the raw config.") + if "run_kwargs" in self.config: + return { + **self.wandb_config, "parameters": { + "run_kwargs": { + "values": omegaconf.OmegaConf.to_object(self.config.run_kwargs) + } + } + } return {**self.wandb_config, "parameters": self.search_space()} def wandb_sweep(self) -> Tuple[str, str, str]: @@ -807,7 +816,7 @@ def wandb_sweep(self) -> Tuple[str, str, str]: f"'entity' and 'project': {wandb_entity=!r}, {wandb_project=!r}") sweep_config = self.wandb_sweep_config() - logger.info(f"Sweep config:\n{pformat(sweep_config)}") + # logger.info(f"Sweep config:\n{pformat(sweep_config)}") wandb_sweep_id = wandb.sweep(sweep=sweep_config, entity=wandb_entity, project=wandb_project) logger.info(Color("blue")(f"\n\n\t[*] Sweep ID: {wandb_sweep_id}\n")) @@ -1032,7 +1041,9 @@ def get_step3_yaml(conf_save_path="config_yamls/params/", conf_load_path="step3_ conf = OmegaConf.load(conf_load_path) pipeline_top_k = default(step2_pipeline_planer.config.pipeline_tuning_top_k, DEFAULT_PIPELINE_TUNING_TOP_K) result = pd.read_csv(result_load_path).sort_values(by=metric, ascending=ascending).head(pipeline_top_k) - columns = sorted([col for col in result.columns if col.startswith("pipeline")]) + columns = sorted( + [col for col in result.columns if (col.startswith("pipeline") or col.startswith("run_kwargs_pipeline"))], + key=lambda x: float(x.split('.')[1])) pipeline_names = result.loc[:, columns].values count = 0 for row in pipeline_names: @@ -1041,11 +1052,12 @@ def get_step3_yaml(conf_save_path="config_yamls/params/", conf_load_path="step3_ for x in row: for k in conf.pipeline: if k["target"] == x: - pipeline.append(k) + pipeline.append(deepcopy(k)) for i, f in zip(required_indexes, required_funs): for k in step2_pipeline_planer.config.pipeline: if "target" in k and k["target"] == f: - pipeline.insert(i, k) + pipeline.insert(i, deepcopy(k)) + break for p1 in step2_pipeline_planer.config.pipeline: if "step3_frozen" in p1 and p1["step3_frozen"]: for p2 in pipeline: @@ -1056,6 +1068,16 @@ def get_step3_yaml(conf_save_path="config_yamls/params/", conf_load_path="step3_ for target, d_p in p1.default_params.items(): if target == p2["target"]: p2["params"] = d_p + #The order is wrong, refer to _sanitize_pipeline for modification TODO use test to check + step2_pipeline = step2_pipeline_planer.config.pipeline + # step2_pipeline=sorted(step2_pipeline_planer.config.pipeline,key=lambda x: float(x.split('.')[1])) + for p1, p2 in zip(step2_pipeline, pipeline): #need order + if "params" in p1: + p2.params = p1.params + # for key, value in p1.params.items(): + # if "params" not in p2: + # p2.params = {} + # p2.params[key] = value temp_conf = conf.copy() temp_conf.pipeline = pipeline temp_conf.wandb = step2_pipeline_planer.config.wandb @@ -1086,9 +1108,9 @@ def run_step3(root_path, evaluate_pipeline, step2_pipeline_planer: PipelinePlane step3_k = default(step2_pipeline_planer.config.parameter_tuning_freq_n, DEFAULT_PARAMETER_TUNING_FREQ_N) # Skip some of the already run step3 because in pandas, when you sort columns with exactly the same values, the results are not random. # Instead, pandas preserves the order of the original data. So we can skip it without causing any impact. - step3_start_k = default(step2_pipeline_planer.config.step3_start_k, 0) + step3_start_k = step2_pipeline_planer.config.step3_start_k if "step3_start_k" in step2_pipeline_planer.config else 0 #Some sweep_ids of step3 that have already been run - step3_sweep_ids = step2_pipeline_planer.config.step3_sweep_ids + step3_sweep_ids = step2_pipeline_planer.config.step3_sweep_ids if "step3_sweep_ids" in step2_pipeline_planer.config else None step3_sweep_ids = [None] * (pipeline_top_k - step3_start_k) if step3_sweep_ids is None else ( step3_sweep_ids + [None] * (pipeline_top_k - step3_start_k - len(step3_sweep_ids))) diff --git a/dance/settings.py b/dance/settings.py index df7846cb..0fdbb713 100644 --- a/dance/settings.py +++ b/dance/settings.py @@ -47,7 +47,10 @@ def change_log_level(name: str = "dance", /, *, level: Union[str, int]): DANCEDIR = Path(__file__).resolve().parents[1] DANCEPKGDIR = DANCEDIR / "dance" METADIR = DANCEPKGDIR / "metadata" - +ATLASDIR = DANCEDIR / "examples/atlas" +SIMILARITYDIR = ATLASDIR / "sc_similarity_examples" +entity = "xzy11632" +project = "dance-dev" __all__ = [ "change_log_level", ] diff --git a/dance/transforms/cell_feature.py b/dance/transforms/cell_feature.py index 465a12b0..2af1c3a6 100644 --- a/dance/transforms/cell_feature.py +++ b/dance/transforms/cell_feature.py @@ -1,6 +1,6 @@ import numpy as np import pandas as pd -from sklearn.decomposition import PCA, TruncatedSVD +from sklearn.decomposition import PCA, SparsePCA, TruncatedSVD from sklearn.random_projection import GaussianRandomProjection from dance.registry import register_preprocessor @@ -8,9 +8,11 @@ from dance.typing import Optional, Union from dance.utils.matrix import normalize from dance.utils.status import deprecated +from dance.utils.wrappers import add_mod_and_transform @register_preprocessor("feature", "cell") +@add_mod_and_transform class WeightedFeaturePCA(BaseTransform): """Compute the weighted gene PCA as cell features. @@ -66,6 +68,7 @@ def __call__(self, data): @register_preprocessor("feature", "cell") +@add_mod_and_transform class WeightedFeatureSVD(BaseTransform): """Compute the weighted gene SVD as cell features. @@ -127,6 +130,7 @@ def __call__(self, data): @register_preprocessor("feature", "cell") +@add_mod_and_transform class CellPCA(BaseTransform): """Reduce cell feature matrix with PCA. @@ -145,10 +149,9 @@ def __init__(self, n_components: Union[float, int] = 400, *, channel: Optional[s self.n_components = n_components self.channel = channel - self.mod = mod def __call__(self, data): - feat = data.get_feature(return_type="numpy", channel=self.channel, mod=self.mod) + feat = data.get_feature(return_type="numpy", channel=self.channel) if self.n_components > min(feat.shape): self.logger.warning( f"n_components={self.n_components} must be between 0 and min(n_samples, n_features)={min(feat.shape)} with svd_solver='full'" @@ -167,6 +170,46 @@ def __call__(self, data): @register_preprocessor("feature", "cell") +@add_mod_and_transform +class SparsePCA(BaseTransform): + """Reduce cell feature matrix with SparsePCA. + + Parameters + ---------- + n_components + Number of SparsePCA components to use. + + """ + + _DISPLAY_ATTRS = ("n_components", ) + + def __init__(self, n_components: Union[float, int] = 400, *, channel: Optional[str] = None, + mod: Optional[str] = None, **kwargs): + super().__init__(**kwargs) + + self.n_components = n_components + self.channel = channel + + def __call__(self, data): + feat = data.get_feature(return_type="numpy", channel=self.channel) + # if self.n_components > min(feat.shape): + # self.logger.warning( + # f"n_components={self.n_components} must be between 0 and min(n_samples, n_features)={min(feat.shape)} with svd_solver='full'" + # ) + # self.n_components = min(feat.shape) + pca = SparsePCA(n_components=self.n_components) + cell_feat = pca.fit_transform(feat) + self.logger.info(f"Generating cell SparsePCA features {feat.shape} (k={pca.n_components_})") + # evr = pca.explained_variance_ratio_ + # self.logger.info(f"Top 10 explained variances: {evr[:10]}") + # self.logger.info(f"Total explained variance: {evr.sum():.2%}") + data.data.obsm[self.out] = cell_feat + + return data + + +@register_preprocessor("feature", "cell") +@add_mod_and_transform class CellSVD(BaseTransform): """Reduce cell feature matrix with SVD. @@ -185,10 +228,9 @@ def __init__(self, n_components: Union[float, int] = 400, *, channel: Optional[s self.n_components = n_components self.channel = channel - self.mod = mod def __call__(self, data): - feat = data.get_feature(return_type="numpy", channel=self.channel, mod=self.mod) + feat = data.get_feature(return_type="numpy", channel=self.channel) if isinstance(self.n_components, float): n_components = min(feat.shape) - 1 svd = TruncatedSVD(n_components=n_components) @@ -215,7 +257,8 @@ def __call__(self, data): @register_preprocessor("feature", "cell") -@deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") +@add_mod_and_transform +# @deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") class FeatureCellPlaceHolder(BaseTransform): """Used as a placeholder to skip the process. @@ -229,13 +272,12 @@ class FeatureCellPlaceHolder(BaseTransform): def __init__(self, n_components: int = 400, *, channel: Optional[str] = None, mod: Optional[str] = None, **kwargs): super().__init__(**kwargs) self.channel = channel - self.mod = mod self.logger.info( "n_components in FeatureCellPlaceHolder is used to make the parameters consistent and will not have any actual effect." ) def __call__(self, data): - feat = data.get_feature(return_type="numpy", channel=self.channel, mod=self.mod) + feat = data.get_feature(return_type="numpy", channel=self.channel) cell_feat = feat gene_feat = feat.T data.data.obsm[self.out] = cell_feat @@ -305,6 +347,7 @@ def __call__(self, data): @register_preprocessor("feature", "cell") # NOTE: register any custom preprocessing function to be used for tuning +@add_mod_and_transform class GaussRandProjFeature(BaseTransform): """Custom preprocessing to extract cell feature via Gaussian random projection.""" diff --git a/dance/transforms/filter.py b/dance/transforms/filter.py index 78e6d83f..ef703d0d 100644 --- a/dance/transforms/filter.py +++ b/dance/transforms/filter.py @@ -3,6 +3,7 @@ from typing import get_args import anndata as ad +import mudata as md import numpy as np import pandas as pd import scanpy as sc @@ -20,6 +21,7 @@ from dance.typing import Dict, GeneSummaryMode, List, Literal, Logger, Optional, Tuple, Union from dance.utils import default from dance.utils.status import deprecated +from dance.utils.wrappers import add_mod_and_transform def get_count(count_or_ratio: Optional[Union[float, int]], total: int) -> Optional[int]: @@ -48,6 +50,7 @@ def get_count(count_or_ratio: Optional[Union[float, int]], total: int) -> Option @register_preprocessor("filter") +@add_mod_and_transform class FilterScanpy(BaseTransform): """Scanpy filtering transformation with additional options.""" @@ -145,9 +148,9 @@ def prepCounts(self, x): elif self._FILTER_TARGET == "cells": n_counts = np.sum(x, axis=1) if isinstance(self.min_counts, float) and 0 <= self.min_counts <= 1: - min_counts = np.percentile(n_counts, self.min_counts) + min_counts = np.percentile(n_counts, self.min_counts * 100) else: - max_counts = np.percentile(n_counts, self.max_counts) + max_counts = np.percentile(n_counts, self.max_counts * 100) return min_counts, max_counts else: return self.min_counts, self.max_counts @@ -268,6 +271,45 @@ def __init__( inplace=inplace, **kwargs) +@register_preprocessor("filter", "cell") +@add_mod_and_transform +class FilterCellsCommonMod(BaseTransform): + """Initialize the FilterCellsCommonMod class. + + Parameters + ---------- + mod1 : str + Name of the first modality in the single-cell dataset. + mod2 : str + Name of the second modality in the single-cell dataset. + sol : Optional[str], default=None + Name of the optional solution dataset containing cell labels or annotations. + **kwargs : dict + Additional keyword arguments passed to the base transformation class. + + """ + + def __init__(self, mod1: str, mod2: str, sol: Optional[str] = None, **kwargs): + super().__init__(**kwargs) + self.mod1 = mod1 + self.mod2 = mod2 + self.sol = sol + + def __call__(self, data: Data): + md_data = data.data + data_mod1 = md_data.mod[self.mod1] + data_mod2 = md_data.mod[self.mod2] + common_cells = list(set(data_mod1.obs.index) & set(data_mod2.obs.index)) + data_mod1 = data_mod1[common_cells, :] + data_mod2 = data_mod2[common_cells, :] + data.data.mod[self.mod1] = data_mod1 + data.data.mod[self.mod2] = data_mod2 + if self.sol is not None: + test_sol = md_data.mod[self.sol] + test_sol = test_sol[common_cells, :] + data.data.mod[self.sol] = test_sol + + @register_preprocessor("filter", "gene") class FilterGenesCommon(BaseTransform): """Filter genes by taking the common genes across batches or splits. @@ -472,6 +514,7 @@ def __call__(self, data): @register_preprocessor("filter", "gene") +@add_mod_and_transform class FilterGenesPercentile(FilterGenes): """Filter genes based on percentiles of the summarized gene expressions. @@ -540,6 +583,7 @@ def _get_preserve_mask(self, gene_summary): @register_preprocessor("filter", "gene") +@add_mod_and_transform class FilterGenesTopK(FilterGenes): """Select top/bottom genes based on the summarized gene expressions. @@ -708,6 +752,7 @@ def __call__(self, data): @register_preprocessor("filter", "gene") +@add_mod_and_transform class FilterGenesRegression(BaseTransform): """Select genes based on regression. @@ -733,18 +778,19 @@ class FilterGenesRegression(BaseTransform): _DISPLAY_ATTRS = ("num_genes", ) def __init__(self, method: str = "enclasc", num_genes: int = 1000, *, channel: Optional[str] = None, - mod: Optional[str] = None, skip_count_check: bool = False, inplace=True, **kwargs): + channel_type: Optional[str] = None, mod: Optional[str] = None, skip_count_check: bool = False, + inplace=True, **kwargs): super().__init__(**kwargs) self.num_genes = num_genes self.channel = channel - self.mod = mod self.method = method self.skip_count_check = skip_count_check self.inplace = inplace + self.channel_type = channel_type def __call__(self, data): - feat = data.get_feature(return_type="numpy", channel=self.channel, mod=self.mod) + feat = data.get_feature(return_type="numpy", channel=self.channel, channel_type=self.channel_type) if not self.skip_count_check and np.mod(feat, 1).sum(): warnings.warn("Expecting count data as input, but the input feature matrix does not appear to be count." @@ -995,6 +1041,7 @@ def gini_func(x, weights=None): @register_preprocessor("filter", "gene") +@add_mod_and_transform class FilterGenesScanpyOrder(BaseTransform): """Scanpy filtering gene transformation with additional options. @@ -1084,6 +1131,7 @@ def __call__(self, data: Data): @register_preprocessor("filter", "gene") +@add_mod_and_transform class HighlyVariableGenesRawCount(AnnDataTransform): """Filter for highly variable genes using raw count matrix. @@ -1120,9 +1168,10 @@ class HighlyVariableGenesRawCount(AnnDataTransform): """ - def __init__(self, layer: Optional[str] = None, n_top_genes: Optional[int] = 1000, span: Optional[float] = 0.3, - subset: bool = True, inplace: bool = True, batch_key: Optional[str] = None, check_values: bool = True, - **kwargs): + def __init__(self, channel: Optional[str] = None, channel_type: Optional[str] = None, + n_top_genes: Optional[int] = 1000, span: Optional[float] = 0.3, subset: bool = True, + inplace: bool = True, batch_key: Optional[str] = None, check_values: bool = True, **kwargs): + layer = channel if channel_type == "layers" else None super().__init__(sc.pp.highly_variable_genes, layer=layer, n_top_genes=n_top_genes, batch_key=batch_key, check_values=check_values, span=span, subset=subset, inplace=inplace, flavor="seurat_v3", **kwargs) @@ -1158,6 +1207,7 @@ def __call__(self, data): @register_preprocessor("filter", "gene") +@add_mod_and_transform class HighlyVariableGenesLogarithmizedByTopGenes(AnnDataTransform): """Filter for highly variable genes based on top genes. @@ -1197,16 +1247,19 @@ class HighlyVariableGenesLogarithmizedByTopGenes(AnnDataTransform): """ - def __init__(self, layer: Optional[str] = None, n_top_genes: Optional[int] = 1000, n_bins: int = 20, - flavor: Literal["seurat", "cell_ranger"] = "seurat", subset: bool = True, inplace: bool = True, - batch_key: Optional[str] = None, **kwargs): + def __init__(self, channel: Optional[str] = None, channel_type: Optional[str] = None, + n_top_genes: Optional[int] = 1000, n_bins: int = 20, flavor: Literal["seurat", + "cell_ranger"] = "seurat", + subset: bool = True, inplace: bool = True, batch_key: Optional[str] = None, **kwargs): + layer = channel if channel_type == "layers" else None super().__init__(sc.pp.highly_variable_genes, layer=layer, n_top_genes=n_top_genes, n_bins=n_bins, flavor=flavor, subset=subset, inplace=inplace, batch_key=batch_key, **kwargs) self.logger.info("Expects logarithmized data") @register_preprocessor("filter", "gene") -@deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") +@add_mod_and_transform +# @deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") class FilterGenesPlaceHolder(BaseTransform): """Used as a placeholder to skip the process.""" @@ -1237,10 +1290,11 @@ def __call__(self, data: Data) -> Data: @register_preprocessor("filter", "gene") -@deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") +@add_mod_and_transform +# @deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") class FilterGenesNumberPlaceHolder(BaseTransform): - def __init__(self, **kwargs): + def __init__(self, channel=None, channel_type=None, **kwargs): super().__init__(**kwargs) def __call__(self, data: Data) -> Data: @@ -1248,6 +1302,7 @@ def __call__(self, data: Data) -> Data: @register_preprocessor("filter", "gene") +@add_mod_and_transform class HighlyVariableGenesLogarithmizedByMeanAndDisp(AnnDataTransform): """Filter for highly variable genes based on mean and dispersion. @@ -1293,10 +1348,12 @@ class HighlyVariableGenesLogarithmizedByMeanAndDisp(AnnDataTransform): """ - def __init__(self, layer: Optional[str] = None, min_disp: Optional[float] = 0.5, max_disp: Optional[float] = np.inf, + def __init__(self, channel: Optional[str] = None, channel_type: Optional[str] = None, + min_disp: Optional[float] = 0.5, max_disp: Optional[float] = np.inf, min_mean: Optional[float] = 0.0125, max_mean: Optional[float] = 3, n_bins: int = 20, flavor: Literal["seurat", "cell_ranger"] = "seurat", subset: bool = True, inplace: bool = True, batch_key: Optional[str] = None, **kwargs): + layer = channel if channel_type == "layers" else None super().__init__(sc.pp.highly_variable_genes, layer=layer, min_disp=min_disp, max_disp=max_disp, min_mean=min_mean, max_mean=max_mean, n_bins=n_bins, flavor=flavor, subset=subset, inplace=inplace, batch_key=batch_key, **kwargs) @@ -1304,7 +1361,8 @@ def __init__(self, layer: Optional[str] = None, min_disp: Optional[float] = 0.5, @register_preprocessor("filter", "cell") -@deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") +@add_mod_and_transform +# @deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") class FilterCellsPlaceHolder(BaseTransform): """Used as a placeholder to skip the process.""" @@ -1335,6 +1393,7 @@ def __call__(self, data: Data) -> Data: @register_preprocessor("filter", "cell") +@add_mod_and_transform class FilterCellsScanpyOrder(BaseTransform): """Scanpy filtering cell transformation with additional options. diff --git a/dance/transforms/graph/dstg_graph.py b/dance/transforms/graph/dstg_graph.py index b261fede..5b6b792f 100644 --- a/dance/transforms/graph/dstg_graph.py +++ b/dance/transforms/graph/dstg_graph.py @@ -1,3 +1,5 @@ +from typing import Sequence, Union + import networkx as nx import numpy as np import pandas as pd @@ -32,17 +34,23 @@ class DSTGraph(BaseTransform): _DISPLAY_ATTRS = ("k_filter", "num_cc", "ref_split", "inf_split") - def __init__(self, k_filter=200, num_cc=30, *, ref_split: str = "train", inf_split: str = "test", **kwargs): + def __init__(self, k_filter=200, num_cc=30, *, ref_split: str = "train", inf_split: str = "test", + channels: Sequence[Union[str, None]] = (None, None), + channel_types: Sequence[Union[str, None]] = ("obsm", "obsm"), **kwargs): super().__init__(**kwargs) self.k_filter = k_filter self.num_cc = num_cc self.ref_split = ref_split self.inf_split = inf_split + self.channels = channels + self.channel_types = channel_types def __call__(self, data): - x_ref = data.get_feature(return_type="numpy", split_name=self.ref_split) - x_inf = data.get_feature(return_type="numpy", split_name=self.inf_split) + x_ref = data.get_feature(return_type="numpy", split_name=self.ref_split, channel=self.channels[0], + channel_type=self.channel_types[0]) + x_inf = data.get_feature(return_type="numpy", split_name=self.inf_split, channel=self.channels[1], + channel_type=self.channel_types[1]) adj = compute_dstg_adj(x_ref, x_inf, k_filter=self.k_filter, num_cc=self.num_cc) data.data.obsp[self.out] = adj diff --git a/dance/transforms/misc.py b/dance/transforms/misc.py index fa765928..8b47c8b5 100644 --- a/dance/transforms/misc.py +++ b/dance/transforms/misc.py @@ -1,6 +1,10 @@ from pprint import pformat +from typing import Optional + +import mudata as md from dance import logger +from dance.data.base import Data from dance.registry import register_preprocessor from dance.transforms.base import BaseTransform from dance.typing import Any, Dict, Tuple @@ -153,3 +157,21 @@ def __init__(self, *, split_name: str, **kwargs): def __call__(self, data): self.logger.info("Popping split: {self.split_name!r}") data.pop(split_name=self.split_name) + + +@register_preprocessor("misc") +class AlignMod(BaseTransform): + """Aligning mods and metadata in multimodal data.""" + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + def __call__(self, data: Data) -> Data: + mod1, mod2, meta1, meta2, test_sol = data.data.mod.values() + meta1 = meta1[:, mod1.var.index] + meta2 = meta2[:, mod2.var.index] + test_sol = test_sol[:, mod1.var.index] + data.data.mod["meta1"] = meta1 + data.data.mod["meta2"] = meta2 + data.data.mod["test_sol"] = test_sol + return data diff --git a/dance/transforms/normalize.py b/dance/transforms/normalize.py index f2deedae..71ab6622 100644 --- a/dance/transforms/normalize.py +++ b/dance/transforms/normalize.py @@ -5,6 +5,7 @@ import numpy as np import pandas as pd import scanpy as sc +import scipy import scipy.sparse as sp import statsmodels.discrete.discrete_model import statsmodels.nonparametric.kernel_regression @@ -18,9 +19,11 @@ from dance.typing import Dict, Iterable, List, Literal, LogLevel, NormMode, Number, Optional, Union from dance.utils.matrix import normalize from dance.utils.status import deprecated +from dance.utils.wrappers import add_mod_and_transform @register_preprocessor("normalize") +@add_mod_and_transform class ScaleFeature(BaseTransform): """Scale the feature matrix in the AnnData object. @@ -169,6 +172,37 @@ def __call__(self, data: Data) -> Data: @register_preprocessor("normalize") +@add_mod_and_transform +class tfidfTransform(BaseTransform): + + def __init__(self, **kwargs): + super().__init__(**kwargs) + self.idf = None + self.fitted = False + + def fit(self, X): + self.idf = X.shape[0] / X.sum(axis=0) + self.fitted = True + + def transform(self, X): + if not self.fitted: + raise RuntimeError('Transformer was not fitted on any data') + if scipy.sparse.issparse(X): + tf = X.multiply(1 / X.sum(axis=1)) + return tf.multiply(self.idf).tocsr() + else: + tf = X / X.sum(axis=1, keepdims=True) + return tf * self.idf + + def __call__(self, data): + X = data.data.X + self.fit(X) + data.data.X = self.transform(X) + return data + + +@register_preprocessor("normalize") +@add_mod_and_transform class ScTransform(BaseTransform): """ScTransform normalization and variance stabiliation. @@ -399,7 +433,8 @@ def __call__(self, data: Data): z[gn[genes_step1]] = 1 w = pd.Series(index=gn, data=np.zeros(gn.size, dtype='int')) - w[gn] = genes_log_gmean + # w[gn] = genes_log_gmean + w[gn] = genes_log_gmean.astype(int) #need to think selected_data.var['genes_step1_sct'] = z selected_data.var['log10_gmean_sct'] = w @@ -453,6 +488,8 @@ def _parallel_init(igenes_bin_regress, iumi_bin, ign, imm, ips): def _parallel_wrapper(j): name = gn[genes_bin_regress[j]] y = umi_bin[:, j].A.flatten() + y[np.isinf(y) | np.isnan(y)] = 0 + mm[np.isinf(mm) | np.isnan(mm)] = 0 pr = statsmodels.discrete.discrete_model.Poisson(y, mm) res = pr.fit(disp=False) mu = res.predict() @@ -490,6 +527,7 @@ def info(n, th, mu, y, w): @register_preprocessor("normalize") +@add_mod_and_transform class Log1P(AnnDataTransform): """Logarithmize the data matrix. @@ -527,6 +565,7 @@ def __init__(self, base: Optional[Number] = None, copy: bool = False, chunked: b @register_preprocessor("normalize") +@add_mod_and_transform class NormalizeTotal(AnnDataTransform): """Normalize counts per cell. @@ -583,9 +622,15 @@ def __init__(self, target_sum: Optional[float] = None, max_fraction: float = 0.0 if max_fraction == 1.0: self.logger.info("max_fraction set to 1.0, this is equivalent to setting exclude_highly_expressed=False.") + def __call__(self, data): + if scipy.sparse.issparse(data.data.X): + data.data.X = np.array(data.data.X.todense()) + return super().__call__(data) + @register_preprocessor("normalize") -@deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") +@add_mod_and_transform +# @deprecated(msg="will be replaced by builtin bypass mechanism in pipeline") class NormalizePlaceHolder(BaseTransform): """Used as a placeholder to skip the process.""" @@ -597,6 +642,7 @@ def __call__(self, data: Data) -> Data: @register_preprocessor("normalize") +@add_mod_and_transform class NormalizeTotalLog1P(BaseTransform): """Normalize total counts followed by log1p transformation. diff --git a/dance/transforms/scn_feature.py b/dance/transforms/scn_feature.py index da86e5d1..9a959a3a 100644 --- a/dance/transforms/scn_feature.py +++ b/dance/transforms/scn_feature.py @@ -49,7 +49,7 @@ def __call__(self, data): # sc.pp.scale(adata, max_value=10) # Filtering shouldn't be here norm_exp_df = adata.to_df() - cell_type_df = cell_type_df.loc[adata.obs_names] # not necessary, but kept here in case we subsample cells + # cell_type_df = cell_type_df.loc[adata.obs_names] # not necessary, but kept here in case we subsample cells # Get differentially expressed genes and gene pairs cell_type_array = cell_type_df.columns.values[cell_type_df.values.argmax(1)] diff --git a/dance/utils/wrappers.py b/dance/utils/wrappers.py index eb20eff7..a7f308ee 100644 --- a/dance/utils/wrappers.py +++ b/dance/utils/wrappers.py @@ -1,11 +1,15 @@ import datetime import functools import time +from typing import Union +import anndata +import mudata import numpy as np import torch from dance import logger +from dance.data.base import Data from dance.typing import Any, Callable @@ -85,3 +89,48 @@ def wrapped_func(*args): return func(*new_args) return wrapped_func + + +import functools + + +def add_mod_and_transform(cls): + """A decorator that modifies a class to add functionality for working with specific + modalities (`mod`) in a `mudata` object.""" + original_init = cls.__init__ + original_call = cls.__call__ + cls.add_mod_and_transform = "add_mod_and_transform" + + @functools.wraps(original_init) + def new_init(self, *args, **kwargs): + mod = kwargs.pop('mod', None) + original_init(self, *args, **kwargs) + self.mod = mod + + @functools.wraps(original_call) + def new_call(self, data: Data, *args, **kwargs): + """ + Parameters + ---------- + data : Data + The input data object containing the `mudata` with multiple modalities. + Returns + ------- + Any + The result of the original_call method. + """ + if hasattr(self, 'mod') and self.mod is not None: + md_data = data.data + ad_data = Data(data=transform_mod_to_anndata(md_data, self.mod)) + res = original_call(self, ad_data, *args, **kwargs) + data.data.mod[self.mod] = ad_data.data + else: + return original_call(self, data, *args, **kwargs) + + cls.__init__ = new_init + cls.__call__ = new_call + return cls + + +def transform_mod_to_anndata(mod_data: mudata.MuData, mod_key: str): + return mod_data.mod[mod_key] diff --git a/examples/atlas/__init__.py b/examples/atlas/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/examples/atlas/config/atlas_template_yamls/cta_actinn/pipeline_params_tuning_config.yaml b/examples/atlas/config/atlas_template_yamls/cta_actinn/pipeline_params_tuning_config.yaml new file mode 100644 index 00000000..fb607022 --- /dev/null +++ b/examples/atlas/config/atlas_template_yamls/cta_actinn/pipeline_params_tuning_config.yaml @@ -0,0 +1,73 @@ +type: preprocessor +tune_mode: pipeline_params +pipeline_tuning_top_k: 3 +parameter_tuning_freq_n: 20 +pipeline: + - type: filter.gene + include: + - FilterGenesPercentile + - FilterGenesScanpyOrder + - FilterGenesPlaceHolder + default_params: + FilterGenesScanpyOrder: + order: ["min_counts", "min_cells", "max_counts", "max_cells"] + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 + - type: normalize + include: + - ScaleFeature + - ScTransform + - Log1P + - NormalizeTotal + - NormalizePlaceHolder + default_params: + ScTransform: + processes_num: 8 + - type: filter.gene + include: + - HighlyVariableGenesLogarithmizedByMeanAndDisp + - HighlyVariableGenesRawCount + - HighlyVariableGenesLogarithmizedByTopGenes + - FilterGenesTopK + - FilterGenesRegression + - FilterGenesNumberPlaceHolder + default_params: + FilterGenesTopK: + num_genes: 3000 + FilterGenesRegression: + num_genes: 3000 + HighlyVariableGenesRawCount: + n_top_genes: 3000 + HighlyVariableGenesLogarithmizedByTopGenes: + n_top_genes: 3000 + - type: feature.cell + include: + - WeightedFeaturePCA + - WeightedFeatureSVD + - CellPCA + - CellSVD + - GaussRandProjFeature # Registered custom preprocessing func + - FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO + default_params: + WeightedFeaturePCA: + split_name: train + WeightedFeatureSVD: + split_name: train + - type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +wandb: + entity: xzy11632 + project: dance-dev + method: grid #try grid to provide a comprehensive search + metric: + name: acc # val/acc + goal: maximize diff --git a/examples/atlas/config/atlas_template_yamls/cta_celltypist/pipeline_params_tuning_config.yaml b/examples/atlas/config/atlas_template_yamls/cta_celltypist/pipeline_params_tuning_config.yaml new file mode 100644 index 00000000..801da1d7 --- /dev/null +++ b/examples/atlas/config/atlas_template_yamls/cta_celltypist/pipeline_params_tuning_config.yaml @@ -0,0 +1,73 @@ +type: preprocessor +tune_mode: pipeline_params +pipeline_tuning_top_k: 3 +parameter_tuning_freq_n: 20 +pipeline: + - type: filter.gene + include: + - FilterGenesPercentile + - FilterGenesScanpyOrder + - FilterGenesPlaceHolder + default_params: + FilterGenesScanpyOrder: + order: ["min_counts", "min_cells", "max_counts", "max_cells"] + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 + - type: normalize + include: + - ScaleFeature + - ScTransform + - Log1P + - NormalizeTotal + - NormalizePlaceHolder + default_params: + ScTransform: + processes_num: 8 + - type: filter.gene + include: + - HighlyVariableGenesLogarithmizedByMeanAndDisp + - HighlyVariableGenesRawCount + - HighlyVariableGenesLogarithmizedByTopGenes + - FilterGenesTopK + - FilterGenesRegression + # - FilterGenesNumberPlaceHolder + default_params: + FilterGenesTopK: + num_genes: 3000 + FilterGenesRegression: + num_genes: 3000 + HighlyVariableGenesRawCount: + n_top_genes: 3000 + HighlyVariableGenesLogarithmizedByTopGenes: + n_top_genes: 3000 + - type: feature.cell + include: + - WeightedFeaturePCA + - WeightedFeatureSVD + - CellPCA + - CellSVD + - GaussRandProjFeature # Registered custom preprocessing func + - FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO + default_params: + WeightedFeaturePCA: + split_name: train + WeightedFeatureSVD: + split_name: train + - type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +wandb: + entity: xzy11632 + project: dance-dev + method: grid #try grid to provide a comprehensive search + metric: + name: acc # val/acc + goal: maximize diff --git a/examples/atlas/config/atlas_template_yamls/cta_scdeepsort/pipeline_params_tuning_config.yaml b/examples/atlas/config/atlas_template_yamls/cta_scdeepsort/pipeline_params_tuning_config.yaml new file mode 100644 index 00000000..220ad410 --- /dev/null +++ b/examples/atlas/config/atlas_template_yamls/cta_scdeepsort/pipeline_params_tuning_config.yaml @@ -0,0 +1,73 @@ +type: preprocessor +tune_mode: pipeline_params +pipeline_tuning_top_k: 3 +parameter_tuning_freq_n: 20 +pipeline: + - type: filter.gene + include: + - FilterGenesPercentile + - FilterGenesScanpyOrder + - FilterGenesPlaceHolder + default_params: + FilterGenesScanpyOrder: + order: ["min_counts", "min_cells", "max_counts", "max_cells"] + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 + - type: normalize + include: + - ScaleFeature + - ScTransform + - Log1P + - NormalizeTotal + - NormalizePlaceHolder + default_params: + ScTransform: + processes_num: 8 + - type: filter.gene + include: + - HighlyVariableGenesLogarithmizedByMeanAndDisp + - HighlyVariableGenesRawCount + - HighlyVariableGenesLogarithmizedByTopGenes + - FilterGenesTopK + - FilterGenesRegression + # - FilterGenesNumberPlaceHolder + default_params: + FilterGenesTopK: + num_genes: 3000 + FilterGenesRegression: + num_genes: 3000 + HighlyVariableGenesRawCount: + n_top_genes: 3000 + HighlyVariableGenesLogarithmizedByTopGenes: + n_top_genes: 3000 + - type: feature.cell + include: + - WeightedFeaturePCA + - WeightedFeatureSVD + # - FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO + default_params: + WeightedFeaturePCA: + split_name: train + WeightedFeatureSVD: + split_name: train + - type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell + - type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +wandb: + entity: xzy11632 + project: dance-dev + method: grid #try grid to provide a comprehensive search + metric: + name: acc # val/acc + goal: maximize diff --git a/examples/atlas/config/atlas_template_yamls/cta_singlecellnet/pipeline_params_tuning_config.yaml b/examples/atlas/config/atlas_template_yamls/cta_singlecellnet/pipeline_params_tuning_config.yaml new file mode 100644 index 00000000..d34f34f2 --- /dev/null +++ b/examples/atlas/config/atlas_template_yamls/cta_singlecellnet/pipeline_params_tuning_config.yaml @@ -0,0 +1,59 @@ +type: preprocessor +tune_mode: pipeline_params +pipeline_tuning_top_k: 3 +parameter_tuning_freq_n: 20 +pipeline: + - type: filter.gene + include: + - FilterGenesPercentile + - FilterGenesScanpyOrder + - FilterGenesPlaceHolder + default_params: + FilterGenesScanpyOrder: + order: ["min_counts", "min_cells", "max_counts", "max_cells"] + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 + - type: normalize + include: + - ScaleFeature + - ScTransform + - Log1P + - NormalizeTotal + - NormalizePlaceHolder + default_params: + ScTransform: + processes_num: 8 + - type: filter.gene + include: + - HighlyVariableGenesLogarithmizedByMeanAndDisp + - HighlyVariableGenesRawCount + - HighlyVariableGenesLogarithmizedByTopGenes + - FilterGenesTopK + - FilterGenesRegression + - FilterGenesNumberPlaceHolder + default_params: + FilterGenesTopK: + num_genes: 3000 + FilterGenesRegression: + num_genes: 3000 + HighlyVariableGenesRawCount: + n_top_genes: 3000 + HighlyVariableGenesLogarithmizedByTopGenes: + n_top_genes: 3000 + - type: feature.cell + target: SCNFeature + - type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +wandb: + entity: xzy11632 + project: dance-dev + method: grid # try grid to provide a comprehensive search + metric: + name: acc # val/acc + goal: maximize diff --git a/examples/atlas/config/commands.yaml b/examples/atlas/config/commands.yaml new file mode 100644 index 00000000..7d058c51 --- /dev/null +++ b/examples/atlas/config/commands.yaml @@ -0,0 +1,9 @@ +algorithms: + cta_actinn: + command: "python main.py --species {species} --tissue {tissue} --train_dataset {dataset_id} --filetype {filetype} --count {count} --device {device} > {dataset_id}/out.log 2>&1 &" + cta_singlecellnet: + command: "python main.py --species {species} --tissue {tissue} --train_dataset {dataset_id} --filetype {filetype} --count {count} > {dataset_id}/out.log 2>&1 &" + cta_celltypist: + command: "python main.py --species {species} --tissue {tissue} --train_dataset {dataset_id} --filetype {filetype} --count {count} > {dataset_id}/out.log 2>&1 &" + cta_scdeepsort: + command: "python main.py --species {species} --tissue {tissue} --train_dataset {dataset_id} --filetype {filetype} --count {count} --device {device} > {dataset_id}/out.log 2>&1 &" diff --git a/examples/atlas/config/readme.md b/examples/atlas/config/readme.md new file mode 100644 index 00000000..9494cd57 --- /dev/null +++ b/examples/atlas/config/readme.md @@ -0,0 +1,5 @@ +Generate configuration files through setup_run.py and execute + +run_config.csv contains runtime configurations including dataset_id, species, tissue, etc. +commands.yaml contains execution commands including algorithm_name, dataset_id, etc. +atlas_template_yamls contains template configuration files including preprocessing functions, etc. diff --git a/examples/atlas/config/run_config.csv b/examples/atlas/config/run_config.csv new file mode 100644 index 00000000..aaa4db91 --- /dev/null +++ b/examples/atlas/config/run_config.csv @@ -0,0 +1,21 @@ +algorithm_name,dataset_id,species,tissue,filetype,count,device +cta_actinn,fa27492b-82ff-4ab7-ac61-0e2b184eee67(Lung),human,Lung,h5ad,800,cuda:1 +cta_actinn,4ed927e9-c099-49af-b8ce-a2652d069333(Lung),human,Lung,h5ad,800,cuda:5 +cta_actinn,01209dce-3575-4bed-b1df-129f57fbc031(Lung),human,Lung,h5ad,800,cuda:6 +cta_actinn,c5d88abe-f23a-45fa-a534-788985e93dad(Lung),human,Lung,h5ad,800,cuda:7 +cta_actinn,9968be68-ab65-4a38-9e1a-c9b6abece194,human,Lung,h5ad,800,cuda:0 +cta_actinn,1e6a6ef9-7ec9-4c90-bbfb-2ad3c3165fd1,human,Lung,h5ad,800,cuda:1 +cta_actinn,486486d4-9462-43e5-9249-eb43fa5a49a6,human,Lung,h5ad,800,cuda:2 +cta_actinn,7b3368a5-c1a0-4973-9e75-d95b4150c7da,human,Lung,h5ad,800,cuda:3 +cta_actinn,e04daea4-4412-45b5-989e-76a9be070a89,human,Lung,h5ad,800,cuda:4 +cta_actinn,e9175006-8978-4417-939f-819855eab80e,human,Lung,h5ad,800,cuda:5 +cta_actinn,0ba16f4b-cb87-4fa3-9363-19fc51eec6e7,human,Lung,h5ad,800,cuda:6 +cta_actinn,a68b64d8-aee3-4947-81b7-36b8fe5a44d2(Lung),human,Lung,h5ad,800,cuda:7 +cta_actinn,8c42cfd0-0b0a-46d5-910c-fc833d83c45e,human,Lung,h5ad,800,cuda:0 +cta_actinn,2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Lung),human,Lung,h5ad,800,cuda:1 +cta_actinn,d8da613f-e681-4c69-b463-e94f5e66847f,human,Lung,h5ad,800,cuda:2 +cta_actinn,4023a2bc-6325-47db-bfdf-9639e91042c2,human,Lung,h5ad,800,cuda:3 +cta_actinn,71be997d-ff75-41b9-8a9f-1288c865f921(Lung),human,Lung,h5ad,800,cuda:4 +cta_actinn,53d208b0-2cfd-4366-9866-c3c6114081bc(Pancreas),human,Pancreas,h5ad,800,cuda:5 +cta_actinn,78f10833-3e61-4fad-96c9-4bbd4f14bdfa,human,Pancreas,h5ad,800,cuda:6 +cta_actinn,f7c1c579-2dc0-47e2-ba19-8165c5a0e353(Pancreas),human,Pancreas,h5ad,800,cuda:7 diff --git a/examples/atlas/demos/__init__.py b/examples/atlas/demos/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/examples/atlas/demos/main.py b/examples/atlas/demos/main.py new file mode 100644 index 00000000..19e7f268 --- /dev/null +++ b/examples/atlas/demos/main.py @@ -0,0 +1,93 @@ +# This script finds the most similar dataset from the atlas for a given user-uploaded dataset +# It calculates similarity scores and returns the best matching dataset along with its configurations + +import argparse +import json + +import pandas as pd +import scanpy as sc + +from dance import logger +from dance.atlas.sc_similarity.anndata_similarity import AnnDataSimilarity, get_anndata +from dance.settings import DANCEDIR, SIMILARITYDIR + + +def calculate_similarity(source_data, tissue, atlas_datasets, reduce_error, in_query): + """Calculate similarity scores between source data and atlas datasets. + + Args: + source_data: User uploaded AnnData object + tissue: Target tissue type + atlas_datasets: List of candidate datasets from atlas + reduce_error: Flag for error reduction mode - when True, applies a significant penalty + to configurations in the atlas that produced errors + in_query: Flag for query mode - when True, ranks similarity based on query performance, + when False, ranks based on inter-atlas comparison + + Returns: + Dictionary containing similarity scores for each atlas dataset + + """ + with open( + SIMILARITYDIR / + f"data/similarity_weights_results/{'reduce_error_' if reduce_error else ''}{'in_query_' if in_query else ''}sim_dict.json", + encoding='utf-8') as f: + sim_dict = json.load(f) + feature_name = sim_dict[tissue]["feature_name"] + w1 = sim_dict[tissue]["weight1"] + w2 = 1 - w1 + ans = {} + for target_file in atlas_datasets: + logger.info(f"calculating similarity for {target_file}") + atlas_data = get_anndata(tissue=tissue.capitalize(), species="human", filetype="h5ad", + train_dataset=[f"{target_file}"], data_dir=str(DANCEDIR / "examples/tuning/temp_data")) + similarity_calculator = AnnDataSimilarity(adata1=source_data, adata2=atlas_data, sample_size=10, + init_random_state=42, n_runs=1, tissue=tissue) + sim_target = similarity_calculator.get_similarity_matrix_A2B(methods=[feature_name, "metadata_sim"]) + ans[target_file] = sim_target[feature_name] * w1 + sim_target["metadata_sim"] * w2 + return ans + + +def main(args): + """Main function to process user data and find the most similar atlas dataset. + + Args: + args: Arguments containing: + - tissue: Target tissue type + - data_dir: Directory containing the source data + - source_file: Name of the source file + + Returns: + tuple containing: + - ans_file: ID of the most similar dataset + - ans_conf: Preprocess configuration dictionary for different cell type annotation methods + - ans_value: Similarity score of the best matching dataset + + """ + reduce_error = False + in_query = True + tissue = args.tissue + tissue = tissue.lower() + conf_data = pd.read_excel(SIMILARITYDIR / "data/Cell Type Annotation Atlas.xlsx", sheet_name=tissue) + atlas_datasets = list(conf_data[conf_data["queryed"] == False]["dataset_id"]) + source_data = sc.read_h5ad(f"{args.data_dir}/{args.source_file}.h5ad") + + ans = calculate_similarity(source_data, tissue, atlas_datasets, reduce_error, in_query) + ans_file = max(ans, key=ans.get) + ans_value = ans[ans_file] + ans_conf = { + method: conf_data.loc[conf_data["dataset_id"] == ans_file, f"{method}_step2_best_yaml"].iloc[0] + for method in ["cta_celltypist", "cta_scdeepsort", "cta_singlecellnet", "cta_actinn"] + } + return ans_file, ans_conf, ans_value + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--tissue", default="Brain") + parser.add_argument("--data_dir", default=str(DANCEDIR / "examples/tuning/temp_data/train/human")) + parser.add_argument("--source_file", default="human_Brain364348b4-bc34-4fe1-a851-60d99e36cafa_data") + + args = parser.parse_args() + ans_file, ans_conf, ans_value = main(args) + print(ans_file, ans_conf, ans_value) diff --git a/examples/atlas/get_result_web.py b/examples/atlas/get_result_web.py new file mode 100644 index 00000000..2cfdeb7c --- /dev/null +++ b/examples/atlas/get_result_web.py @@ -0,0 +1,435 @@ +import argparse +import json +import os +from functools import partial +from pathlib import Path + +import numpy as np +import pandas as pd +from natsort import os_sort_key +from omegaconf import OmegaConf +from sympy import im +from tqdm import tqdm + +from dance import logger +from dance.settings import ATLASDIR, DANCEDIR, METADIR +from dance.utils import try_import + +# get yaml of best method + + +def check_identical_strings(string_list): + """Compare strings in a list to check if they are identical. + + Parameters + ---------- + string_list : list + List of strings to compare + + Returns + ------- + str + The common string if all strings are identical + + Raises + ------ + ValueError + If list is empty or strings are different + + """ + if not string_list: + raise ValueError("The list is empty") + + arr = np.array(string_list) + if not np.all(arr == arr[0]): + raise ValueError("Different strings found") + + return string_list[0] + + # if not string_list: + # raise ValueError("The list is empty") + # first_string = string_list[0] + # for s in string_list[1:]: + # if s != first_string: + # raise ValueError(f"Different strings found: '{first_string}' and '{s}'") + # return first_string + + +def get_sweep_url(step_csv: pd.DataFrame, single=True): + """Extract Weights & Biases sweep URL from a DataFrame containing run IDs. + + Parameters + ---------- + step_csv : pd.DataFrame + DataFrame containing wandb run IDs in an 'id' column + single : bool, optional + If True, only process the first run, by default True + + Returns + ------- + str + The wandb sweep URL + + """ + ids = step_csv["id"] + sweep_urls = [] + test_accs_exists = False + if "test_acc" in step_csv.columns: + test_accs = reversed(step_csv["test_acc"]) + test_accs_exists = True + else: + test_accs = [np.nan] * len(ids) + + for run_id, test_acc in tqdm( + zip(reversed(ids), + test_accs), leave=False): #The reversal of order is related to additional_sweep_ids.append(sweep_id) + if test_accs_exists and pd.isna(test_acc): + continue + api = wandb.Api(timeout=1000) + run = api.run(f"/{entity}/{project}/runs/{run_id}") + sweep_urls.append(run.sweep.url) + if single: + break + sweep_url = check_identical_strings(sweep_urls) + return sweep_url + + +import re + + +def spilt_web(url: str): + """Parse Weights & Biases URL to extract entity, project and sweep components. + + Parameters + ---------- + url : str + Complete wandb sweep URL + + Returns + ------- + tuple or None + Tuple of (entity, project, sweep_id) if parsing succeeds + None if parsing fails + + """ + pattern = r"https://wandb\.ai/([^/]+)/([^/]+)/sweeps/([^/]+)" + + match = re.search(pattern, url) + + if match: + entity = match.group(1) + project = match.group(2) + pattern = r'/sweeps/([^/?]+)' # Regular expression pattern + match = re.search(pattern, url) + if match: + sweep_id = match.group(1) + return entity, project, sweep_id + return None + else: + print(url) + print("No match found") + + +def get_metric(run, metric_col): + """Extract metric value from wandb run. + + Parameters + ---------- + run : wandb.Run + Weights & Biases run object + + Returns + ------- + float + Metric value or negative infinity if metric not found + + """ + if metric_col not in run.summary: + return float('-inf') # Return -inf for missing metrics to handle in comparisons + return run.summary[metric_col] + + +def get_best_method(urls, metric_col="test_acc"): + """Find the best performing method across multiple wandb sweeps. + + Parameters + ---------- + urls : list + List of wandb sweep URLs to compare + metric_col : str, optional + Metric column name to use for comparison, by default "test_acc" + + Returns + ------- + tuple + (best_step_name, best_run, best_metric_value) where: + - best_step_name: name of the step with best performance + - best_run: wandb run object of best performing run + - best_metric_value: value of the metric for best run + + """ + all_best_run = None + all_best_step_name = None + step_names = ["step2", "step3_0", "step3_1", "step3_2"] + step2_best_run = None + # Track run statistics + run_states = {"all_total_runs": 0, "all_finished_runs": 0} + + for step_name, url in zip(step_names, urls): + _, _, sweep_id = spilt_web(url) + sweep = wandb.Api(timeout=1000).sweep(f"{entity}/{project}/{sweep_id}") + + # Update run statistics + finished_runs = [run for run in sweep.runs if run.state == "finished"] + run_states.update({ + f"{step_name}_total_runs": len(sweep.runs), + f"{step_name}_finished_runs": len(finished_runs) + }) + run_states["all_total_runs"] += run_states[f"{step_name}_total_runs"] + run_states["all_finished_runs"] += run_states[f"{step_name}_finished_runs"] + + # Find best run based on optimization goal + goal = sweep.config["metric"]["goal"] + best_run = max(sweep.runs, key=partial(get_metric, metric_col=metric_col)) if goal == "maximize" else \ + min(sweep.runs, key=partial(get_metric, metric_col=metric_col)) if goal == "minimize" else \ + None + + if best_run is None: + raise RuntimeError("Optimization goal must be either 'minimize' or 'maximize'") + + if metric_col not in best_run.summary: + continue + if all_best_run is None: + all_best_run = best_run + all_best_step_name = step_name + elif all_best_run.summary[metric_col] < best_run.summary[metric_col] and goal == "maximize": + all_best_run = best_run + all_best_step_name = step_name + elif all_best_run.summary[metric_col] > best_run.summary[metric_col] and goal == "minimize": + all_best_run = best_run + all_best_step_name = step_name + if step2_best_run is None and step_name == "step2": + step2_best_run = best_run + num = run_states["all_finished_runs"] / run_states["all_total_runs"] + run_states["finished_rate"] = f"{num:.2%}" + need_to_check = num < 0.6 + runs_states_str = "|".join([f"{k}:{v}" for k, v in run_states.items()]) + return all_best_step_name, all_best_run, all_best_run.summary[ + metric_col], runs_states_str, need_to_check, step2_best_run, step2_best_run.summary[metric_col] + + +def get_best_yaml(step_name, best_run, file_path): + """Generate YAML configuration for the best performing wandb run. + + Parameters + ---------- + step_name : str + Name of the step ('step2' or 'step3_X') + best_run : wandb.Run + Best performing wandb run object + file_path : str + Path to configuration files + + Returns + ------- + str + YAML string containing the best configuration + + """ + if step_name == "step2": + conf = OmegaConf.load(f"{file_path}/pipeline_params_tuning_config.yaml") + for i, fun in enumerate(conf["pipeline"]): + if "include" not in fun: + continue + type_fun = fun["type"] + prefix = f"pipeline.{i}.{type_fun}" + # filtered_dict = {k: v for k, v in b_run.config.items() if k==prefix}.items()[0] + fun_name = best_run.config[prefix] + fun['target'] = fun_name + if 'params' not in fun: + fun['params'] = {} + if "default_params" in fun and fun_name in fun["default_params"]: + fun['params'].update(fun["default_params"][fun_name]) + del fun["include"] + del fun["default_params"] + else: + step3_number = step_name.split("_")[1] + conf = OmegaConf.load(f"{file_path}/config_yamls/params/{step3_number}_test_acc_params_tuning_config.yaml") + for i, fun in enumerate(conf['pipeline']): + if 'params_to_tune' not in fun: + continue + target = fun["target"] + prefix = f"params.{i}.{target}" + filtered_dict = {k: v for k, v in best_run.config.items() if k.startswith(prefix)} + for k, v in filtered_dict.items(): + param_name = k.split(".")[-1] + fun['params_to_tune'][param_name] = v + if "params" not in fun: + fun["params"] = {} + fun["params"].update(fun['params_to_tune']) + del fun["params_to_tune"] + return OmegaConf.to_yaml(conf["pipeline"]) + + +def check_exist(file_path): + """Check if results directory exists and contains multiple result files. + + Parameters + ---------- + file_path : str + Path to check for results + + Returns + ------- + bool + True if valid results exist (directory exists and contains >1 file) + + """ + file_path = f"{file_path}/results/params/" + if os.path.exists(file_path) and os.path.isdir(file_path): + file_num = len(os.listdir(file_path)) + return file_num > 1 + else: + return False + + +def get_new_ans(tissue): + ans = [] + # temp=all_datasets[all_datasets["tissue"] == tissue]["data_fname"].tolist() + collect_datasets = [ + (collect_dataset.split(tissue)[1] + + (tissue + collect_dataset.split(tissue)[2] if len(collect_dataset.split(tissue)) >= 3 else '')).split('_')[0] + for collect_dataset in all_datasets[all_datasets["tissue"] == tissue]["data_fname"].tolist() + ] + + for method_folder in tqdm(methods): + for dataset_id in collect_datasets: + if dataset_id == "0b4a15a7-4e9e-4555-9733-2423e5c66469": #f72958f5-7f42-4ebb-98da-445b0c6de516 + pass + file_path = DANCEDIR / f"examples/tuning/{method_folder}/{dataset_id}" + if not check_exist(file_path): + continue + step2_url = get_sweep_url(pd.read_csv(f"{file_path}/results/pipeline/best_test_acc.csv")) + step3_urls = [] + for i in range(3): + file_csv = f"{file_path}/results/params/{i}_best_test_acc.csv" + if not os.path.exists(file_csv): + print(f"File {file_csv} does not exist, skipping.") + continue + step3_urls.append(get_sweep_url(pd.read_csv(file_csv))) + step3_str = ",".join(step3_urls) + step_str = f"step2:{step2_url}|step3:{step3_str}" + step_name, best_run, best_res, run_stats_str, need_to_check, step2_best_run, step2_best_res = get_best_method( + [step2_url] + step3_urls) + best_yaml = get_best_yaml(step_name, best_run, file_path) + step2_best_yaml = get_best_yaml("step2", step2_best_run, file_path) + ans.append({ + "Dataset_id": dataset_id, + method_folder: step_str, + f"{method_folder}_best_yaml": best_yaml, + f"{method_folder}_best_res": best_res, + f"{method_folder}_run_stats": run_stats_str, + f"{method_folder}_check": need_to_check, + f"{method_folder}_step2_best_yaml": step2_best_yaml, + f"{method_folder}_step2_best_res": step2_best_res + }) + # with open('temp_ans.json', 'w') as f: + # json.dump(ans, f,indent=4) + new_df = pd.DataFrame(ans) + return new_df + + +def write_ans(tissue, new_df, output_file=None): + """Process and write results for a specific tissue type to CSV. + + Updates all columns with matching method_folder prefix only when new _best_res + value is greater than existing value. + + Parameters + ---------- + tissue : str + Tissue type being processed + new_df : pd.DataFrame + New results to be written + output_file : str, optional + Output file path. Defaults to 'sweep_results/{tissue}_ans.csv' + + """ + if output_file is None: + output_file = f"sweep_results/{tissue}_ans.csv" + + if 'Dataset_id' not in new_df.columns: + logger.warning("Dataset_id column missing in input DataFrame") + return + + # Reset index to ensure Dataset_id is a regular column + new_df = new_df.reset_index(drop=True) + + # Process new data by merging rows with same Dataset_id + new_df_processed = pd.DataFrame() + for dataset_id in new_df['Dataset_id'].unique(): + row_data = {'Dataset_id': dataset_id} + subset = new_df[new_df['Dataset_id'] == dataset_id] + for col in new_df.columns: + if col != 'Dataset_id': + non_null_values = subset[col].dropna().unique() + if len(non_null_values) > 0: + row_data[col] = non_null_values[0] + new_df_processed = pd.concat([new_df_processed, pd.DataFrame([row_data])]) + + if os.path.exists(output_file): + existing_df = pd.read_csv(output_file) + existing_df = existing_df.loc[:, ~existing_df.columns.str.contains('^Unnamed')] + merged_df = existing_df.copy() + + for col in new_df_processed.columns: + if col not in merged_df.columns: + merged_df[col] = pd.NA + + # Iterate through each new data row + for _, new_row in new_df_processed.iterrows(): + dataset_id = new_row['Dataset_id'] + existing_row = merged_df[merged_df['Dataset_id'] == dataset_id] + + if len(existing_row) > 0: + # Check best_res for each method + for method in methods: + best_res_col = f"{method}_best_res" + if best_res_col in new_row and best_res_col in existing_row: + new_value = new_row[best_res_col] + existing_value = existing_row[best_res_col].iloc[0] + + # Only update when new value exists and is greater than existing value + if pd.notna(new_value) and (pd.isna(existing_value) + or float(new_value) > float(existing_value)): + # Update all columns starting with method + method_cols = [col for col in new_row.index if col.startswith(method)] + for col in method_cols: + merged_df.loc[merged_df['Dataset_id'] == dataset_id, col] = new_row[col] + elif pd.notna(new_value) and pd.notna(existing_value): + # Print debug information + print(f"Skipping update for {dataset_id}, {method}: " + f"existing value ({existing_value}) >= new value ({new_value})") + else: + # If it's a new Dataset_id, add the entire row + merged_df = pd.concat([merged_df, pd.DataFrame([new_row])], ignore_index=True) + + merged_df.to_csv(output_file, index=False) + else: + new_df_processed.to_csv(output_file, index=False) + + +wandb = try_import("wandb") +entity = "xzy11632" +project = "dance-dev" +methods = ["cta_actinn", "cta_celltypist", "cta_scdeepsort", "cta_singlecellnet"] +if __name__ == "__main__": + # Initialize wandb and set global configuration + # Load dataset configuration and process results for tissue + all_datasets = pd.read_csv(METADIR / "scdeepsort.csv", header=0, skiprows=[i for i in range(1, 68)]) + parser = argparse.ArgumentParser() + parser.add_argument("--tissue", type=str, default="Lung") + args = parser.parse_args() + tissue = args.tissue.capitalize() + new_df = get_new_ans(tissue) + write_ans(tissue, new_df) diff --git a/examples/atlas/metadatas/readme.md b/examples/atlas/metadatas/readme.md new file mode 100644 index 00000000..da65a38b --- /dev/null +++ b/examples/atlas/metadatas/readme.md @@ -0,0 +1,8 @@ +# metadata/README.md + +## Data Source Description + +- Data source: scGPT +- Original path: data/cellxgene/example_data_dataset/save_file/metadatas +- Sync time: 2025-01-03 +- Usage instructions: see 'examples/atlas/sc_similarity_examples/readme.md' diff --git a/examples/atlas/sc_similarity_examples/__init__.py b/examples/atlas/sc_similarity_examples/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/examples/atlas/sc_similarity_examples/cache/sweep_cache.json b/examples/atlas/sc_similarity_examples/cache/sweep_cache.json new file mode 100644 index 00000000..88271e95 --- /dev/null +++ b/examples/atlas/sc_similarity_examples/cache/sweep_cache.json @@ -0,0 +1 @@ +{"w9issa4d": [0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.20149999856948853, 0.20200000703334808, 0.1589999943971634, 0.16099999845027924, 0.15600000321865082, 0.14949999749660492, 0.2080000042915344, 0.19900000095367432, 0.1615000069141388, 0.1615000069141388, 0.1615000069141388, 0.1615000069141388, 0.20100000500679016, 0.18400000035762787, 0.1825000047683716, 0.1745000034570694, 0.1710000038146973, 0.17649999260902405, 0.181999996304512, 0.18449999392032623, 0.16249999403953552, 0.16050000488758087, 0.16249999403953552, 0.15850000083446503, 0.2080000042915344, 0.20350000262260437, 0.15600000321865082, 0.15549999475479126, 0.15299999713897705, 0.16200000047683716, 0.2240000069141388, 0.2185000032186508, 0.16249999403953552, 0.15800000727176666, 0.1430000066757202, 0.1459999978542328, 0.20649999380111697, 0.2039999961853027, 0.1599999964237213, 0.15850000083446503, 0.16050000488758087, 0.16050000488758087, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2199999988079071, 0.2160000056028366, 0.19750000536441803, 0.1710000038146973, 0.19850000739097595, 0.20000000298023224, 0.20000000298023224, 0.2029999941587448, 0.1809999942779541, 0.16850000619888306, 0.18799999356269836, 0.17800000309944153, 0.22300000488758087, 0.2224999964237213, 0.17649999260902405, 0.1354999989271164, 0.14550000429153442, 0.148499995470047, 0.210999995470047, 0.20350000262260437, 0.1675000041723251, 0.15649999678134918, 0.14399999380111694, 0.14749999344348907, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22349999845027924, 0.2224999964237213, 0.18950000405311584, 0.1655000001192093, 0.1965000033378601, 0.193000003695488, 0.20000000298023224, 0.20100000500679016, 0.1809999942779541, 0.1615000069141388, 0.16850000619888306, 0.16699999570846558, 0.22499999403953552, 0.22050000727176663, 0.1704999953508377, 0.14550000429153442, 0.13500000536441803, 0.15000000596046448, 0.23399999737739563, 0.2335000038146973, 0.1599999964237213, 0.15549999475479126, 0.17299999296665192, 0.1770000010728836, 0.23149999976158145, 0.2319999933242798, 0.17800000309944153, 0.15600000321865082, 0.15800000727176666, 0.15950000286102295, 0.2199999988079071, 0.22300000488758087, 0.193000003695488, 0.17399999499320984, 0.17599999904632568, 0.17550000548362732, 0.2304999977350235, 0.2304999977350235, 0.1825000047683716, 0.17249999940395355, 0.21449999511241913, 0.2070000022649765, 0.2224999964237213, 0.2199999988079071, 0.16899999976158142, 0.17550000548362732, 0.18299999833106995, 0.18000000715255737, 0.2319999933242798, 0.23149999976158145, 0.1784999966621399, 0.15299999713897705, 0.1615000069141388, 0.16300000250339508, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.1940000057220459, 0.1924999952316284, 0.15000000596046448, 0.16599999368190765, 0.15600000321865082, 0.1535000056028366, 0.20499999821186063, 0.2004999965429306, 0.15700000524520874, 0.1599999964237213, 0.16099999845027924, 0.1589999943971634, 0.1914999932050705, 0.1889999955892563, 0.1860000044107437, 0.18400000035762787, 0.17550000548362732, 0.1675000041723251, 0.1784999966621399, 0.17249999940395355, 0.148499995470047, 0.16050000488758087, 0.15649999678134918, 0.16099999845027924, 0.20649999380111697, 0.2070000022649765, 0.14900000393390656, 0.16050000488758087, 0.14399999380111694, 0.14749999344348907, 0.2179999947547913, 0.2214999943971634, 0.15850000083446503, 0.1469999998807907, 0.1430000066757202, 0.1525000035762787, 0.19850000739097595, 0.19699999690055847, 0.16349999606609344, 0.164000004529953, 0.15649999678134918, 0.16500000655651093, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22750000655651093, 0.22699999809265137, 0.21699999272823337, 0.17299999296665192, 0.2094999998807907, 0.21549999713897705, 0.21299999952316284, 0.21649999916553497, 0.2004999965429306, 0.17649999260902405, 0.21050000190734863, 0.2045000046491623, 0.16449999809265137, 0.19200000166893005, 0.15850000083446503, 0.14100000262260437, 0.16349999606609344, 0.15000000596046448, 0.2029999941587448, 0.19699999690055847, 0.16249999403953552, 0.15800000727176666, 0.1525000035762787, 0.15700000524520874, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22450000047683716, 0.22450000047683716, 0.21150000393390656, 0.16249999403953552, 0.1965000033378601, 0.19949999451637268, 0.2175000011920929, 0.21449999511241913, 0.193000003695488, 0.17000000178813934, 0.2045000046491623, 0.21050000190734863, 0.15950000286102295, 0.17550000548362732, 0.15150000154972076, 0.1404999941587448, 0.15850000083446503, 0.1469999998807907, 0.23100000619888303, 0.2300000041723251, 0.18400000035762787, 0.1525000035762787, 0.164000004529953, 0.1665000021457672, 0.2345000058412552, 0.2329999953508377, 0.18700000643730164, 0.15600000321865082, 0.1665000021457672, 0.16699999570846558, 0.2179999947547913, 0.2150000035762787, 0.17599999904632568, 0.1655000001192093, 0.17800000309944153, 0.17649999260902405, 0.2300000041723251, 0.2300000041723251, 0.18799999356269836, 0.1794999986886978, 0.2029999941587448, 0.20149999856948853, 0.22499999403953552, 0.22550000250339508, 0.19599999487400055, 0.16850000619888306, 0.2070000022649765, 0.20499999821186063, 0.2329999953508377, 0.23250000178813937, 0.17399999499320984, 0.15150000154972076, 0.15299999713897705, 0.15800000727176666, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.1965000033378601, 0.19599999487400055, 0.14900000393390656, 0.15649999678134918, 0.15299999713897705, 0.15299999713897705, 0.20250000059604645, 0.19449999928474423, 0.1615000069141388, 0.1589999943971634, 0.15700000524520874, 0.16500000655651093, 0.1860000044107437, 0.18299999833106995, 0.18050000071525577, 0.1899999976158142, 0.1784999966621399, 0.17749999463558197, 0.17900000512599945, 0.18549999594688416, 0.16899999976158142, 0.16599999368190765, 0.17550000548362732, 0.16500000655651093, 0.2045000046491623, 0.2074999958276749, 0.14949999749660492, 0.15800000727176666, 0.1574999988079071, 0.15700000524520874, 0.22200000286102295, 0.2214999943971634, 0.14800000190734863, 0.15700000524520874, 0.1379999965429306, 0.1445000022649765, 0.2039999961853027, 0.20250000059604645, 0.1809999942779541, 0.16500000655651093, 0.17599999904632568, 0.17550000548362732, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22200000286102295, 0.2240000069141388, 0.2224999964237213, 0.17649999260902405, 0.20999999344348907, 0.21150000393390656, 0.19699999690055847, 0.19499999284744263, 0.1924999952316284, 0.17649999260902405, 0.19449999928474423, 0.19050000607967377, 0.2214999943971634, 0.2240000069141388, 0.1665000021457672, 0.1354999989271164, 0.1574999988079071, 0.15399999916553497, 0.20900000631809235, 0.21250000596046448, 0.1655000001192093, 0.16249999403953552, 0.1509999930858612, 0.1525000035762787, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22050000727176663, 0.22050000727176663, 0.1899999976158142, 0.1745000034570694, 0.1934999972581863, 0.20000000298023224, 0.19850000739097595, 0.19850000739097595, 0.17900000512599945, 0.1745000034570694, 0.17649999260902405, 0.18449999392032623, 0.22849999368190765, 0.2214999943971634, 0.1655000001192093, 0.13850000500679016, 0.14949999749660492, 0.148499995470047, 0.23399999737739563, 0.2329999953508377, 0.16449999809265137, 0.16500000655651093, 0.16500000655651093, 0.1675000041723251, 0.23149999976158145, 0.23100000619888303, 0.181999996304512, 0.1655000001192093, 0.17350000143051147, 0.1770000010728836, 0.2199999988079071, 0.2240000069141388, 0.17599999904632568, 0.16449999809265137, 0.17249999940395355, 0.17749999463558197, 0.2304999977350235, 0.2300000041723251, 0.19699999690055847, 0.17649999260902405, 0.1979999989271164, 0.19949999451637268, 0.22499999403953552, 0.2224999964237213, 0.17749999463558197, 0.1679999977350235, 0.18700000643730164, 0.1924999952316284, 0.23250000178813937, 0.2319999933242798, 0.17599999904632568, 0.15199999511241913, 0.15700000524520874, 0.1599999964237213], "wri3w9ug": [0.1469999998807907, 0.1525000035762787, 0.13349999487400055, 0.18850000202655792, 0.13650000095367432, 0.12399999797344208, 0.14749999344348907, 0.15299999713897705, 0.1315000057220459, 0.17550000548362732, 0.12700000405311584, 0.12800000607967377, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15600000321865082, 0.15199999511241913, 0.125, 0.1860000044107437, 0.12800000607967377, 0.13650000095367432, 0.14650000631809235, 0.14800000190734863, 0.13050000369548798, 0.1794999986886978, 0.1289999932050705, 0.1354999989271164, 0.16500000655651093, 0.1710000038146973, 0.12950000166893005, 0.1889999955892563, 0.1289999932050705, 0.12099999934434892, 0.13899999856948853, 0.1414999961853027, 0.1445000022649765, 0.19050000607967377, 0.11599999666213988, 0.12099999934434892, 0.14550000429153442, 0.1414999961853027, 0.12300000339746477, 0.14100000262260437, 0.14350000023841858, 0.13349999487400055, 0.14249999821186066, 0.14800000190734863, 0.12999999523162842, 0.1860000044107437, 0.12049999833106996, 0.1264999955892563, 0.17499999701976776, 0.15700000524520874, 0.13600000739097595, 0.17350000143051147, 0.1289999932050705, 0.1354999989271164, 0.15000000596046448, 0.1535000056028366, 0.1264999955892563, 0.1835000067949295, 0.14249999821186066, 0.13449999690055847, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15000000596046448, 0.14550000429153442, 0.1459999978542328, 0.1860000044107437, 0.13050000369548798, 0.12800000607967377, 0.148499995470047, 0.13950000703334808, 0.1404999941587448, 0.18700000643730164, 0.13050000369548798, 0.13349999487400055, 0.148499995470047, 0.14650000631809235, 0.1459999978542328, 0.17649999260902405, 0.1264999955892563, 0.13199999928474426, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15449999272823334, 0.15950000286102295, 0.15199999511241913, 0.18549999594688416, 0.1274999976158142, 0.11900000274181366, 0.15950000286102295, 0.1535000056028366, 0.12950000166893005, 0.1745000034570694, 0.1289999932050705, 0.12800000607967377, 0.15700000524520874, 0.1589999943971634, 0.1289999932050705, 0.17299999296665192, 0.12300000339746477, 0.1289999932050705, 0.14399999380111694, 0.13850000500679016, 0.13050000369548798, 0.1809999942779541, 0.12349999696016312, 0.12300000339746477, 0.1414999961853027, 0.1469999998807907, 0.11949999630451202, 0.14550000429153442, 0.12150000035762788, 0.1340000033378601, 0.15399999916553497, 0.1420000046491623, 0.12700000405311584, 0.1835000067949295, 0.12049999833106996, 0.13249999284744263, 0.1430000066757202, 0.15150000154972076, 0.12700000405311584, 0.1850000023841858, 0.1264999955892563, 0.12200000137090684, 0.1525000035762787, 0.16200000047683716, 0.12950000166893005, 0.18299999833106995, 0.14249999821186066, 0.12800000607967377, 0.16449999809265137, 0.15150000154972076, 0.12399999797344208, 0.1809999942779541, 0.12800000607967377, 0.12999999523162842, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.164000004529953, 0.15299999713897705, 0.1330000013113022, 0.1825000047683716, 0.14800000190734863, 0.13050000369548798, 0.1535000056028366, 0.1535000056028366, 0.13950000703334808, 0.18449999392032623, 0.13699999451637268, 0.1459999978542328, 0.16050000488758087, 0.15549999475479126, 0.12950000166893005, 0.18649999797344208, 0.13249999284744263, 0.1169999986886978, 0.14550000429153442, 0.1469999998807907, 0.1185000017285347, 0.1860000044107437, 0.1330000013113022, 0.1274999976158142, 0.13899999856948853, 0.15150000154972076, 0.12999999523162842, 0.13950000703334808, 0.1315000057220459, 0.13249999284744263, 0.14949999749660492, 0.14550000429153442, 0.1315000057220459, 0.1770000010728836, 0.12200000137090684, 0.13449999690055847, 0.15150000154972076, 0.1414999961853027, 0.13099999725818634, 0.17900000512599945, 0.13349999487400055, 0.13050000369548798, 0.14350000023841858, 0.1414999961853027, 0.14900000393390656, 0.17900000512599945, 0.1289999932050705, 0.12150000035762788, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1354999989271164, 0.13950000703334808, 0.15449999272823334, 0.1860000044107437, 0.125, 0.13099999725818634, 0.15049999952316284, 0.15000000596046448, 0.20100000500679016, 0.17800000309944153, 0.125, 0.12800000607967377, 0.15299999713897705, 0.1655000001192093, 0.1550000011920929, 0.17000000178813934, 0.13699999451637268, 0.13500000536441803, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1459999978542328, 0.1449999958276749, 0.119999997317791, 0.181999996304512, 0.13500000536441803, 0.1469999998807907, 0.14399999380111694, 0.1449999958276749, 0.12849999964237213, 0.1794999986886978, 0.12150000035762788, 0.12449999898672104, 0.14100000262260437, 0.15700000524520874, 0.13449999690055847, 0.1770000010728836, 0.11599999666213988, 0.125, 0.13050000369548798, 0.15150000154972076, 0.14650000631809235, 0.17149999737739563, 0.1340000033378601, 0.1289999932050705, 0.13750000298023224, 0.13449999690055847, 0.1330000013113022, 0.13899999856948853, 0.13249999284744263, 0.13500000536441803, 0.15049999952316284, 0.1414999961853027, 0.15649999678134918, 0.17599999904632568, 0.1315000057220459, 0.11649999767541884, 0.1445000022649765, 0.13950000703334808, 0.12950000166893005, 0.17550000548362732, 0.13899999856948853, 0.13449999690055847, 0.1599999964237213, 0.16300000250339508, 0.12449999898672104, 0.1815000027418137, 0.14350000023841858, 0.14000000059604645, 0.14000000059604645, 0.1655000001192093, 0.12700000405311584, 0.1825000047683716, 0.13349999487400055, 0.12549999356269836, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16200000047683716, 0.15049999952316284, 0.12449999898672104, 0.1835000067949295, 0.13950000703334808, 0.1330000013113022, 0.15399999916553497, 0.1404999941587448, 0.13600000739097595, 0.18000000715255737, 0.1340000033378601, 0.1264999955892563, 0.16050000488758087, 0.16500000655651093, 0.14249999821186066, 0.1875, 0.12300000339746477, 0.13950000703334808, 0.15299999713897705, 0.15700000524520874, 0.12449999898672104, 0.1850000023841858, 0.1459999978542328, 0.13449999690055847, 0.14000000059604645, 0.14350000023841858, 0.1264999955892563, 0.13600000739097595, 0.13750000298023224, 0.15199999511241913, 0.1665000021457672, 0.1655000001192093, 0.13950000703334808, 0.1825000047683716, 0.13750000298023224, 0.1340000033378601, 0.16249999403953552, 0.1665000021457672, 0.1340000033378601, 0.18000000715255737, 0.13050000369548798, 0.13449999690055847, 0.15399999916553497, 0.15649999678134918, 0.13699999451637268, 0.1710000038146973, 0.14249999821186066, 0.13650000095367432, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15600000321865082, 0.14550000429153442, 0.1469999998807907, 0.18299999833106995, 0.13449999690055847, 0.1225000023841858, 0.13500000536441803, 0.1330000013113022, 0.1340000033378601, 0.17900000512599945, 0.14100000262260437, 0.1354999989271164, 0.1430000066757202, 0.1535000056028366, 0.14550000429153442, 0.17399999499320984, 0.14399999380111694, 0.1274999976158142, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.14900000393390656, 0.15549999475479126, 0.15700000524520874, 0.18449999392032623, 0.1315000057220459, 0.1289999932050705, 0.14900000393390656, 0.1404999941587448, 0.1535000056028366, 0.17299999296665192, 0.13449999690055847, 0.14249999821186066, 0.14900000393390656, 0.14949999749660492, 0.13650000095367432, 0.17149999737739563, 0.1264999955892563, 0.13850000500679016, 0.15000000596046448, 0.15150000154972076, 0.12800000607967377, 0.1694999933242798, 0.13750000298023224, 0.1420000046491623, 0.1445000022649765, 0.14350000023841858, 0.1354999989271164, 0.13099999725818634, 0.14399999380111694, 0.14350000023841858, 0.15199999511241913, 0.15049999952316284, 0.1379999965429306, 0.1815000027418137, 0.12349999696016312, 0.1354999989271164, 0.1445000022649765, 0.1414999961853027, 0.1330000013113022, 0.17800000309944153, 0.12549999356269836, 0.13050000369548798], "51cpr0d9": [0.2294999957084656, 0.2319999933242798, 0.23149999976158145, 0.23149999976158145, -0.01, -0.01, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, 0.2055000066757202, 0.1924999952316284, 0.19850000739097595, 0.20200000703334808, 0.19200000166893005, 0.16899999976158142, 0.17749999463558197, 0.17000000178813934, 0.2080000042915344, 0.19699999690055847, 0.1850000023841858, 0.1924999952316284, -0.01, -0.01, -0.01, -0.01, 0.19750000536441803, 0.18850000202655792, 0.1889999955892563, 0.18799999356269836, 0.2179999947547913, 0.20600000023841855, -0.01, -0.01, -0.01, -0.01, 0.21299999952316284, 0.20000000298023224, 0.1850000023841858, 0.19750000536441803, 0.22300000488758087, 0.22200000286102295, 0.2304999977350235, 0.22499999403953552, 0.2195000052452087, 0.2160000056028366, 0.2280000001192093, 0.226500004529953, 0.22200000286102295, 0.2004999965429306, 0.23250000178813937, 0.2319999933242798, 0.2319999933242798, 0.2319999933242798, -0.01, -0.01, 0.2319999933242798, 0.2335000038146973, 0.2319999933242798, 0.2319999933242798, 0.19200000166893005, 0.19099999964237213, 0.20149999856948853, 0.2039999961853027, 0.1860000044107437, 0.1770000010728836, 0.17399999499320984, 0.16449999809265137, 0.19099999964237213, 0.18549999594688416, 0.18299999833106995, 0.16899999976158142, -0.01, -0.01, -0.01, -0.01, 0.2004999965429306, 0.19200000166893005, 0.17749999463558197, 0.17249999940395355, 0.18850000202655792, 0.18799999356269836, -0.01, -0.01, -0.01, -0.01, 0.20600000023841855, 0.1979999989271164, 0.1899999976158142, 0.20000000298023224, 0.226500004529953, 0.2280000001192093, 0.2280000001192093, 0.22699999809265137, 0.2134999930858612, 0.21400000154972076, 0.22750000655651093, 0.2195000052452087, 0.21649999916553497, 0.2094999998807907, 0.2319999933242798, 0.23149999976158145, -0.01, 0.2319999933242798, -0.01, -0.01, 0.23100000619888303, 0.23100000619888303, 0.2319999933242798, 0.2319999933242798, 0.19499999284744263, 0.20600000023841855, 0.21400000154972076, 0.2029999941587448, 0.18649999797344208, 0.1694999933242798, 0.16449999809265137, 0.17800000309944153, 0.1924999952316284, 0.19699999690055847, 0.1940000057220459, 0.19449999928474423, -0.01, -0.01, -0.01, -0.01, 0.2150000035762787, 0.2004999965429306, 0.15649999678134918, 0.18299999833106995, 0.18850000202655792, 0.2055000066757202, -0.01, -0.01, -0.01, -0.01, 0.22849999368190765, 0.2134999930858612, 0.1770000010728836, 0.1784999966621399, 0.23250000178813937, 0.23100000619888303, 0.22750000655651093, 0.22450000047683716, 0.2070000022649765, 0.21050000190734863, 0.2280000001192093, 0.22300000488758087, 0.2134999930858612, 0.21199999749660492], "lv0fx66b": [-0.01, 0.22, -0.01, -0.01, 0.2255, 0.227, 0.223, 0.222, 0.226, 0.105, 0.2255, 0.2215, 0.228, -0.01, -0.01, 0.084, 0.221, 0.2275, 0.2245, -0.01, -0.01, 0.0295, 0.2055, 0.226, 0.2255, 0.225, 0.2235, -0.01, 0.2125, 0.226, -0.01, -0.01, -0.01, -0.01, 0.2245, 0.2265, 0.228, 0.225, 0.2265, 0.056, 0.2255, 0.227, 0.229, -0.01, -0.01, 0.048, 0.1325, 0.2235, 0.227, -0.01, -0.01, 0.037, 0.0895, 0.2265, 0.223, 0.2245, 0.22, 0.0085, 0.1465, 0.2255, 0.0095, 0.0095, -0.01, 0.0095, 0.227, 0.227, 0.2235, 0.2225, 0.2275, 0.0665, 0.221, 0.2265, 0.2245, -0.01, -0.01, 0.042, 0.2105, 0.2245, 0.226, -0.01, -0.01, 0.0325, 0.1945, 0.225, 0.2235, 0.224, 0.224, 0.0085, 0.198, 0.2275], "owszihkr": [0.34545454382896423, 0.4000000059604645, -0.01, 0.3727272748947144, 0.38181817531585693, 0.3727272748947144, 0.34545454382896423, 0.4000000059604645, 0.4181818068027496, 0.3727272748947144, 0.38181817531585693, 0.3727272748947144, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34545454382896423, 0.4000000059604645, 0.3727272748947144, 0.3727272748947144, 0.38181817531585693, 0.3727272748947144, 0.34545454382896423, 0.4000000059604645, 0.4181818068027496, 0.3727272748947144, 0.38181817531585693, 0.3727272748947144, 0.34545454382896423, 0.4000000059604645, 0.4181818068027496, 0.3727272748947144, 0.38181817531585693, 0.3727272748947144, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.3909091055393219, 0.33636364340782166, 0.2818181812763214, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.3909091055393219, 0.33636364340782166, 0.2818181812763214, 0.4000000059604645, 0.38181817531585693, 0.3272727131843567, 0.3181818127632141, 0.34545454382896423, 0.3545454442501068, 0.38181817531585693, 0.38181817531585693, 0.3909091055393219, 0.3636363744735718, 0.33636364340782166, 0.2818181812763214, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.3909091055393219, 0.33636364340782166, 0.2818181812763214, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.3909091055393219, 0.33636364340782166, 0.2818181812763214, 0.3727272748947144, 0.38181817531585693, 0.3636363744735718, 0.34545454382896423, 0.290909081697464, 0.33636364340782166, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3727272748947144, -0.01, 0.27272728085517883, -0.01, 0.30909091234207153, 0.33636364340782166, 0.3727272748947144, 0.34545454382896423, 0.3727272748947144, 0.3545454442501068, 0.290909081697464, 0.33636364340782166, 0.3727272748947144, 0.38181817531585693, 0.3636363744735718, 0.34545454382896423, 0.290909081697464, 0.33636364340782166, 0.30000001192092896, 0.30909091234207153, 0.33636364340782166, -0.01, -0.01, 0.3636363744735718, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.30000001192092896, 0.3181818127632141, 0.26363635063171387, 0.34545454382896423, 0.34545454382896423, 0.3727272748947144, 0.30000001192092896, 0.30000001192092896, 0.3181818127632141, 0.3181818127632141, 0.34545454382896423, 0.3727272748947144, 0.30000001192092896, 0.30909091234207153, -0.01, -0.01, 0.34545454382896423, 0.3636363744735718, 0.38181817531585693, 0.38181817531585693, 0.3636363744735718, 0.40909090638160706, 0.3545454442501068, 0.3181818127632141, 0.38181817531585693, 0.38181817531585693, -0.01, -0.01, 0.3545454442501068, 0.3181818127632141, 0.4181818068027496, 0.3909091055393219, 0.40909090638160706, 0.4000000059604645, 0.3909091055393219, -0.01, -0.01, 0.38181817531585693, 0.33636364340782166, -0.01, 0.3545454442501068, 0.3181818127632141, 0.38181817531585693, -0.01, -0.01, -0.01, 0.3545454442501068, 0.3181818127632141, -0.01, 0.38181817531585693, 0.3636363744735718, 0.40909090638160706, -0.01, 0.3181818127632141, 0.34545454382896423, 0.34545454382896423, 0.4000000059604645, -0.01, -0.01, 0.3636363744735718, 0.34545454382896423, 0.34545454382896423, 0.4000000059604645, 0.3727272748947144, 0.38181817531585693, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34545454382896423, -0.01, 0.4181818068027496, 0.3727272748947144, 0.38181817531585693, 0.3636363744735718, 0.34545454382896423, -0.01, -0.01, 0.3727272748947144, 0.38181817531585693, 0.3636363744735718, 0.34545454382896423, 0.34545454382896423, -0.01, -0.01, 0.38181817531585693, 0.3636363744735718, -0.01, 0.38181817531585693, 0.3545454442501068, 0.33636364340782166, -0.01, -0.01, 0.3636363744735718, 0.38181817531585693, -0.01, -0.01, 0.3545454442501068, -0.01, 0.3909091055393219, -0.01, -0.01, -0.01, 0.290909081697464, -0.01, -0.01, -0.01, -0.01, 0.3272727131843567, -0.01, -0.01, 0.3636363744735718, -0.01, 0.3545454442501068, 0.3272727131843567, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33636364340782166, 0.3545454442501068, -0.01, -0.01, 0.2818181812763214, -0.01, 0.2545454502105713, 0.2818181812763214, 0.2545454502105713, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3272727131843567, 0.2545454502105713, 0.19090908765792847, 0.26363635063171387, 0.2818181812763214, 0.2545454502105713, 0.30909091234207153, 0.290909081697464, 0.2545454502105713, 0.23636363446712497, 0.2818181812763214, 0.2545454502105713, 0.30909091234207153, 0.2818181812763214, 0.30909091234207153, 0.2545454502105713, -0.01, 0.2545454502105713, 0.26363635063171387, 0.2181818187236786, 0.30000001192092896, 0.26363635063171387, 0.33636364340782166, 0.33636364340782166, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.27272728085517883, 0.30000001192092896, 0.1818181872367859, 0.26363635063171387, 0.3272727131843567, 0.34545454382896423, 0.30000001192092896, 0.2818181812763214, 0.27272728085517883, 0.290909081697464, 0.34545454382896423, 0.33636364340782166, 0.26363635063171387, 0.2181818187236786, 0.30000001192092896, 0.26363635063171387, 0.33636364340782166, 0.33636364340782166, 0.38181817531585693, 0.3727272748947144, 0.3636363744735718, 0.4636363685131073, 0.34545454382896423, 0.3636363744735718, 0.38181817531585693, 0.3727272748947144, 0.3636363744735718, 0.4636363685131073, 0.34545454382896423, 0.3636363744735718, 0.4181818068027496, 0.3727272748947144, 0.4181818068027496, 0.34545454382896423, 0.3909091055393219, 0.34545454382896423, 0.38181817531585693, 0.3727272748947144, 0.3727272748947144, 0.4181818068027496, 0.34545454382896423, 0.3636363744735718, 0.38181817531585693, 0.3727272748947144, 0.3272727131843567, 0.44545453786849976, 0.34545454382896423, 0.3636363744735718, 0.38181817531585693, 0.3727272748947144, -0.01, 0.4636363685131073, 0.34545454382896423, -0.01, 0.34545454382896423, 0.40909090638160706, 0.38181817531585693, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.34545454382896423, 0.40909090638160706, 0.38181817531585693, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34545454382896423, 0.40909090638160706, 0.38181817531585693, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.34545454382896423, 0.40909090638160706, 0.38181817531585693, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.34545454382896423, 0.40909090638160706, 0.38181817531585693, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, -0.01, 0.38181817531585693, 0.30000001192092896, 0.34545454382896423, 0.33636364340782166, 0.33636364340782166, 0.3909091055393219, 0.38181817531585693, 0.30000001192092896, 0.34545454382896423, -0.01, 0.33636364340782166, 0.3909091055393219, 0.3636363744735718, 0.3636363744735718, 0.3272727131843567, 0.34545454382896423, 0.3272727131843567, 0.3909091055393219, 0.38181817531585693, 0.30000001192092896, 0.34545454382896423, 0.33636364340782166, 0.33636364340782166, 0.3909091055393219, -0.01, 0.30000001192092896, 0.33636364340782166, 0.33636364340782166, 0.3272727131843567, 0.3909091055393219, 0.38181817531585693, 0.30000001192092896, 0.34545454382896423, 0.33636364340782166, 0.33636364340782166, 0.3272727131843567, 0.3545454442501068, 0.3727272748947144, 0.3272727131843567, 0.38181817531585693, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3545454442501068, 0.3727272748947144, 0.3272727131843567, 0.38181817531585693, -0.01, 0.3272727131843567, 0.3545454442501068, -0.01, 0.38181817531585693, 0.38181817531585693, 0.27272728085517883, 0.3272727131843567, 0.3545454442501068, 0.3727272748947144, 0.3272727131843567, 0.38181817531585693, 0.27272728085517883, 0.3636363744735718, 0.27272728085517883, 0.30909091234207153, 0.30000001192092896, 0.3181818127632141, 0.34545454382896423, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, 0.27272728085517883, 0.30909091234207153, 0.30000001192092896, 0.3181818127632141, 0.34545454382896423, 0.3545454442501068, 0.27272728085517883, 0.33636364340782166, 0.34545454382896423, 0.3181818127632141, 0.34545454382896423, 0.3636363744735718, 0.27272728085517883, 0.30909091234207153, 0.30000001192092896, 0.3181818127632141, 0.34545454382896423, 0.4000000059604645, 0.38181817531585693, -0.01, 0.4000000059604645, 0.4000000059604645, 0.3727272748947144, 0.4000000059604645, 0.38181817531585693, 0.3727272748947144, 0.4000000059604645, 0.4000000059604645, 0.3727272748947144, 0.4363636374473572, 0.4272727370262146, 0.4000000059604645, 0.4000000059604645, 0.34545454382896423, 0.3636363744735718, 0.4000000059604645, 0.38181817531585693, 0.3727272748947144, 0.4000000059604645, 0.4000000059604645, 0.3727272748947144, 0.4000000059604645, 0.38181817531585693, 0.38181817531585693, 0.3909091055393219, 0.4000000059604645, 0.3727272748947144, 0.4000000059604645, 0.38181817531585693, 0.3727272748947144, 0.4000000059604645, 0.4000000059604645, 0.3727272748947144], "3hrf2wbb": [0.2545454502105713, 0.2545454502105713, 0.290909081697464, 0.3909091055393219, 0.34545454382896423, 0.3272727131843567, 0.2545454502105713, 0.2545454502105713, 0.290909081697464, 0.3909091055393219, 0.34545454382896423, 0.3272727131843567, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.290909081697464, 0.27272728085517883, 0.34545454382896423, 0.3909091055393219, 0.30000001192092896, 0.30909091234207153, 0.30000001192092896, 0.27272728085517883, 0.33636364340782166, 0.3909091055393219, 0.290909081697464, 0.30000001192092896, 0.38181817531585693, 0.4000000059604645, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.3727272748947144, 0.38181817531585693, 0.4000000059604645, 0.38181817531585693, 0.38181817531585693, 0.3727272748947144, 0.3727272748947144, 0.3272727131843567, 0.3181818127632141, 0.3181818127632141, 0.3545454442501068, 0.38181817531585693, 0.4000000059604645, 0.38181817531585693, 0.40909090638160706, 0.3181818127632141, 0.38181817531585693, 0.34545454382896423, 0.40909090638160706, 0.3727272748947144, 0.40909090638160706, 0.38181817531585693, 0.38181817531585693, 0.3545454442501068, 0.40909090638160706, 0.34545454382896423, 0.27272728085517883, 0.40909090638160706, 0.30909091234207153, 0.3272727131843567, 0.290909081697464, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2818181812763214, 0.27272728085517883, 0.27272728085517883, 0.30909091234207153, 0.3181818127632141, 0.290909081697464, 0.3272727131843567, 0.27272728085517883, 0.33636364340782166, 0.30909091234207153, 0.3181818127632141, 0.30909091234207153, 0.3727272748947144, 0.3181818127632141, 0.3909091055393219, 0.40909090638160706, 0.3272727131843567, 0.2545454502105713, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34545454382896423, 0.3272727131843567, 0.4181818068027496, 0.40909090638160706, 0.3272727131843567, 0.27272728085517883, 0.3181818127632141, 0.30909091234207153, 0.44545453786849976, 0.40909090638160706, 0.30000001192092896, 0.30000001192092896, 0.33636364340782166, 0.33636364340782166, 0.40909090638160706, 0.3636363744735718, 0.3545454442501068, 0.3181818127632141, 0.33636364340782166, 0.33636364340782166, 0.40909090638160706, 0.3636363744735718, 0.3545454442501068, 0.3181818127632141, 0.290909081697464, 0.2545454502105713, 0.2818181812763214, 0.27272728085517883, 0.2818181812763214, 0.30000001192092896, -0.01, 0.34545454382896423, 0.3636363744735718, 0.3636363744735718, 0.3545454442501068, 0.34545454382896423, 0.3545454442501068, 0.33636364340782166, 0.40909090638160706, 0.3636363744735718, 0.3636363744735718, 0.34545454382896423, 0.30909091234207153, 0.2454545497894287, 0.3727272748947144, 0.38181817531585693, 0.3545454442501068, 0.3636363744735718, 0.30909091234207153, 0.2454545497894287, 0.3727272748947144, 0.38181817531585693, 0.3545454442501068, 0.3636363744735718, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.290909081697464, 0.2454545497894287, 0.3545454442501068, 0.38181817531585693, 0.3636363744735718, 0.3545454442501068, 0.30000001192092896, 0.2454545497894287, 0.3545454442501068, 0.38181817531585693, 0.3545454442501068, 0.3545454442501068, 0.38181817531585693, 0.3272727131843567, 0.3636363744735718, 0.3909091055393219, 0.34545454382896423, 0.34545454382896423, 0.38181817531585693, 0.3272727131843567, 0.3636363744735718, 0.3909091055393219, 0.34545454382896423, 0.34545454382896423, 0.33636364340782166, 0.3727272748947144, 0.4181818068027496, 0.4272727370262146, 0.4181818068027496, 0.3727272748947144, 0.3727272748947144, 0.3181818127632141, 0.3727272748947144, 0.3909091055393219, 0.3272727131843567, 0.3272727131843567, 0.3909091055393219, 0.3181818127632141, 0.3545454442501068, 0.3909091055393219, 0.33636364340782166, 0.34545454382896423, 0.16363635659217834, 0.2090909034013748, 0.2545454502105713, 0.33636364340782166, 0.3727272748947144, 0.34545454382896423, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1818181872367859, 0.22727273404598236, 0.22727273404598236, -0.01, 0.3727272748947144, 0.3727272748947144, 0.17272727191448212, 0.2181818187236786, 0.26363635063171387, 0.33636364340782166, 0.38181817531585693, 0.3545454442501068, 0.30000001192092896, 0.30909091234207153, 0.2454545497894287, 0.3272727131843567, 0.3181818127632141, 0.290909081697464, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3272727131843567, 0.3181818127632141, 0.27272728085517883, 0.3272727131843567, 0.3181818127632141, 0.30000001192092896, 0.3272727131843567, 0.33636364340782166, 0.2545454502105713, 0.3272727131843567, 0.30909091234207153, 0.290909081697464, 0.33636364340782166, 0.3636363744735718, 0.34545454382896423, 0.3909091055393219, 0.33636364340782166, 0.33636364340782166, 0.33636364340782166, 0.3636363744735718, 0.34545454382896423, 0.3909091055393219, 0.33636364340782166, 0.33636364340782166, 0.26363635063171387, 0.2818181812763214, 0.3272727131843567, 0.3181818127632141, 0.33636364340782166, 0.38181817531585693, 0.34545454382896423, 0.3727272748947144, 0.40909090638160706, 0.3909091055393219, 0.34545454382896423, 0.34545454382896423, 0.3636363744735718, 0.3727272748947144, 0.3727272748947144, 0.3909091055393219, 0.3545454442501068, 0.3545454442501068, 0.27272728085517883, 0.2818181812763214, 0.3636363744735718, 0.40909090638160706, 0.30000001192092896, 0.3272727131843567, 0.27272728085517883, 0.2818181812763214, 0.3636363744735718, 0.40909090638160706, 0.30000001192092896, 0.3272727131843567, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.27272728085517883, 0.2818181812763214, 0.3636363744735718, 0.40909090638160706, 0.30000001192092896, 0.3272727131843567, 0.30000001192092896, 0.2454545497894287, 0.3545454442501068, 0.40909090638160706, 0.30000001192092896, 0.3272727131843567, 0.38181817531585693, 0.38181817531585693, 0.3636363744735718, 0.3181818127632141, 0.4000000059604645, 0.38181817531585693, 0.38181817531585693, 0.38181817531585693, 0.3636363744735718, 0.3181818127632141, 0.4000000059604645, 0.38181817531585693, 0.26363635063171387, 0.26363635063171387, 0.3181818127632141, 0.3636363744735718, 0.3727272748947144, 0.30000001192092896, 0.38181817531585693, 0.38181817531585693, 0.3636363744735718, 0.3181818127632141, 0.4000000059604645, 0.38181817531585693, 0.3636363744735718, 0.3909091055393219, 0.3545454442501068, 0.3181818127632141, 0.38181817531585693, 0.4000000059604645, 0.30909091234207153, 0.26363635063171387, 0.33636364340782166, 0.30909091234207153, 0.30909091234207153, 0.3181818127632141, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.30909091234207153, 0.26363635063171387, 0.33636364340782166, 0.30909091234207153, 0.30909091234207153, 0.3181818127632141, 0.2818181812763214, 0.26363635063171387, 0.40909090638160706, 0.30909091234207153, 0.3181818127632141, 0.33636364340782166, -0.01, 0.34545454382896423, 0.30000001192092896, 0.40909090638160706, 0.30909091234207153, 0.3272727131843567, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3727272748947144, 0.34545454382896423, 0.30000001192092896, 0.40909090638160706, 0.30909091234207153, 0.3272727131843567, 0.3909091055393219, 0.34545454382896423, 0.3181818127632141, 0.40909090638160706, 0.30000001192092896, 0.3272727131843567, 0.3545454442501068, 0.33636364340782166, 0.4636363685131073, 0.40909090638160706, 0.3545454442501068, 0.34545454382896423, 0.3545454442501068, 0.33636364340782166, 0.4636363685131073, 0.40909090638160706, 0.3545454442501068, 0.34545454382896423, 0.30000001192092896, 0.2181818187236786, 0.3181818127632141, 0.26363635063171387, 0.3272727131843567, 0.30000001192092896, 0.3545454442501068, 0.33636364340782166, 0.4636363685131073, 0.40909090638160706, 0.3545454442501068, 0.34545454382896423, 0.3636363744735718, 0.34545454382896423, 0.4545454680919647, 0.40909090638160706, 0.3545454442501068, 0.34545454382896423], "ofw1llkf": [0.3636363744735718, 0.3545454442501068, 0.3636363744735718, 0.3545454442501068, -0.01, -0.01, 0.3636363744735718, 0.3545454442501068, 0.3636363744735718, 0.3545454442501068, 0.3727272748947144, 0.38181817531585693, 0.3727272748947144, 0.38181817531585693, 0.3909091055393219, 0.3909091055393219, 0.3727272748947144, 0.38181817531585693, 0.3727272748947144, 0.38181817531585693, 0.34545454382896423, 0.33636364340782166, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, 0.33636364340782166, 0.34545454382896423, 0.33636364340782166, 0.3636363744735718, 0.38181817531585693, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, 0.38181817531585693, 0.3636363744735718, 0.38181817531585693, 0.3545454442501068, 0.34545454382896423, 0.3545454442501068, 0.34545454382896423, 0.3545454442501068, 0.3545454442501068, -0.01, 0.34545454382896423, 0.3545454442501068, 0.34545454382896423, 0.3636363744735718, 0.3636363744735718, 0.3636363744735718, 0.3636363744735718, -0.01, -0.01, 0.3636363744735718, 0.3636363744735718, 0.3636363744735718, 0.3636363744735718, 0.38181817531585693, 0.4272727370262146, 0.38181817531585693, 0.4272727370262146, 0.4000000059604645, 0.3727272748947144, 0.38181817531585693, 0.4272727370262146, 0.38181817531585693, 0.4272727370262146, 0.290909081697464, 0.27272728085517883, -0.01, -0.01, -0.01, -0.01, 0.290909081697464, 0.27272728085517883, 0.290909081697464, 0.27272728085517883, 0.30000001192092896, 0.23636363446712497, -0.01, -0.01, -0.01, -0.01, 0.30000001192092896, 0.23636363446712497, 0.30000001192092896, 0.23636363446712497, -0.01, 0.3545454442501068, 0.3545454442501068, 0.3545454442501068, 0.3727272748947144, 0.3727272748947144, 0.3545454442501068, 0.3545454442501068, 0.3545454442501068, 0.3545454442501068, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, -0.01, -0.01, 0.33636364340782166, 0.4000000059604645, 0.33636364340782166, 0.4000000059604645, 0.3727272748947144, 0.3545454442501068, 0.33636364340782166, 0.4000000059604645, 0.33636364340782166, 0.4000000059604645, 0.3909091055393219, 0.3727272748947144, -0.01, -0.01, -0.01, -0.01, 0.3909091055393219, 0.3727272748947144, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3545454442501068, 0.38181817531585693, -0.01, -0.01, -0.01, 0.3545454442501068, 0.3545454442501068, 0.3636363744735718, 0.38181817531585693, 0.3545454442501068, 0.3545454442501068, 0.3545454442501068, 0.3545454442501068], "6x20gszq": [-0.01, 0.33636363636363636, 0.33636363636363636, 0.4090909090909091, 0.4090909090909091, 0.37272727272727274, -0.01, -0.01, 0.38181818181818183, 0.38181818181818183, 0.2636363636363636, -0.01, -0.01, 0.2727272727272727, 0.33636363636363636, 0.33636363636363636, 0.3636363636363637, 0.3636363636363637, -0.01, 0.33636363636363636, 0.3636363636363637, 0.3636363636363637, 0.4272727272727273, 0.3636363636363637, 0.390909090909091, 0.4272727272727273, 0.38181818181818183, -0.01, -0.01, 0.34545454545454546, 0.38181818181818183, 0.38181818181818183, 0.2727272727272727, -0.01, -0.01, 0.2727272727272727, 0.2727272727272727, 0.35454545454545455, 0.3, 0.34545454545454546, 0.34545454545454546, -0.01, 0.34545454545454546, 0.3636363636363637, 0.4545454545454546, 0.4545454545454546, -0.01, -0.01, 0.4272727272727273, 0.4272727272727273, 0.2727272727272727, -0.01, -0.01, 0.2727272727272727, 0.33636363636363636, 0.33636363636363636, 0.33636363636363636, 0.34545454545454546, 0.2818181818181818, 0.4090909090909091, 0.4090909090909091, 0.38181818181818183, 0.35454545454545455, 0.2636363636363636, 0.2636363636363636, 0.33636363636363636, 0.3090909090909091, 0.33636363636363636, 0.33636363636363636, 0.4272727272727273, 0.4272727272727273, 0.2909090909090909, 0.2727272727272727, 0.3, 0.3, 0.3, 0.34545454545454546, 0.34545454545454546, 0.4545454545454546, 0.4545454545454546, 0.4545454545454546, 0.4272727272727273, 0.4272727272727273, 0.2727272727272727, 0.2727272727272727, 0.33636363636363636, 0.3636363636363637, 0.33636363636363636, 0.33636363636363636, 0.33636363636363636], "tsfqsce4": [0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.3240000009536743, 0.3100000023841858, 0.25949999690055847, 0.2335000038146973, 0.25200000405311584, 0.2549999952316284, 0.32749998569488525, 0.32249999046325684, 0.2515000104904175, 0.23899999260902405, 0.257999986410141, 0.2605000138282776, 0.3125, 0.30250000953674316, 0.26600000262260437, 0.2475000023841858, 0.25450000166893005, 0.26100000739097595, 0.2939999997615814, 0.28450000286102295, 0.2619999945163727, 0.22849999368190765, 0.2784999907016754, 0.2720000147819519, 0.3230000138282776, 0.31150001287460327, 0.2485000044107437, 0.24050000309944153, 0.2475000023841858, 0.2540000081062317, 0.3330000042915344, 0.33149999380111694, 0.2540000081062317, 0.2280000001192093, 0.25049999356269836, 0.23899999260902405, 0.30250000953674316, 0.3009999990463257, 0.2419999986886978, 0.26750001311302185, 0.25049999356269836, 0.25999999046325684, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3264999985694885, 0.32899999618530273, 0.28999999165534973, 0.257999986410141, 0.3165000081062317, 0.31349998712539673, 0.30300000309944153, 0.2985000014305115, 0.2815000116825104, 0.2540000081062317, 0.29899999499320984, 0.28999999165534973, 0.2800000011920929, 0.28600001335144043, 0.24150000512599945, 0.23100000619888303, 0.23999999463558197, 0.24150000512599945, 0.28850001096725464, 0.28200000524520874, 0.2605000138282776, 0.2554999887943268, 0.26249998807907104, 0.2669999897480011, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.30000001192092896, 0.27950000762939453, 0.2994999885559082, 0.265500009059906, 0.3149999976158142, 0.3109999895095825, 0.304500013589859, 0.2944999933242798, 0.2994999885559082, 0.25099998712539673, 0.3009999990463257, 0.2985000014305115, 0.31349998712539673, 0.30399999022483826, 0.24899999797344208, 0.2460000067949295, 0.23899999260902405, 0.23250000178813937, 0.33500000834465027, 0.33500000834465027, 0.2694999873638153, 0.2475000023841858, 0.26899999380111694, 0.2709999978542328, 0.33550000190734863, 0.33550000190734863, 0.2630000114440918, 0.23999999463558197, 0.26750001311302185, 0.2759999930858612, 0.3305000066757202, 0.328000009059906, 0.27149999141693115, 0.265500009059906, 0.2750000059604645, 0.27649998664855957, 0.33500000834465027, 0.33500000834465027, 0.304500013589859, 0.24950000643730164, 0.31850001215934753, 0.3165000081062317, 0.328000009059906, 0.32600000500679016, 0.29100000858306885, 0.23849999904632568, 0.30300000309944153, 0.30799999833106995, 0.33500000834465027, 0.33500000834465027, 0.2745000123977661, 0.2535000145435333, 0.24050000309944153, 0.2440000027418137, 0.33500000834465027, -0.01, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.31200000643730164, 0.3070000112056732, 0.25850000977516174, 0.24300000071525577, 0.25099998712539673, 0.2524999976158142, 0.32600000500679016, 0.32100000977516174, 0.2540000081062317, 0.2345000058412552, -0.01, 0.2669999897480011, 0.31299999356269836, 0.3100000023841858, 0.2475000023841858, 0.2565000057220459, 0.25699999928474426, 0.2685000002384186, 0.28600001335144043, 0.2874999940395355, 0.2450000047683716, 0.2290000021457672, 0.25200000405311584, 0.2574999928474426, 0.32249999046325684, 0.31700000166893005, 0.25, 0.23250000178813937, 0.24799999594688416, 0.2485000044107437, 0.3334999978542328, 0.33250001072883606, 0.2395000010728836, 0.23100000619888303, -0.01, -0.01, -0.01, 0.32600000500679016, -0.01, -0.01, -0.01, 0.2319999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.30149999260902405, 0.3125, -0.01, -0.01, 0.30550000071525574, 0.304500013589859, 0.3050000071525574, 0.3089999854564667, 0.29249998927116394, -0.01, -0.01, 0.2980000078678131, 0.2630000114440918, -0.01, 0.19499999284744263, 0.26750001311302185, 0.2074999958276749, 0.22300000488758087, 0.1354999989271164, 0.0949999988079071, -0.01, 0.2199999988079071, -0.01, 0.2329999953508377, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.29750001430511475, 0.3009999990463257, -0.01, 0.265500009059906, 0.31150001287460327, -0.01, 0.3179999887943268, 0.3230000138282776, 0.29350000619888306, 0.2524999976158142, 0.3089999854564667, 0.3050000071525574, -0.01, -0.01, 0.2055000066757202, 0.31450000405311584, 0.2515000104904175, 0.21050000190734863, 0.33500000834465027, 0.33500000834465027, 0.2784999907016754, 0.2450000047683716, 0.28049999475479126, 0.2775000035762787, 0.33500000834465027, 0.33500000834465027, 0.2759999930858612, 0.25600001215934753, 0.26499998569488525, -0.01, 0.3345000147819519, 0.3334999978542328, 0.2549999952316284, -0.01, -0.01, 0.27300000190734863, -0.01, 0.33500000834465027, -0.01, 0.2524999976158142, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26100000739097595, 0.3109999895095825, 0.31049999594688416, 0.33500000834465027, 0.33500000834465027, 0.26750001311302185, 0.2294999957084656, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, -0.01, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33500000834465027, -0.01, -0.01, 0.33500000834465027, 0.33500000834465027, -0.01, 0.33500000834465027, 0.33500000834465027, -0.01, -0.01, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, 0.33500000834465027, -0.01, 0.33500000834465027, -0.01, -0.01, 0.24799999594688416, 0.23600000143051147, 0.25049999356269836, 0.24699999392032623, 0.3084999918937683, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22699999809265137, 0.24799999594688416, 0.25099998712539673, 0.32249999046325684, 0.31450000405311584, 0.24549999833106995, 0.24300000071525577, 0.25049999356269836, 0.2535000145435333, 0.3345000147819519, 0.3305000066757202, 0.24650000035762787, 0.2304999977350235, -0.01, 0.26600000262260437, 0.2809999883174896, 0.2815000116825104, 0.25, 0.265500009059906, 0.2605000138282776, 0.2639999985694885, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3095000088214874, 0.31150001287460327, 0.296999990940094, 0.2475000023841858, 0.3095000088214874, 0.31049999594688416, 0.2985000014305115, 0.29750001430511475, 0.29350000619888306, 0.2639999985694885, 0.28949999809265137, 0.289000004529953, 0.31700000166893005, 0.3109999895095825, 0.2450000047683716, 0.2094999998807907, 0.23999999463558197, 0.23649999499320984, 0.30149999260902405, 0.31150001287460327, 0.2669999897480011, 0.26499998569488525, 0.2694999873638153, 0.2685000002384186, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33149999380111694, 0.3174999952316284, 0.28999999165534973, 0.25850000977516174, 0.30649998784065247, 0.3100000023841858, 0.29899999499320984, 0.2874999940395355, 0.2980000078678131, 0.2540000081062317, 0.30149999260902405, 0.30149999260902405, 0.32600000500679016, 0.3140000104904175, 0.25, 0.25699999928474426, 0.24050000309944153, 0.23899999260902405, 0.33500000834465027, 0.33500000834465027, 0.2630000114440918, 0.2370000034570694, 0.2694999873638153, -0.01, 0.33550000190734863, 0.33500000834465027, 0.25450000166893005, 0.24050000309944153, 0.2644999921321869, 0.27399998903274536, 0.328000009059906, 0.3240000009536743, 0.273499995470047, 0.2605000138282776, 0.2815000116825104, 0.28299999237060547, 0.33500000834465027, 0.33500000834465027, -0.01, 0.2450000047683716, 0.31150001287460327, 0.3109999895095825, 0.32350000739097595, 0.32249999046325684, 0.2809999883174896, -0.01, 0.3050000071525574, 0.3050000071525574, 0.33500000834465027, 0.33500000834465027, 0.2524999976158142, 0.2705000042915344, 0.23849999904632568, 0.25049999356269836], "pk55qst3": [0.23149999976158145, 0.23649999499320984, 0.19750000536441803, -0.01, 0.18449999392032623, 0.18649999797344208, 0.21449999511241913, 0.22699999809265137, 0.1850000023841858, 0.2865000069141388, 0.19949999451637268, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2294999957084656, 0.22750000655651093, 0.1979999989271164, 0.28700000047683716, 0.20350000262260437, 0.19750000536441803, 0.22550000250339508, 0.21449999511241913, 0.1809999942779541, 0.265500009059906, 0.2029999941587448, 0.1794999986886978, 0.2450000047683716, 0.23499999940395355, 0.2080000042915344, 0.2800000011920929, 0.18449999392032623, 0.1784999966621399, 0.2460000067949295, 0.23499999940395355, 0.2004999965429306, 0.2770000100135803, 0.2070000022649765, 0.2055000066757202, 0.23549999296665192, 0.2300000041723251, 0.1835000067949295, 0.2195000052452087, 0.19949999451637268, 0.1815000027418137, 0.2535000145435333, 0.24699999392032623, 0.1914999932050705, 0.2879999876022339, 0.20499999821186063, 0.2080000042915344, 0.24150000512599945, 0.23800000548362732, 0.20600000023841855, 0.27300000190734863, 0.19200000166893005, 0.19900000095367432, 0.20499999821186063, 0.19949999451637268, 0.18449999392032623, 0.27300000190734863, 0.20649999380111697, 0.1899999976158142, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24050000309944153, 0.24150000512599945, 0.1965000033378601, 0.2879999876022339, 0.1860000044107437, 0.20900000631809235, 0.21250000596046448, 0.21549999713897705, 0.22200000286102295, 0.28450000286102295, 0.18799999356269836, 0.1899999976158142, 0.20499999821186063, 0.2084999978542328, 0.2150000035762787, 0.25049999356269836, 0.19449999928474423, 0.181999996304512, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2179999947547913, 0.210999995470047, 0.24699999392032623, 0.2854999899864197, 0.18850000202655792, 0.19200000166893005, 0.2045000046491623, 0.19900000095367432, 0.2304999977350235, 0.2750000059604645, 0.19900000095367432, 0.1899999976158142, 0.2045000046491623, 0.2080000042915344, 0.1675000041723251, 0.25699999928474426, 0.19200000166893005, 0.1825000047683716, 0.21050000190734863, 0.2150000035762787, 0.1599999964237213, 0.25049999356269836, 0.1955000013113022, 0.1934999972581863, 0.20000000298023224, 0.2094999998807907, 0.18850000202655792, 0.21199999749660492, 0.20200000703334808, 0.20200000703334808, 0.22349999845027924, 0.22849999368190765, 0.2084999978542328, 0.2854999899864197, 0.1815000027418137, 0.1924999952316284, 0.2094999998807907, 0.20649999380111697, 0.1979999989271164, 0.27250000834465027, 0.19499999284744263, 0.1940000057220459, 0.2329999953508377, 0.23800000548362732, 0.19949999451637268, 0.2815000116825104, 0.2039999961853027, 0.2039999961853027, 0.23549999296665192, 0.23100000619888303, 0.2094999998807907, 0.27799999713897705, 0.1965000033378601, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23100000619888303, 0.23849999904632568, 0.193000003695488, 0.28450000286102295, 0.1979999989271164, 0.19099999964237213, 0.2195000052452087, 0.2224999964237213, 0.17800000309944153, 0.25949999690055847, 0.18799999356269836, 0.1809999942779541, 0.2460000067949295, 0.23600000143051147, 0.1875, 0.26100000739097595, 0.20900000631809235, 0.2055000066757202, 0.2319999933242798, 0.23549999296665192, 0.20250000059604645, 0.26899999380111694, 0.21050000190734863, 0.20649999380111697, 0.2094999998807907, 0.22100000083446503, 0.18700000643730164, 0.2185000032186508, 0.18549999594688416, 0.18449999392032623, -0.01, 0.25450000166893005, 0.1924999952316284, 0.289000004529953, 0.20900000631809235, 0.20200000703334808, 0.24050000309944153, 0.24250000715255737, 0.19850000739097595, 0.273499995470047, 0.2004999965429306, 0.1955000013113022, 0.20999999344348907, 0.2199999988079071, 0.16500000655651093, 0.25600001215934753, 0.1899999976158142, 0.19449999928474423, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22450000047683716, 0.22050000727176663, 0.2395000010728836, 0.28200000524520874, 0.210999995470047, 0.21449999511241913, 0.2294999957084656, 0.23149999976158145, 0.2630000114440918, 0.2775000035762787, 0.20649999380111697, 0.20649999380111697, 0.20600000023841855, 0.1850000023841858, -0.01, 0.2395000010728836, 0.18950000405311584, 0.193000003695488, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25099998712539673, 0.2280000001192093, 0.2419999986886978, 0.2840000092983246, 0.20499999821186063, 0.20250000059604645, 0.2240000069141388, 0.20000000298023224, 0.2619999945163727, 0.27300000190734863, 0.20600000023841855, 0.19949999451637268, 0.2185000032186508, 0.2150000035762787, 0.1955000013113022, 0.2590000033378601, 0.19449999928474423, 0.20499999821186063, 0.20499999821186063, 0.2080000042915344, 0.193000003695488, 0.2644999921321869, 0.18649999797344208, 0.18799999356269836, 0.21400000154972076, 0.20649999380111697, 0.20649999380111697, 0.19900000095367432, 0.2070000022649765, 0.20100000500679016, 0.23499999940395355, 0.23600000143051147, 0.1860000044107437, 0.27900001406669617, 0.19850000739097595, 0.18799999356269836, 0.2179999947547913, 0.2039999961853027, 0.1955000013113022, 0.27649998664855957, 0.1934999972581863, 0.19750000536441803, 0.22349999845027924, 0.22450000047683716, 0.193000003695488, 0.2784999907016754, 0.19699999690055847, 0.19949999451637268, 0.2214999943971634, 0.2304999977350235, 0.1899999976158142, 0.27900001406669617, 0.19599999487400055, 0.210999995470047, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2294999957084656, 0.2224999964237213, 0.19949999451637268, 0.27900001406669617, 0.181999996304512, 0.20000000298023224, 0.22599999606609344, 0.2370000034570694, 0.19850000739097595, 0.25699999928474426, 0.2199999988079071, 0.1979999989271164, 0.23849999904632568, 0.2319999933242798, 0.20200000703334808, 0.2874999940395355, -0.01, 0.18700000643730164, 0.2460000067949295, 0.2450000047683716, 0.17900000512599945, 0.2815000116825104, 0.1860000044107437, 0.19449999928474423, 0.210999995470047, 0.2224999964237213, 0.1914999932050705, 0.2199999988079071, 0.19850000739097595, 0.19499999284744263, 0.2630000114440918, 0.25049999356269836, 0.20100000500679016, 0.28349998593330383, 0.1784999966621399, 0.181999996304512, 0.24549999833106995, 0.23800000548362732, 0.19449999928474423, 0.27000001072883606, 0.19200000166893005, 0.19949999451637268, 0.21400000154972076, 0.19850000739097595, 0.20000000298023224, 0.27549999952316284, 0.193000003695488, 0.17350000143051147, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2540000081062317, 0.2619999945163727, 0.2304999977350235, 0.27549999952316284, 0.19449999928474423, 0.2029999941587448, 0.2175000011920929, 0.22699999809265137, 0.21400000154972076, 0.27900001406669617, 0.2080000042915344, 0.1914999932050705, 0.22100000083446503, 0.20999999344348907, 0.2084999978542328, 0.2370000034570694, 0.1965000033378601, 0.181999996304512, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2434999942779541, 0.22599999606609344, 0.25099998712539673, 0.27950000762939453, 0.1979999989271164, 0.19949999451637268, 0.20000000298023224, 0.20000000298023224, 0.23899999260902405, 0.2694999873638153, 0.20999999344348907, 0.20000000298023224, 0.2175000011920929, 0.22050000727176663, 0.2094999998807907, 0.2694999873638153, 0.17649999260902405, 0.19449999928474423, 0.21549999713897705, 0.2199999988079071, 0.18649999797344208, 0.2524999976158142, 0.17599999904632568, 0.18799999356269836, 0.21299999952316284, 0.22100000083446503, 0.20000000298023224, 0.19499999284744263, 0.19200000166893005, 0.20250000059604645, 0.23849999904632568, 0.2199999988079071, 0.19949999451637268, 0.2824999988079071, 0.19200000166893005, 0.20200000703334808, 0.19449999928474423, 0.20350000262260437, 0.18449999392032623, 0.2809999883174896, 0.2070000022649765, 0.1924999952316284], "xo0nl62w": [0.32249999046325684, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, -0.01, -0.01, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, 0.3019999861717224, 0.28049999475479126, 0.3215000033378601, 0.3084999918937683, 0.32249999046325684, 0.3095000088214874, 0.3095000088214874, 0.26899999380111694, 0.30149999260902405, 0.2930000126361847, 0.27900001406669617, 0.27399998903274536, -0.01, -0.01, -0.01, -0.01, 0.3034999966621399, 0.28850001096725464, 0.27950000762939453, 0.29100000858306885, 0.29649999737739563, 0.29750001430511475, -0.01, -0.01, -0.01, -0.01, 0.3084999918937683, 0.29499998688697815, 0.29600000381469727, 0.2824999988079071, 0.32100000977516174, 0.3215000033378601, 0.32350000739097595, 0.31850001215934753, 0.3240000009536743, 0.32600000500679016, 0.3149999976158142, 0.32350000739097595, -0.01, 0.30799999833106995, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, -0.01, -0.01, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, 0.2985000014305115, 0.2919999957084656, 0.3240000009536743, 0.31949999928474426, 0.3215000033378601, 0.2994999885559082, 0.27250000834465027, 0.28349998593330383, 0.30300000309944153, 0.30250000953674316, 0.32249999046325684, 0.32249999046325684, -0.01, -0.01, -0.01, -0.01, 0.31150001287460327, 0.3005000054836273, 0.27549999952316284, 0.2800000011920929, 0.3199999928474426, 0.32199999690055847, -0.01, -0.01, -0.01, -0.01, 0.2939999997615814, 0.3019999861717224, 0.28850001096725464, 0.27250000834465027, 0.3160000145435333, 0.31700000166893005, 0.32100000977516174, 0.32199999690055847, -0.01, -0.01, 0.32249999046325684, -0.01, 0.3140000104904175, 0.3125, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, 0.32249999046325684, -0.01, -0.01, 0.32249999046325684, 0.32249999046325684, -0.01, 0.32249999046325684, 0.29899999499320984, 0.3005000054836273, 0.3199999928474426, 0.31700000166893005, 0.3199999928474426, 0.3154999911785126, 0.2824999988079071, 0.265500009059906, 0.3034999966621399, 0.30000001192092896, 0.27649998664855957, 0.2809999883174896, -0.01, -0.01, -0.01, -0.01, -0.01, 0.30149999260902405, -0.01, -0.01, 0.29600000381469727, 0.2865000069141388, -0.01, -0.01, -0.01, -0.01, 0.30149999260902405, 0.31200000643730164, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3154999911785126, -0.01, 0.3244999945163727, 0.31200000643730164, 0.3100000023841858], "538iyppx": [0.117, 0.0945, -0.01, 0.08, 0.3375, 0.337, 0.3355, 0.337, 0.337, 0.156, 0.3355, 0.336, 0.3375, -0.01, -0.01, -0.01, 0.29, 0.336, 0.3365, -0.01, -0.01, -0.01, 0.247, 0.337, 0.336, 0.335, 0.335, 0.0015, 0.278, 0.3375, 0.053, 0.0315, -0.01, -0.01, 0.337, 0.337, 0.336, 0.337, -0.01, 0.109, -0.01, -0.01, 0.3365, -0.01, -0.01, -0.01, 0.175, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3365, 0.3355, 0.3365, 0.338, 0.0015, -0.01, -0.01, 0.0655, 0.037, -0.01, -0.01, 0.337, -0.01, 0.337, -0.01, -0.01, -0.01, -0.01, -0.01, 0.337, -0.01, -0.01, -0.01, 0.271, 0.336, -0.01, -0.01, -0.01, 0.0615, -0.01, -0.01, -0.01, 0.337, 0.335, 0.0015, 0.2985, -0.01], "d0ek9vox": [0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37735849618911743, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37735849618911743, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, -0.01, 0.37358489632606506, 0.3962264060974121, 0.38867923617362976, 0.37358489632606506, 0.37358489632606506, 0.324528306722641, 0.324528306722641, 0.3132075369358063, -0.01, 0.3396226465702057, 0.30188679695129395, 0.3056603670120239, 0.30188679695129395, 0.3660377264022827, 0.3811320662498474, 0.32830187678337097, 0.28679245710372925, 0.32830187678337097, 0.32830187678337097, 0.33207547664642334, 0.3547169864177704, 0.32830187678337097, 0.350943386554718, 0.350943386554718, 0.3358490467071533, 0.3962264060974121, 0.34716981649398804, 0.29056602716445923, 0.2981131970882416, 0.27547168731689453, 0.30188679695129395, 0.27547168731689453, 0.3132075369358063, 0.3094339668750763, 0.2943396270275116, 0.3660377264022827, 0.34339621663093567, 0.37735849618911743, 0.35849055647850037, 0.324528306722641, 0.35849055647850037, 0.3660377264022827, -0.01, 0.3396226465702057, 0.3698113262653351, 0.3849056661128998, 0.31698113679885864, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.350943386554718, 0.3547169864177704, 0.324528306722641, 0.3924528360366822, 0.34339621663093567, 0.27169811725616455, 0.3358490467071533, 0.29056602716445923, 0.31698113679885864, 0.3207547068595886, 0.28679245710372925, 0.30188679695129395, 0.3547169864177704, 0.3547169864177704, 0.3396226465702057, 0.37735849618911743, 0.37735849618911743, 0.3094339668750763, 0.3207547068595886, 0.3358490467071533, 0.32830187678337097, 0.3207547068595886, 0.3358490467071533, 0.27169811725616455, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33207547664642334, 0.3094339668750763, 0.35849055647850037, 0.2641509473323822, 0.2830188572406769, 0.31698113679885864, 0.2981131970882416, 0.29056602716445923, 0.3698113262653351, 0.40377357602119446, 0.34339621663093567, 0.40377357602119446, 0.3396226465702057, 0.350943386554718, 0.36226415634155273, 0.35849055647850037, 0.3358490467071533, 0.3207547068595886, 0.3698113262653351, 0.350943386554718, 0.3396226465702057, 0.3698113262653351, 0.34339621663093567, 0.37735849618911743, 0.34716981649398804, 0.3396226465702057, 0.350943386554718, 0.3396226465702057, 0.3396226465702057, 0.33207547664642334, -0.01, 0.3698113262653351, 0.3811320662498474, 0.37735849618911743, 0.34716981649398804, 0.37735849618911743, 0.2830188572406769, 0.3207547068595886, 0.36226415634155273, -0.01, 0.33207547664642334, 0.34716981649398804, -0.01, 0.35849055647850037, 0.350943386554718, 0.34339621663093567, -0.01, -0.01, -0.01, 0.36226415634155273, 0.35849055647850037, 0.35849055647850037, 0.3547169864177704, 0.34339621663093567, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37735849618911743, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, -0.01, 0.37358489632606506, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.37358489632606506, 0.37358489632606506, 0.3849056661128998, 0.3811320662498474, -0.01, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.3660377264022827, -0.01, -0.01, 0.3811320662498474, -0.01, 0.2792452871799469, 0.28679245710372925, 0.3207547068595886, 0.33207547664642334, 0.28679245710372925, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3056603670120239, 0.3132075369358063, 0.34716981649398804, 0.34339621663093567, -0.01, 0.30188679695129395, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3547169864177704, -0.01, -0.01, 0.3207547068595886, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31698113679885864, 0.31698113679885864, 0.29056602716445923, -0.01, -0.01, -0.01, 0.3094339668750763, -0.01, 0.34716981649398804, -0.01, 0.3094339668750763, 0.3547169864177704, 0.36226415634155273, 0.3056603670120239, 0.35849055647850037, 0.3547169864177704, 0.33207547664642334, 0.32830187678337097, 0.30188679695129395, 0.34339621663093567, 0.3547169864177704, 0.3358490467071533, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.32830187678337097, -0.01, -0.01, 0.3396226465702057, -0.01, -0.01, -0.01, -0.01, 0.31698113679885864, -0.01, 0.3547169864177704, -0.01, 0.3358490467071533, 0.3056603670120239, 0.3132075369358063, 0.3698113262653351, 0.37735849618911743, -0.01, -0.01, 0.4000000059604645, -0.01, 0.34339621663093567, 0.3358490467071533, 0.3547169864177704, 0.34339621663093567, 0.34716981649398804, 0.33207547664642334, 0.31698113679885864, 0.3358490467071533, -0.01, 0.3811320662498474, 0.3698113262653351, 0.3660377264022827, 0.31698113679885864, 0.3660377264022827, 0.3811320662498474, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3207547068595886, 0.37358489632606506, 0.32830187678337097, 0.34716981649398804, -0.01, 0.3660377264022827, 0.35849055647850037, 0.3396226465702057, 0.33207547664642334, 0.37735849618911743, 0.4226415157318115, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37735849618911743, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, -0.01, -0.01, 0.37358489632606506, 0.37358489632606506, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.37358489632606506, 0.37358489632606506, 0.37735849618911743, 0.3811320662498474, -0.01, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.37358489632606506, 0.3547169864177704, 0.3660377264022827, 0.3811320662498474, 0.37735849618911743, 0.3132075369358063, 0.3094339668750763, 0.3207547068595886, 0.3358490467071533, 0.324528306722641, 0.3056603670120239, 0.30188679695129395, 0.30188679695129395, 0.34339621663093567, 0.3358490467071533, 0.3132075369358063, 0.29056602716445923, 0.33207547664642334, 0.32830187678337097, 0.34339621663093567, 0.3207547068595886, 0.3094339668750763, 0.34339621663093567, 0.30188679695129395, 0.3132075369358063, 0.31698113679885864, 0.324528306722641, 0.3358490467071533, 0.31698113679885864, 0.3094339668750763, 0.28679245710372925, 0.2679245173931122, 0.34716981649398804, -0.01, 0.2981131970882416, 0.34339621663093567, 0.3358490467071533, 0.3962264060974121, -0.01, 0.30188679695129395, 0.30188679695129395, 0.3924528360366822, 0.3547169864177704, 0.37735849618911743, 0.37358489632606506, 0.3396226465702057, 0.3358490467071533, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2981131970882416, 0.33207547664642334, 0.33207547664642334, 0.33207547664642334, 0.37735849618911743, 0.32830187678337097, 0.2981131970882416, 0.27169811725616455, 0.3132075369358063, 0.3207547068595886, 0.350943386554718, 0.2792452871799469, 0.350943386554718, 0.3811320662498474, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3207547068595886, -0.01, 0.3811320662498474, 0.2981131970882416, 0.3358490467071533, 0.35849055647850037, 0.324528306722641, -0.01, 0.31698113679885864, 0.3396226465702057, 0.3849056661128998, 0.34339621663093567, 0.350943386554718, 0.3547169864177704, 0.3207547068595886, 0.31698113679885864, 0.34716981649398804, 0.3698113262653351, -0.01, 0.3660377264022827, 0.350943386554718, 0.2981131970882416, 0.37735849618911743, 0.35849055647850037, 0.35849055647850037, 0.3698113262653351, -0.01, -0.01, 0.34716981649398804, 0.34716981649398804, 0.37358489632606506, 0.3811320662498474, 0.34716981649398804, 0.3547169864177704, 0.34716981649398804, 0.37358489632606506, 0.2792452871799469, 0.2792452871799469, 0.2943396270275116, 0.37358489632606506, 0.34716981649398804, 0.36226415634155273, 0.324528306722641, 0.324528306722641, 0.3811320662498474, 0.3698113262653351, 0.3207547068595886, 0.34716981649398804, -0.01, 0.34716981649398804, 0.35849055647850037, 0.3094339668750763, 0.35849055647850037, 0.3924528360366822], "vp004sgu": [0.34716981649398804, 0.3132075369358063, 0.3358490467071533, 0.3094339668750763, 0.2981131970882416, 0.28679245710372925, 0.3207547068595886, 0.324528306722641, 0.30188679695129395, 0.31698113679885864, 0.3056603670120239, 0.3396226465702057, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.32830187678337097, 0.3358490467071533, 0.31698113679885864, 0.3396226465702057, 0.29056602716445923, 0.2830188572406769, 0.33207547664642334, 0.34716981649398804, 0.31698113679885864, 0.324528306722641, 0.3396226465702057, 0.2943396270275116, 0.350943386554718, 0.3056603670120239, 0.3056603670120239, 0.3207547068595886, 0.3811320662498474, 0.35849055647850037, 0.30188679695129395, 0.28679245710372925, 0.3358490467071533, 0.350943386554718, 0.31698113679885864, 0.3094339668750763, 0.350943386554718, 0.34716981649398804, 0.3547169864177704, 0.3132075369358063, 0.32830187678337097, 0.3358490467071533, 0.3094339668750763, 0.32830187678337097, 0.27169811725616455, 0.29056602716445923, 0.3132075369358063, 0.3132075369358063, 0.3207547068595886, 0.33207547664642334, 0.3698113262653351, 0.30188679695129395, 0.2830188572406769, 0.3207547068595886, 0.2981131970882416, 0.3094339668750763, 0.3358490467071533, 0.3358490467071533, 0.3207547068595886, 0.3396226465702057, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3094339668750763, 0.2981131970882416, 0.3358490467071533, 0.2943396270275116, 0.324528306722641, 0.3207547068595886, 0.37358489632606506, 0.3547169864177704, 0.37735849618911743, 0.34716981649398804, 0.3396226465702057, 0.3547169864177704, 0.350943386554718, 0.3396226465702057, 0.3094339668750763, 0.36226415634155273, 0.350943386554718, 0.36226415634155273, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.35849055647850037, 0.3094339668750763, 0.31698113679885864, 0.3396226465702057, 0.28679245710372925, 0.3056603670120239, 0.3094339668750763, 0.3396226465702057, 0.2981131970882416, 0.34339621663093567, 0.324528306722641, 0.3396226465702057, 0.3207547068595886, 0.31698113679885864, 0.3358490467071533, 0.3660377264022827, 0.350943386554718, 0.36226415634155273, 0.3849056661128998, 0.3698113262653351, 0.2981131970882416, 0.33207547664642334, 0.32830187678337097, 0.3358490467071533, 0.3660377264022827, 0.36226415634155273, 0.3132075369358063, 0.36226415634155273, 0.3358490467071533, 0.34716981649398804, 0.28679245710372925, 0.28679245710372925, 0.34339621663093567, 0.3132075369358063, 0.324528306722641, 0.3094339668750763, 0.3924528360366822, 0.3811320662498474, 0.3698113262653351, 0.34716981649398804, 0.3094339668750763, 0.34339621663093567, 0.36226415634155273, 0.34339621663093567, 0.3094339668750763, 0.324528306722641, 0.3056603670120239, 0.3132075369358063, 0.3396226465702057, 0.31698113679885864, -0.01, 0.3132075369358063, 0.3056603670120239, 0.34716981649398804, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34716981649398804, 0.3207547068595886, 0.34716981649398804, 0.3207547068595886, 0.30188679695129395, 0.3358490467071533, 0.31698113679885864, 0.35849055647850037, 0.2981131970882416, 0.3094339668750763, 0.3094339668750763, 0.30188679695129395, 0.37735849618911743, 0.3698113262653351, 0.43396225571632385, 0.2943396270275116, 0.3849056661128998, 0.40377357602119446, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2792452871799469, 0.2943396270275116, 0.2981131970882416, 0.2943396270275116, 0.2830188572406769, 0.2641509473323822, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.30188679695129395, 0.33207547664642334, 0.324528306722641, 0.324528306722641, 0.30188679695129395, 0.2830188572406769, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.29056602716445923, 0.31698113679885864, 0.28679245710372925, 0.3094339668750763, 0.3207547068595886, 0.3396226465702057, 0.32830187678337097, 0.33207547664642334, 0.2792452871799469, 0.2943396270275116, 0.324528306722641, 0.3547169864177704, 0.33207547664642334, 0.31698113679885864, 0.37358489632606506, 0.35849055647850037, 0.3396226465702057, 0.3660377264022827, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.350943386554718, 0.3396226465702057, 0.30188679695129395, 0.350943386554718, 0.3396226465702057, 0.324528306722641, 0.3698113262653351, 0.34339621663093567, 0.324528306722641, 0.31698113679885864, 0.27169811725616455, 0.32830187678337097, 0.324528306722641, 0.324528306722641, 0.3056603670120239, 0.3132075369358063, 0.2981131970882416, 0.2943396270275116, 0.350943386554718, 0.36226415634155273, 0.324528306722641, 0.3547169864177704, 0.3396226465702057, 0.34339621663093567, 0.324528306722641, 0.32830187678337097, 0.3811320662498474, 0.35849055647850037, 0.2981131970882416, 0.3132075369358063, 0.3396226465702057, 0.324528306722641, 0.3207547068595886, 0.3132075369358063, 0.2981131970882416, 0.324528306722641, 0.3811320662498474, 0.34716981649398804, 0.324528306722641, 0.3396226465702057, 0.37358489632606506, 0.37735849618911743, 0.35849055647850037, 0.324528306722641, 0.4075471758842468, 0.31698113679885864, 0.3207547068595886, 0.33207547664642334, 0.34716981649398804, 0.34716981649398804, 0.3547169864177704, 0.34716981649398804, 0.33207547664642334, 0.3056603670120239, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.32830187678337097, 0.324528306722641, 0.3358490467071533, 0.3396226465702057, 0.324528306722641, 0.2981131970882416, 0.3660377264022827, 0.3660377264022827, 0.34339621663093567, 0.3358490467071533, 0.30188679695129395, 0.324528306722641, 0.3396226465702057, 0.34339621663093567, 0.32830187678337097, 0.3207547068595886, 0.33207547664642334, 0.35849055647850037, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.28679245710372925, 0.31698113679885864, 0.31698113679885864, 0.2830188572406769, 0.3094339668750763, 0.33207547664642334, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31698113679885864, 0.2981131970882416, 0.3056603670120239, 0.324528306722641, 0.324528306722641, 0.30188679695129395, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33207547664642334, 0.29056602716445923, 0.3132075369358063, 0.32830187678337097, 0.3132075369358063, 0.33207547664642334, 0.3849056661128998, 0.37735849618911743, 0.3094339668750763, 0.3094339668750763, 0.35849055647850037, 0.3660377264022827, 0.33207547664642334, 0.324528306722641, 0.34339621663093567, 0.324528306722641, 0.34716981649398804, 0.35849055647850037, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33207547664642334, 0.34716981649398804, 0.31698113679885864, 0.3207547068595886, 0.324528306722641, 0.3660377264022827, 0.4000000059604645, 0.37358489632606506, 0.3207547068595886, 0.33207547664642334, 0.2641509473323822, 0.28679245710372925, 0.2792452871799469, 0.29056602716445923, 0.3396226465702057, -0.01, 0.3396226465702057, 0.33207547664642334, 0.34716981649398804, 0.4000000059604645, 0.4075471758842468, 0.37358489632606506, 0.33207547664642334, 0.3396226465702057, 0.37358489632606506, 0.37358489632606506, 0.35849055647850037, 0.34716981649398804, 0.3358490467071533, 0.34716981649398804, 0.30188679695129395, 0.31698113679885864, 0.3056603670120239, 0.32830187678337097, 0.2830188572406769, 0.3207547068595886, 0.37358489632606506, 0.3547169864177704, 0.3698113262653351, 0.37358489632606506, 0.34716981649398804, 0.3547169864177704], "ynoophp8": [0.34716981649398804, 0.3396226465702057, 0.3207547068595886, -0.01, -0.01, -0.01, 0.350943386554718, 0.3547169864177704, 0.3811320662498474, 0.3811320662498474, 0.33207547664642334, 0.31698113679885864, 0.3358490467071533, 0.3358490467071533, 0.3660377264022827, 0.3207547068595886, 0.32830187678337097, 0.3056603670120239, 0.37358489632606506, 0.37735849618911743, 0.3811320662498474, 0.34716981649398804, -0.01, -0.01, -0.01, -0.01, 0.3849056661128998, 0.44528302550315857, 0.3396226465702057, 0.34339621663093567, 0.3396226465702057, 0.34716981649398804, -0.01, -0.01, -0.01, -0.01, 0.3358490467071533, 0.34339621663093567, 0.3849056661128998, 0.4113207459449768, 0.3547169864177704, 0.36226415634155273, 0.3207547068595886, 0.3547169864177704, 0.32830187678337097, 0.3547169864177704, 0.28679245710372925, 0.2943396270275116, 0.3358490467071533, 0.3547169864177704, 0.34339621663093567, 0.3358490467071533, 0.3207547068595886, 0.324528306722641, -0.01, -0.01, 0.35849055647850037, -0.01, 0.3547169864177704, 0.36226415634155273, 0.3924528360366822, 0.3811320662498474, -0.01, -0.01, -0.01, -0.01, 0.33207547664642334, 0.3094339668750763, -0.01, -0.01, 0.32830187678337097, 0.34339621663093567, -0.01, -0.01, -0.01, -0.01, 0.3849056661128998, 0.3698113262653351, 0.3849056661128998, 0.3660377264022827, 0.3660377264022827, 0.3547169864177704, -0.01, -0.01, -0.01, -0.01, 0.3207547068595886, 0.3547169864177704, 0.3207547068595886, 0.37358489632606506, 0.31698113679885864, 0.2943396270275116, 0.30188679695129395, 0.32830187678337097, 0.32830187678337097, 0.3396226465702057, 0.29056602716445923, 0.3207547068595886, 0.3547169864177704, 0.35849055647850037, -0.01, 0.3358490467071533, 0.3056603670120239, 0.324528306722641, -0.01, -0.01, 0.34339621663093567, 0.3358490467071533, 0.3849056661128998, -0.01, -0.01, 0.35849055647850037, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3358490467071533, -0.01, -0.01, 0.3358490467071533, 0.27547168731689453, -0.01, -0.01, -0.01, -0.01, 0.350943386554718, 0.3698113262653351, 0.35849055647850037, 0.3396226465702057, 0.30188679695129395, 0.35849055647850037, -0.01, -0.01, -0.01, -0.01, 0.31698113679885864, 0.350943386554718, 0.33207547664642334, -0.01, -0.01, -0.01, -0.01, -0.01, 0.37735849618911743, -0.01, 0.31698113679885864, 0.3396226465702057, 0.3358490467071533, 0.36226415634155273], "l3suyx48": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3735849056603774, -0.01, -0.01, -0.01, -0.01, -0.01, 0.37735849056603776, -0.01, -0.01, 0.3584905660377358, 0.3433962264150943, -0.01, 0.33584905660377357, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33962264150943394, 0.3320754716981132, 0.3735849056603774, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3018867924528302, 0.3622641509433962, 0.3320754716981132, 0.3132075471698113, 0.35471698113207545, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3622641509433962, 0.3433962264150943, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33584905660377357, -0.01, 0.3735849056603774, 0.39245283018867927, 0.33584905660377357, 0.33584905660377357, 0.3584905660377358, 0.3622641509433962, 0.35471698113207545, 0.33962264150943394, 0.3471698113207547, 0.33584905660377357, 0.3320754716981132, 0.3018867924528302, 0.32075471698113206, 0.3018867924528302, 0.33962264150943394, 0.33584905660377357, 0.3471698113207547, 0.3433962264150943, 0.35471698113207545, 0.3849056603773585, 0.3735849056603774, 0.33962264150943394, 0.33962264150943394, 0.3660377358490566, 0.3849056603773585, 0.3471698113207547, 0.3962264150943397, 0.39245283018867927, 0.37735849056603776, 0.35094339622641507, 0.32452830188679244, 0.35471698113207545, 0.37735849056603776, 0.3849056603773585], "ypvuawcw": [0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.1379999965429306, 0.13600000739097595, 0.11299999803304672, 0.12150000035762788, 0.10450000315904616, 0.1080000028014183, 0.1449999958276749, 0.1414999961853027, 0.11500000208616255, 0.1120000034570694, 0.1120000034570694, 0.11749999970197678, 0.1589999943971634, 0.15649999678134918, 0.1264999955892563, 0.12049999833106996, 0.1169999986886978, 0.11400000005960464, 0.12950000166893005, 0.12399999797344208, 0.11150000244379044, 0.12300000339746477, 0.11500000208616255, 0.11900000274181366, 0.1420000046491623, 0.14399999380111694, 0.10999999940395357, 0.12549999356269836, 0.11599999666213988, 0.10300000011920928, 0.15049999952316284, 0.15549999475479126, 0.10249999910593031, 0.11299999803304672, 0.1145000010728836, 0.10750000178813934, 0.12700000405311584, 0.1315000057220459, 0.11550000309944151, 0.11900000274181366, 0.11749999970197678, 0.119999997317791, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15150000154972076, 0.14749999344348907, 0.12700000405311584, 0.12349999696016312, 0.13750000298023224, 0.1330000013113022, 0.13850000500679016, 0.1420000046491623, 0.12849999964237213, 0.11299999803304672, 0.13699999451637268, 0.13249999284744263, 0.14100000262260437, 0.1525000035762787, 0.12150000035762788, 0.125, 0.12099999934434892, 0.12549999356269836, 0.12399999797344208, 0.1225000023841858, 0.12600000202655792, 0.11599999666213988, 0.11649999767541884, 0.12449999898672104, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.14900000393390656, 0.148499995470047, 0.13500000536441803, 0.12449999898672104, 0.1430000066757202, 0.14000000059604645, 0.1315000057220459, 0.1289999932050705, 0.13349999487400055, 0.1225000023841858, 0.12399999797344208, 0.12150000035762788, 0.1340000033378601, 0.14350000023841858, 0.11400000005960464, 0.125, 0.125, 0.12099999934434892, 0.15700000524520874, 0.15299999713897705, 0.1169999986886978, 0.12600000202655792, 0.13500000536441803, 0.13950000703334808, 0.15800000727176666, 0.1574999988079071, 0.11949999630451202, 0.12150000035762788, 0.13449999690055847, 0.13850000500679016, 0.1550000011920929, 0.1535000056028366, 0.13699999451637268, 0.1274999976158142, 0.1430000066757202, 0.13699999451637268, 0.1550000011920929, 0.15449999272823334, 0.14249999821186066, 0.1289999932050705, 0.13449999690055847, 0.13449999690055847, 0.16349999606609344, 0.16500000655651093, 0.13650000095367432, 0.1264999955892563, 0.13650000095367432, 0.148499995470047, 0.16249999403953552, 0.15800000727176666, 0.11400000005960464, 0.13600000739097595, 0.12700000405311584, 0.12849999964237213, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.1449999958276749, 0.14100000262260437, 0.1080000028014183, 0.11100000143051147, 0.11249999701976776, 0.12099999934434892, 0.13850000500679016, 0.13600000739097595, 0.12099999934434892, 0.10599999874830246, 0.11249999701976776, 0.09950000047683716, 0.1469999998807907, 0.14749999344348907, 0.10899999737739564, 0.11550000309944151, 0.10750000178813934, 0.11800000071525574, 0.11500000208616255, 0.12300000339746477, 0.10649999976158142, 0.10599999874830246, 0.12099999934434892, 0.12049999833106996, 0.13249999284744263, 0.13650000095367432, 0.11349999904632568, 0.12349999696016312, 0.10849999636411668, 0.11249999701976776, 0.1469999998807907, 0.15150000154972076, 0.11050000041723251, 0.13199999928474426, 0.11649999767541884, 0.11550000309944151, 0.10450000315904616, 0.11800000071525574, 0.1289999932050705, 0.1080000028014183, 0.12449999898672104, 0.12600000202655792, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15950000286102295, 0.1599999964237213, 0.1615000069141388, 0.16050000488758087, 0.1589999943971634, 0.15950000286102295, 0.1185000017285347, 0.1145000010728836, 0.13500000536441803, 0.12950000166893005, 0.13249999284744263, 0.13500000536441803, 0.15199999511241913, 0.15150000154972076, 0.11649999767541884, 0.125, 0.10300000011920928, 0.1094999983906746, 0.11400000005960464, 0.12049999833106996, 0.11150000244379044, 0.1185000017285347, 0.1185000017285347, 0.11050000041723251, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15299999713897705, 0.15449999272823334, 0.16200000047683716, 0.1599999964237213, 0.16099999845027924, 0.16200000047683716, 0.11150000244379044, 0.11599999666213988, 0.13600000739097595, 0.1330000013113022, 0.13699999451637268, 0.1330000013113022, 0.1459999978542328, 0.14749999344348907, 0.11400000005960464, 0.13199999928474426, 0.1080000028014183, 0.1094999983906746, 0.15449999272823334, 0.1574999988079071, 0.12950000166893005, 0.12849999964237213, 0.1330000013113022, 0.1445000022649765, 0.16599999368190765, 0.16449999809265137, 0.12349999696016312, 0.12950000166893005, 0.14000000059604645, 0.13449999690055847, 0.15800000727176666, 0.15700000524520874, 0.12150000035762788, 0.13099999725818634, 0.13950000703334808, 0.14800000190734863, 0.16500000655651093, 0.16500000655651093, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.13950000703334808, 0.14249999821186066, 0.14249999821186066, 0.1459999978542328, 0.1469999998807907, 0.15049999952316284, 0.16349999606609344, 0.16449999809265137, 0.10899999737739564, 0.12200000137090684, 0.12399999797344208, 0.1145000010728836, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.1404999941587448, 0.1414999961853027, 0.11299999803304672, 0.11599999666213988, 0.11299999803304672, 0.11249999701976776, 0.13500000536441803, 0.13050000369548798, 0.11649999767541884, 0.11249999701976776, 0.10350000113248824, 0.11500000208616255, 0.14749999344348907, 0.14550000429153442, 0.11599999666213988, 0.12049999833106996, 0.11649999767541884, 0.11949999630451202, 0.12349999696016312, 0.12200000137090684, 0.1120000034570694, 0.10750000178813934, 0.12099999934434892, 0.12349999696016312, 0.1354999989271164, 0.1414999961853027, 0.1054999977350235, 0.1145000010728836, 0.11249999701976776, 0.11599999666213988, 0.1449999958276749, 0.14350000023841858, 0.09000000357627869, 0.12349999696016312, 0.11050000041723251, 0.11649999767541884, 0.13650000095367432, 0.1379999965429306, 0.10700000077486038, 0.11800000071525574, 0.11749999970197678, 0.11349999904632568, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1665000021457672, 0.164000004529953, 0.1589999943971634, 0.16050000488758087, 0.1599999964237213, 0.1589999943971634, 0.12800000607967377, 0.12800000607967377, 0.13750000298023224, 0.12950000166893005, 0.1420000046491623, 0.1289999932050705, 0.1420000046491623, 0.1420000046491623, 0.09950000047683716, 0.11749999970197678, 0.1185000017285347, 0.11299999803304672, 0.13500000536441803, 0.13349999487400055, 0.12399999797344208, 0.11150000244379044, 0.1145000010728836, 0.11599999666213988, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15299999713897705, 0.15449999272823334, 0.16200000047683716, 0.1599999964237213, 0.16099999845027924, 0.16200000047683716, 0.1274999976158142, 0.12349999696016312, 0.14100000262260437, 0.12999999523162842, 0.14100000262260437, 0.1340000033378601, 0.14749999344348907, 0.13750000298023224, 0.09849999845027924, 0.10999999940395357, 0.10849999636411668, 0.11749999970197678, 0.1589999943971634, 0.1550000011920929, 0.12349999696016312, 0.12449999898672104, 0.13349999487400055, 0.1315000057220459, 0.1525000035762787, 0.1469999998807907, 0.1289999932050705, 0.1169999986886978, 0.1340000033378601, 0.1315000057220459, 0.15800000727176666, 0.15449999272823334, 0.1340000033378601, 0.12700000405311584, 0.14000000059604645, 0.1430000066757202, 0.16500000655651093, 0.16500000655651093, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.16449999809265137, 0.15199999511241913, 0.15199999511241913, 0.1420000046491623, 0.13850000500679016, 0.1404999941587448, 0.14249999821186066, 0.1574999988079071, 0.15700000524520874, 0.11050000041723251, 0.11299999803304672, 0.12950000166893005, 0.1289999932050705], "mz273ff5": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.09749999642372131, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1264999955892563, 0.1185000017285347, 0.11249999701976776, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.10750000178813934, 0.12999999523162842, 0.1080000028014183, 0.11949999630451202, 0.14550000429153442, 0.0989999994635582, 0.13199999928474426, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12099999934434892, 0.10750000178813934, 0.10199999809265135, 0.10849999636411668, 0.1014999970793724, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.13199999928474426, 0.1014999970793724, 0.1014999970793724, 0.11900000274181366, 0.12049999833106996, 0.1054999977350235, 0.11949999630451202, 0.10450000315904616, 0.09950000047683716, 0.11800000071525574, 0.11249999701976776, 0.0949999988079071, 0.13199999928474426, 0.10999999940395357, 0.0949999988079071, 0.09600000083446504, 0.10300000011920928, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1274999976158142, 0.12150000035762788, 0.10999999940395357, 0.11599999666213988, 0.1185000017285347, 0.11550000309944151, 0.1169999986886978, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.119999997317791, 0.11299999803304672, 0.096500001847744, 0.13899999856948853, 0.0925000011920929, 0.0989999994635582, 0.11599999666213988, 0.12600000202655792, 0.09350000321865082, 0.1340000033378601, 0.09399999678134918, 0.09449999779462814, 0.1120000034570694, 0.1274999976158142, 0.09549999982118608, 0.1330000013113022, 0.1080000028014183, 0.0989999994635582, 0.12049999833106996, 0.11500000208616255, 0.09350000321865082, 0.14800000190734863, 0.09350000321865082, 0.09700000286102296, 0.12449999898672104, 0.125, 0.0989999994635582, 0.13750000298023224, 0.11400000005960464, 0.11649999767541884, 0.1169999986886978, 0.12300000339746477, 0.09799999743700027, 0.15150000154972076, 0.1094999983906746, 0.0949999988079071, 0.11550000309944151, 0.10649999976158142, 0.13249999284744263, 0.08699999749660492, 0.0860000029206276, 0.11550000309944151, 0.11100000143051147, 0.09849999845027924, 0.13650000095367432, 0.10599999874830246, 0.08799999952316284, 0.1145000010728836, 0.11649999767541884, 0.0989999994635582, 0.1414999961853027, 0.10300000011920928, 0.08900000154972076, 0.10899999737739564, 0.096500001847744, 0.09549999982118608, 0.13850000500679016, 0.10750000178813934, 0.10750000178813934, 0.11500000208616255, 0.11800000071525574, 0.1040000021457672, 0.1330000013113022, 0.09350000321865082, 0.10100000351667404, 0.10750000178813934, 0.10199999809265135, 0.12399999797344208, 0.1430000066757202, 0.11299999803304672, 0.10750000178813934, 0.1014999970793724, 0.10199999809265135, 0.0989999994635582, 0.14000000059604645, 0.0989999994635582, 0.09600000083446504, 0.10499999672174454, 0.10599999874830246, 0.12700000405311584, 0.13500000536441803, 0.09549999982118608, 0.1080000028014183, 0.09449999779462814, 0.096500001847744, 0.1169999986886978, 0.13950000703334808, 0.10249999910593031, 0.09600000083446504, 0.11599999666213988, 0.11500000208616255, 0.10199999809265135, 0.1459999978542328, 0.10100000351667404, 0.09449999779462814, 0.11349999904632568, 0.11599999666213988, 0.10050000250339508, 0.13950000703334808, 0.10050000250339508, 0.10000000149011612, 0.11800000071525574, 0.1014999970793724, 0.0989999994635582, 0.11900000274181366, 0.10899999737739564, 0.1040000021457672, 0.11500000208616255, 0.11150000244379044, 0.09399999678134918, 0.13249999284744263, 0.09849999845027924, 0.10050000250339508, 0.12349999696016312, 0.10450000315904616, 0.1414999961853027, 0.10100000351667404, 0.10649999976158142, 0.12700000405311584, 0.12800000607967377, 0.10350000113248824, 0.13600000739097595, 0.1185000017285347, 0.12600000202655792, 0.12300000339746477, 0.1354999989271164, 0.13500000536441803, 0.11500000208616255, 0.14249999821186066, 0.13050000369548798, 0.12800000607967377, 0.13850000500679016, 0.10750000178813934, 0.11599999666213988, 0.08550000190734863, 0.1430000066757202, 0.10199999809265135, 0.1315000057220459, 0.10300000011920928, 0.13500000536441803, 0.09399999678134918, 0.09950000047683716, 0.1340000033378601, 0.1330000013113022, 0.08699999749660492, 0.09350000321865082, 0.09549999982118608, 0.1120000034570694, 0.1120000034570694, 0.09200000017881392, 0.13099999725818634, 0.09200000017881392, 0.1014999970793724, 0.12849999964237213, 0.12049999833106996, 0.10050000250339508, 0.125, 0.10249999910593031, 0.11349999904632568, 0.11150000244379044, 0.10050000250339508, 0.12399999797344208, 0.08649999648332596, 0.09600000083446504, 0.1014999970793724, 0.1120000034570694, 0.10599999874830246, 0.09950000047683716, 0.10050000250339508, 0.13099999725818634, 0.1315000057220459, 0.15150000154972076, 0.11550000309944151, 0.11100000143051147, 0.14350000023841858, 0.11550000309944151, 0.10599999874830246, 0.11349999904632568, 0.1014999970793724, 0.11050000041723251, 0.10100000351667404, 0.09950000047683716, 0.10300000011920928, 0.1014999970793724, 0.13050000369548798, 0.10700000077486038, 0.10849999636411668, 0.11900000274181366, 0.13650000095367432, 0.1445000022649765, 0.10750000178813934, 0.10899999737739564, 0.1054999977350235, 0.1379999965429306, 0.10649999976158142, 0.11150000244379044, 0.12099999934434892, 0.10849999636411668, 0.10599999874830246, 0.09749999642372131, 0.1315000057220459, 0.10499999672174454, 0.11550000309944151, 0.10700000077486038, 0.09399999678134918, 0.13750000298023224, 0.09600000083446504, 0.10899999737739564, 0.11749999970197678, 0.1145000010728836, 0.09300000220537186, 0.12999999523162842, 0.10700000077486038, 0.125, 0.13899999856948853, 0.11249999701976776, 0.1040000021457672, 0.1225000023841858, 0.12700000405311584, 0.11949999630451202, 0.11349999904632568, 0.10050000250339508, 0.10000000149011612, 0.10450000315904616, 0.12300000339746477, 0.12449999898672104, 0.1014999970793724, 0.13099999725818634, 0.1054999977350235, 0.1080000028014183, 0.1120000034570694, 0.11500000208616255, 0.11400000005960464, 0.13449999690055847, 0.12200000137090684, 0.10700000077486038, 0.14249999821186066, 0.13050000369548798, 0.12800000607967377, 0.10750000178813934, 0.12999999523162842, 0.13850000500679016, 0.12349999696016312, 0.12300000339746477, 0.08349999785423279, 0.13699999451637268, 0.10350000113248824, 0.10450000315904616, 0.12349999696016312, 0.12349999696016312, 0.1080000028014183, 0.09300000220537186, 0.12200000137090684, 0.11900000274181366, 0.0949999988079071, 0.1459999978542328, 0.10450000315904616, 0.11949999630451202, 0.1014999970793724, 0.1340000033378601, 0.08349999785423279, 0.08500000089406967, 0.12549999356269836, 0.10199999809265135, 0.1120000034570694, 0.11299999803304672, 0.13050000369548798, 0.1404999941587448, 0.15000000596046448, 0.1094999983906746, 0.11299999803304672, 0.09799999743700027, 0.1094999983906746, 0.11249999701976776, 0.11050000041723251, 0.12849999964237213, 0.09700000286102296, 0.09849999845027924, 0.11900000274181366, 0.13650000095367432, 0.1445000022649765, 0.10750000178813934, 0.10899999737739564, 0.12099999934434892, 0.1185000017285347, 0.096500001847744, 0.12549999356269836, 0.10599999874830246, 0.1094999983906746, 0.10050000250339508, 0.10599999874830246, 0.09950000047683716, 0.10249999910593031, 0.13099999725818634, 0.10050000250339508, 0.1040000021457672, 0.10599999874830246, 0.10700000077486038, 0.10000000149011612, 0.12700000405311584, 0.09549999982118608, 0.09000000357627869, 0.11249999701976776, 0.11249999701976776, 0.09399999678134918, 0.1185000017285347, 0.10050000250339508, 0.10999999940395357, 0.125, 0.13899999856948853, 0.11249999701976776, 0.1040000021457672, 0.1225000023841858, 0.12700000405311584, 0.1094999983906746, 0.10999999940395357, 0.10050000250339508, 0.10300000011920928, 0.09950000047683716, 0.09399999678134918], "7s03jiel": [0.1710000038146973, 0.1694999933242798, 0.1710000038146973, 0.1710000038146973, -0.01, -0.01, 0.1710000038146973, 0.1710000038146973, 0.17149999737739563, 0.17149999737739563, 0.12449999898672104, 0.1469999998807907, 0.1354999989271164, 0.15049999952316284, 0.14100000262260437, 0.14350000023841858, 0.12849999964237213, 0.1145000010728836, 0.14350000023841858, 0.1509999930858612, 0.14350000023841858, 0.1379999965429306, -0.01, -0.01, -0.01, -0.01, 0.13950000703334808, 0.12399999797344208, 0.1354999989271164, 0.12600000202655792, 0.1404999941587448, 0.1404999941587448, -0.01, -0.01, -0.01, -0.01, 0.1340000033378601, 0.12849999964237213, 0.12150000035762788, 0.12099999934434892, 0.16349999606609344, 0.16200000047683716, 0.1574999988079071, 0.14399999380111694, 0.148499995470047, 0.15299999713897705, 0.1550000011920929, 0.15800000727176666, 0.15600000321865082, 0.1469999998807907, 0.16899999976158142, 0.1599999964237213, 0.1550000011920929, 0.16500000655651093, -0.01, -0.01, 0.1710000038146973, 0.1710000038146973, 0.17149999737739563, 0.17149999737739563, 0.13899999856948853, 0.13899999856948853, 0.13600000739097595, 0.15549999475479126, 0.14800000190734863, 0.15049999952316284, 0.12150000035762788, 0.11349999904632568, 0.15549999475479126, 0.1404999941587448, 0.16249999403953552, 0.16500000655651093, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.10849999636411668, 0.11299999803304672, 0.12999999523162842, 0.12349999696016312, -0.01, -0.01, -0.01, -0.01, 0.14550000429153442, 0.1430000066757202, 0.11599999666213988, 0.12150000035762788, 0.1420000046491623, 0.15800000727176666, 0.15700000524520874, 0.14249999821186066, 0.15700000524520874, 0.16099999845027924, -0.01, -0.01, 0.14399999380111694, 0.14399999380111694, 0.17249999940395355, 0.17249999940395355, 0.17149999737739563, 0.17149999737739563, -0.01, -0.01, 0.1710000038146973, 0.1710000038146973, 0.17149999737739563, 0.17149999737739563, 0.15000000596046448, 0.1274999976158142, 0.1414999961853027, 0.1469999998807907, 0.1509999930858612, 0.14249999821186066, 0.1225000023841858, 0.1264999955892563, 0.14550000429153442, 0.1354999989271164, 0.12849999964237213, 0.12049999833106996, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.119999997317791, 0.12150000035762788, 0.1264999955892563, 0.14350000023841858, -0.01, -0.01, -0.01, -0.01, 0.14550000429153442, 0.1430000066757202, 0.12300000339746477, 0.11299999803304672, 0.16500000655651093, 0.1469999998807907, 0.16050000488758087, 0.1550000011920929, 0.16249999403953552, 0.15449999272823334, -0.01, -0.01, 0.13650000095367432, 0.14249999821186066], "06p1lum5": [0.0515, 0.0505, -0.01, 0.0515, 0.1605, 0.1615, 0.1605, 0.159, 0.159, 0.1325, 0.1625, 0.1615, 0.1655, -0.01, -0.01, 0.086, 0.162, 0.1625, 0.1615, -0.01, -0.01, 0.089, 0.156, 0.1615, 0.162, 0.162, 0.1575, 0.0005, 0.14, -0.01, 0.001, -0.01, -0.01, -0.01, 0.1675, 0.1615, 0.1555, -0.01, 0.169, 0.1085, 0.166, 0.1505, 0.15, -0.01, -0.01, 0.004, 0.105, 0.167, 0.161, -0.01, -0.01, 0.0045, 0.1125, 0.1675, -0.01, 0.166, 0.1535, -0.01, 0.1285, 0.1635, 0.001, -0.01, -0.01, -0.01, 0.1655, -0.01, 0.1545, 0.1615, 0.1605, -0.01, 0.161, -0.01, 0.1565, -0.01, -0.01, -0.01, 0.152, 0.1615, 0.1565, -0.01, -0.01, 0.0045, -0.01, -0.01, 0.1595, -0.01, -0.01, -0.01, 0.157, 0.164], "y31tzbnv": [0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.1815000027418137, 0.17399999499320984, 0.1264999955892563, 0.11749999970197678, 0.12300000339746477, 0.1289999932050705, 0.1860000044107437, 0.18549999594688416, 0.12800000607967377, 0.11800000071525574, 0.12200000137090684, 0.12049999833106996, 0.1825000047683716, 0.1704999953508377, 0.13500000536441803, 0.12849999964237213, 0.13449999690055847, 0.15049999952316284, 0.15299999713897705, 0.14550000429153442, 0.13699999451637268, 0.12349999696016312, 0.13650000095367432, 0.1315000057220459, 0.1924999952316284, 0.1835000067949295, 0.13500000536441803, 0.12049999833106996, 0.12349999696016312, 0.12600000202655792, 0.20149999856948853, 0.19750000536441803, 0.12200000137090684, 0.12549999356269836, 0.13750000298023224, 0.13249999284744263, 0.14350000023841858, 0.1414999961853027, 0.13600000739097595, 0.12950000166893005, 0.1525000035762787, 0.14399999380111694, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17599999904632568, 0.17399999499320984, 0.1710000038146973, 0.13500000536441803, 0.16500000655651093, 0.1710000038146973, 0.1694999933242798, 0.1655000001192093, 0.1675000041723251, 0.14100000262260437, 0.15600000321865082, 0.15700000524520874, 0.1889999955892563, 0.19499999284744263, 0.12300000339746477, 0.1459999978542328, 0.1354999989271164, 0.13249999284744263, 0.13500000536441803, 0.1525000035762787, 0.16699999570846558, 0.13199999928474426, 0.1535000056028366, 0.15049999952316284, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1745000034570694, 0.1599999964237213, 0.17599999904632568, 0.1404999941587448, 0.17499999701976776, 0.1850000023841858, 0.15700000524520874, 0.15600000321865082, 0.18649999797344208, 0.14100000262260437, 0.16850000619888306, 0.16850000619888306, 0.1574999988079071, 0.16899999976158142, 0.12849999964237213, 0.13099999725818634, -0.01, 0.1379999965429306, 0.2045000046491623, 0.2045000046491623, 0.148499995470047, 0.11800000071525574, 0.16099999845027924, 0.15800000727176666, 0.19949999451637268, 0.20100000500679016, 0.1509999930858612, 0.11749999970197678, 0.15449999272823334, 0.15150000154972076, 0.1940000057220459, 0.1965000033378601, -0.01, 0.1469999998807907, 0.17499999701976776, 0.17299999296665192, 0.19949999451637268, 0.19949999451637268, 0.16050000488758087, 0.13600000739097595, 0.1835000067949295, 0.1875, 0.1979999989271164, 0.19499999284744263, 0.164000004529953, 0.1354999989271164, 0.16599999368190765, 0.1694999933242798, 0.2045000046491623, 0.20499999821186063, 0.11299999803304672, 0.1414999961853027, 0.15800000727176666, -0.01, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, 0.1825000047683716, 0.1835000067949295, 0.13249999284744263, 0.12349999696016312, 0.14100000262260437, 0.14100000262260437, 0.1784999966621399, 0.17499999701976776, 0.12999999523162842, -0.01, 0.12999999523162842, 0.125, 0.17599999904632568, 0.16349999606609344, 0.13699999451637268, 0.12700000405311584, 0.1264999955892563, 0.13249999284744263, 0.16050000488758087, -0.01, 0.13750000298023224, 0.12849999964237213, 0.15199999511241913, 0.1509999930858612, 0.1835000067949295, 0.18299999833106995, 0.12999999523162842, 0.11500000208616255, 0.1274999976158142, 0.12849999964237213, 0.19900000095367432, 0.20000000298023224, 0.12099999934434892, 0.13249999284744263, 0.11150000244379044, 0.1330000013113022, 0.1720000058412552, 0.17649999260902405, 0.12549999356269836, -0.01, -0.01, 0.1404999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1899999976158142, 0.1889999955892563, -0.01, 0.14650000631809235, 0.1459999978542328, -0.01, -0.01, 0.18050000071525577, 0.17649999260902405, 0.13899999856948853, -0.01, 0.1080000028014183, 0.15049999952316284, 0.1185000017285347, -0.01, 0.1694999933242798, -0.01, -0.01, 0.1354999989271164, -0.01, 0.15049999952316284, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16300000250339508, 0.2004999965429306, -0.01, 0.1924999952316284, 0.1965000033378601, -0.01, 0.1274999976158142, 0.1850000023841858, 0.17900000512599945, -0.01, 0.1889999955892563, 0.14100000262260437, 0.1315000057220459, -0.01, 0.13950000703334808, 0.12600000202655792, 0.13850000500679016, 0.20499999821186063, 0.20600000023841855, 0.1574999988079071, 0.12349999696016312, 0.1665000021457672, 0.1615000069141388, 0.20200000703334808, 0.20250000059604645, 0.1420000046491623, 0.12549999356269836, 0.15199999511241913, -0.01, -0.01, -0.01, 0.16899999976158142, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20100000500679016, -0.01, -0.01, -0.01, 0.18400000035762787, -0.01, 0.19050000607967377, -0.01, -0.01, 0.1835000067949295, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2029999941587448, 0.2029999941587448, 0.2029999941587448, -0.01, 0.2029999941587448, 0.2029999941587448, -0.01, -0.01, -0.01, 0.2029999941587448, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2029999941587448, -0.01, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, 0.2029999941587448, -0.01, -0.01, -0.01, 0.2029999941587448, -0.01, -0.01, 0.2029999941587448, 0.2029999941587448, 0.1794999986886978, -0.01, 0.12449999898672104, 0.13199999928474426, 0.13699999451637268, 0.13650000095367432, 0.1825000047683716, 0.181999996304512, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1225000023841858, 0.11599999666213988, 0.11100000143051147, 0.12349999696016312, 0.1574999988079071, 0.15700000524520874, 0.13899999856948853, 0.12999999523162842, 0.15150000154972076, 0.15399999916553497, 0.17550000548362732, 0.17299999296665192, 0.12549999356269836, 0.1185000017285347, 0.12449999898672104, 0.1289999932050705, 0.2029999941587448, 0.19850000739097595, 0.1145000010728836, 0.12049999833106996, 0.12549999356269836, 0.13349999487400055, 0.15449999272823334, 0.14800000190734863, 0.16449999809265137, 0.14550000429153442, 0.14949999749660492, 0.14949999749660492, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15800000727176666, 0.1525000035762787, 0.1940000057220459, 0.1924999952316284, 0.19200000166893005, 0.193000003695488, 0.15600000321865082, 0.15700000524520874, 0.17000000178813934, -0.01, 0.16449999809265137, 0.16300000250339508, 0.18799999356269836, -0.01, 0.1330000013113022, 0.14900000393390656, 0.1445000022649765, -0.01, -0.01, -0.01, -0.01, 0.13449999690055847, 0.16349999606609344, 0.1469999998807907, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1655000001192093, -0.01, -0.01, 0.18950000405311584, 0.1924999952316284, 0.1914999932050705, 0.15950000286102295, 0.15000000596046448, 0.19449999928474423, -0.01, 0.17299999296665192, 0.17749999463558197, 0.17249999940395355, 0.18649999797344208, 0.12849999964237213, 0.12999999523162842, 0.1445000022649765, -0.01, 0.20350000262260437, 0.20200000703334808, 0.15150000154972076, 0.11900000274181366, -0.01, -0.01, 0.1979999989271164, 0.1979999989271164, 0.16449999809265137, -0.01, 0.1469999998807907, -0.01, 0.19499999284744263, 0.1934999972581863, 0.17649999260902405, 0.16099999845027924, 0.17149999737739563, 0.1655000001192093, 0.2039999961853027, 0.2039999961853027, 0.2055000066757202, 0.2039999961853027, 0.20250000059604645, 0.20250000059604645, 0.1955000013113022, 0.1924999952316284, 0.17800000309944153, 0.16850000619888306, 0.17000000178813934, 0.17249999940395355, 0.2029999941587448, 0.2029999941587448, 0.12999999523162842, 0.12349999696016312, 0.15800000727176666, -0.01], "y14kg9m4": [0.12099999934434892, 0.12200000137090684, 0.11649999767541884, 0.15049999952316284, 0.10249999910593031, 0.10450000315904616, 0.10750000178813934, 0.12800000607967377, 0.0925000011920929, 0.15700000524520874, 0.09600000083446504, 0.1094999983906746, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1274999976158142, 0.12150000035762788, 0.10000000149011612, 0.15649999678134918, 0.10499999672174454, 0.10649999976158142, 0.10999999940395357, 0.11400000005960464, 0.10249999910593031, 0.14749999344348907, 0.1040000021457672, 0.09849999845027924, 0.1330000013113022, 0.1459999978542328, 0.10849999636411668, 0.14900000393390656, 0.10499999672174454, 0.0989999994635582, 0.12700000405311584, 0.1274999976158142, 0.09799999743700027, 0.16200000047683716, 0.11400000005960464, 0.10999999940395357, 0.11150000244379044, 0.12099999934434892, 0.10450000315904616, 0.119999997317791, 0.11599999666213988, 0.09749999642372131, 0.1330000013113022, 0.13199999928474426, 0.0989999994635582, 0.15700000524520874, 0.1094999983906746, 0.10899999737739564, 0.13750000298023224, 0.1264999955892563, 0.10499999672174454, 0.1599999964237213, 0.11299999803304672, 0.11100000143051147, 0.11050000041723251, 0.10499999672174454, 0.11249999701976776, 0.14949999749660492, 0.11550000309944151, 0.1040000021457672, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1185000017285347, 0.119999997317791, 0.11900000274181366, 0.1574999988079071, 0.11400000005960464, 0.09849999845027924, 0.11299999803304672, 0.10750000178813934, 0.1145000010728836, 0.1509999930858612, 0.10999999940395357, 0.10899999737739564, 0.12099999934434892, 0.11649999767541884, 0.10450000315904616, 0.14000000059604645, 0.10100000351667404, 0.09950000047683716, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.119999997317791, 0.119999997317791, 0.17000000178813934, 0.1550000011920929, 0.10700000077486038, 0.10450000315904616, 0.09849999845027924, 0.10999999940395357, 0.13899999856948853, 0.15399999916553497, 0.11299999803304672, 0.11249999701976776, 0.12200000137090684, 0.1264999955892563, 0.10199999809265135, 0.1445000022649765, 0.11050000041723251, 0.10849999636411668, 0.12399999797344208, 0.1185000017285347, 0.08950000256299973, 0.148499995470047, 0.1054999977350235, 0.09950000047683716, 0.10450000315904616, 0.1040000021457672, 0.1014999970793724, 0.11299999803304672, 0.0989999994635582, 0.10000000149011612, 0.12099999934434892, 0.12049999833106996, 0.10649999976158142, 0.15700000524520874, 0.10849999636411668, 0.11249999701976776, 0.1054999977350235, 0.09600000083446504, 0.10000000149011612, 0.14800000190734863, 0.10450000315904616, 0.1080000028014183, 0.1185000017285347, 0.13349999487400055, 0.1289999932050705, 0.14100000262260437, 0.12449999898672104, 0.12449999898672104, 0.13899999856948853, 0.1264999955892563, 0.12549999356269836, 0.13650000095367432, 0.148499995470047, 0.14000000059604645, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.13600000739097595, 0.13699999451637268, 0.1445000022649765, -0.01, 0.1330000013113022, 0.1459999978542328, 0.11649999767541884, 0.1145000010728836, 0.10599999874830246, 0.13950000703334808, 0.09950000047683716, 0.10100000351667404, 0.13199999928474426, 0.12700000405311584, 0.09950000047683716, 0.15299999713897705, 0.11749999970197678, 0.10249999910593031, 0.13650000095367432, 0.13750000298023224, 0.10599999874830246, 0.15000000596046448, 0.0949999988079071, -0.01, 0.10849999636411668, 0.1054999977350235, 0.1040000021457672, 0.10249999910593031, 0.10649999976158142, 0.11050000041723251, 0.1315000057220459, 0.12700000405311584, 0.11599999666213988, 0.13650000095367432, 0.11900000274181366, 0.11599999666213988, 0.1379999965429306, 0.13449999690055847, 0.09549999982118608, 0.15399999916553497, 0.11550000309944151, 0.09950000047683716, 0.1225000023841858, 0.11150000244379044, 0.1404999941587448, 0.15199999511241913, 0.10849999636411668, 0.11800000071525574, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.13099999725818634, 0.13500000536441803, 0.15000000596046448, 0.14000000059604645, 0.14350000023841858, 0.1340000033378601, 0.10700000077486038, 0.11649999767541884, 0.13199999928474426, 0.12099999934434892, 0.11349999904632568, 0.11249999701976776, 0.12099999934434892, 0.1169999986886978, 0.10750000178813934, 0.1414999961853027, 0.11349999904632568, 0.11599999666213988, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11299999803304672, 0.12099999934434892, 0.1835000067949295, 0.14249999821186066, 0.11949999630451202, 0.12449999898672104, 0.10700000077486038, 0.1040000021457672, 0.1720000058412552, 0.125, 0.12999999523162842, 0.1274999976158142, 0.11150000244379044, 0.11500000208616255, 0.1014999970793724, 0.14100000262260437, 0.11400000005960464, 0.10599999874830246, 0.11050000041723251, 0.09749999642372131, 0.09449999779462814, 0.148499995470047, 0.10100000351667404, 0.09700000286102296, 0.10499999672174454, 0.09449999779462814, 0.10350000113248824, 0.1094999983906746, 0.11800000071525574, 0.11649999767541884, 0.1354999989271164, 0.125, 0.12200000137090684, 0.13099999725818634, 0.11550000309944151, 0.12300000339746477, 0.10350000113248824, 0.11749999970197678, 0.09799999743700027, 0.1080000028014183, 0.1054999977350235, 0.11150000244379044, 0.13650000095367432, 0.1340000033378601, 0.12300000339746477, 0.1449999958276749, 0.10750000178813934, 0.12049999833106996, 0.12449999898672104, 0.12999999523162842, 0.13349999487400055, 0.14900000393390656, 0.13950000703334808, 0.13349999487400055, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1264999955892563, 0.1449999958276749, 0.13650000095367432, 0.14000000059604645, 0.13699999451637268, 0.1274999976158142, 0.10999999940395357, 0.11050000041723251, 0.07500000298023224, 0.1459999978542328, 0.10499999672174454, 0.10499999672174454, 0.12150000035762788, 0.13850000500679016, 0.11249999701976776, 0.1550000011920929, 0.09799999743700027, 0.090999998152256, 0.1169999986886978, 0.12950000166893005, 0.09350000321865082, 0.1574999988079071, 0.09549999982118608, 0.09749999642372131, 0.12399999797344208, 0.1094999983906746, 0.10249999910593031, 0.11749999970197678, 0.10000000149011612, 0.09350000321865082, 0.12549999356269836, 0.1289999932050705, 0.12549999356269836, 0.14399999380111694, 0.11500000208616255, 0.11249999701976776, 0.1185000017285347, 0.1264999955892563, 0.08749999850988388, 0.15800000727176666, 0.09600000083446504, 0.09849999845027924, 0.11249999701976776, 0.10350000113248824, 0.1354999989271164, 0.1420000046491623, 0.11599999666213988, 0.10750000178813934, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12399999797344208, -0.01, 0.1675000041723251, 0.12950000166893005, 0.12099999934434892, 0.12849999964237213, 0.1040000021457672, 0.09849999845027924, 0.12150000035762788, 0.12950000166893005, 0.11400000005960464, 0.1169999986886978, 0.11050000041723251, 0.11100000143051147, 0.12449999898672104, 0.1459999978542328, 0.11050000041723251, 0.1145000010728836, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11949999630451202, 0.13650000095367432, 0.16449999809265137, 0.13750000298023224, 0.12200000137090684, 0.12099999934434892, 0.10849999636411668, 0.11299999803304672, 0.13899999856948853, 0.12600000202655792, 0.11400000005960464, 0.1094999983906746, 0.1169999986886978, 0.11349999904632568, 0.10599999874830246, 0.14399999380111694, 0.1054999977350235, 0.11100000143051147, 0.11550000309944151, 0.11550000309944151, 0.10199999809265135, 0.1414999961853027, 0.09749999642372131, 0.0949999988079071, 0.10249999910593031, 0.1040000021457672, 0.10300000011920928, 0.1169999986886978, 0.11050000041723251, 0.10999999940395357, 0.14000000059604645, 0.12300000339746477, 0.13449999690055847, 0.12849999964237213, 0.11599999666213988, 0.11949999630451202, 0.10050000250339508, 0.10750000178813934, 0.10599999874830246, 0.11500000208616255, 0.1094999983906746, 0.10649999976158142], "a37nb7n4": [0.1940000057220459, 0.1940000057220459, 0.1934999972581863, 0.193000003695488, -0.01, -0.01, 0.1934999972581863, 0.1934999972581863, 0.19200000166893005, 0.19200000166893005, 0.1784999966621399, 0.16099999845027924, 0.18050000071525577, 0.18050000071525577, 0.17749999463558197, 0.16249999403953552, 0.1420000046491623, 0.13750000298023224, 0.17149999737739563, 0.1704999953508377, 0.1599999964237213, 0.14100000262260437, -0.01, -0.01, -0.01, -0.01, 0.1445000022649765, 0.13199999928474426, 0.1449999958276749, 0.13899999856948853, 0.13899999856948853, 0.14350000023841858, -0.01, -0.01, -0.01, -0.01, 0.1420000046491623, 0.13650000095367432, 0.15150000154972076, 0.13600000739097595, 0.19099999964237213, 0.19099999964237213, 0.1914999932050705, 0.19200000166893005, 0.18400000035762787, 0.18649999797344208, 0.18649999797344208, 0.181999996304512, 0.1825000047683716, 0.1914999932050705, 0.193000003695488, 0.1940000057220459, 0.1924999952316284, 0.19200000166893005, -0.01, -0.01, 0.193000003695488, 0.1924999952316284, 0.19200000166893005, 0.19200000166893005, 0.1589999943971634, 0.1655000001192093, 0.16899999976158142, 0.16500000655651093, 0.1694999933242798, 0.1550000011920929, 0.11900000274181366, 0.13899999856948853, 0.1655000001192093, 0.15950000286102295, 0.1589999943971634, 0.1679999977350235, -0.01, -0.01, -0.01, -0.01, 0.1404999941587448, 0.14749999344348907, 0.10450000315904616, 0.11349999904632568, 0.1430000066757202, 0.13699999451637268, -0.01, -0.01, -0.01, -0.01, 0.13750000298023224, 0.13500000536441803, 0.1264999955892563, 0.1080000028014183, 0.1940000057220459, 0.19050000607967377, 0.18549999594688416, 0.18449999392032623, 0.18000000715255737, 0.1784999966621399, 0.18850000202655792, 0.18400000035762787, 0.1615000069141388, 0.1574999988079071, 0.1934999972581863, 0.1940000057220459, 0.19099999964237213, 0.1914999932050705, -0.01, -0.01, 0.1924999952316284, 0.1924999952316284, 0.19200000166893005, 0.19200000166893005, 0.1615000069141388, 0.15399999916553497, 0.18400000035762787, 0.1535000056028366, 0.17550000548362732, 0.17749999463558197, 0.13050000369548798, 0.12600000202655792, 0.1784999966621399, 0.1720000058412552, 0.15049999952316284, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15700000524520874, -0.01, -0.01, 0.12049999833106996, 0.15299999713897705, 0.14650000631809235, -0.01, -0.01, -0.01, -0.01, 0.1574999988079071, 0.1459999978542328, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1875, -0.01, 0.17399999499320984, 0.17350000143051147], "67nc05qo": [0.076, 0.0725, -0.01, 0.071, 0.2035, 0.201, 0.199, 0.203, 0.2005, 0.171, 0.1995, 0.2015, 0.199, -0.01, -0.01, 0.0695, 0.182, 0.2005, 0.2, -0.01, -0.01, 0.1175, 0.173, 0.201, 0.206, 0.201, -0.01, 0.001, 0.184, 0.2025, -0.01, 0.0045, -0.01, -0.01, 0.2025, 0.202, 0.1985, 0.199, 0.202, -0.01, -0.01, 0.197, 0.2005, -0.01, -0.01, 0.024, 0.1225, -0.01, -0.01, -0.01, -0.01, 0.02, 0.13, 0.201, 0.1995, 0.199, 0.2015, -0.01, -0.01, -0.01, 0.002, -0.01, -0.01, 0.001, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1985, -0.01, 0.199, -0.01, -0.01, 0.0225, 0.1835, -0.01, 0.2035, -0.01, -0.01, 0.0185, 0.176, -0.01, -0.01, -0.01, 0.1935, -0.01, 0.1825, 0.201], "khimppcz": [0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1430000066757202, 0.14800000190734863, 0.1225000023841858, 0.1289999932050705, 0.11800000071525574, 0.12700000405311584, 0.1525000035762787, 0.1599999964237213, 0.11749999970197678, 0.14249999821186066, 0.12150000035762788, 0.1340000033378601, 0.14949999749660492, 0.14800000190734863, 0.12150000035762788, 0.1354999989271164, 0.1274999976158142, 0.13349999487400055, 0.14949999749660492, 0.14949999749660492, 0.1289999932050705, 0.13249999284744263, 0.1315000057220459, 0.12849999964237213, 0.14749999344348907, 0.14000000059604645, 0.13050000369548798, 0.12449999898672104, 0.12349999696016312, 0.13199999928474426, 0.15299999713897705, 0.148499995470047, 0.12150000035762788, 0.12849999964237213, 0.12449999898672104, 0.14399999380111694, 0.1525000035762787, 0.1445000022649765, 0.1340000033378601, 0.1420000046491623, 0.13249999284744263, 0.14100000262260437, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1459999978542328, 0.14949999749660492, 0.14100000262260437, 0.13950000703334808, 0.1430000066757202, 0.13449999690055847, 0.1379999965429306, 0.13950000703334808, 0.1315000057220459, 0.13650000095367432, 0.13050000369548798, 0.13349999487400055, 0.15600000321865082, 0.14900000393390656, 0.13099999725818634, 0.1379999965429306, 0.1379999965429306, 0.13600000739097595, 0.1430000066757202, 0.1420000046491623, 0.13750000298023224, 0.1315000057220459, 0.1430000066757202, 0.1379999965429306, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1420000046491623, 0.13950000703334808, 0.148499995470047, 0.13699999451637268, 0.13899999856948853, 0.1330000013113022, 0.14900000393390656, 0.1449999958276749, 0.14749999344348907, 0.13899999856948853, 0.1330000013113022, 0.12999999523162842, 0.1445000022649765, 0.14900000393390656, 0.13099999725818634, 0.12549999356269836, 0.13600000739097595, 0.12349999696016312, 0.15299999713897705, 0.148499995470047, 0.1404999941587448, 0.14100000262260437, 0.1459999978542328, 0.12800000607967377, 0.15850000083446503, 0.15299999713897705, 0.14399999380111694, 0.1330000013113022, 0.1445000022649765, 0.15299999713897705, 0.15000000596046448, 0.13950000703334808, 0.1449999958276749, 0.1225000023841858, 0.13899999856948853, 0.13650000095367432, 0.15000000596046448, 0.15700000524520874, 0.1430000066757202, 0.14000000059604645, 0.15049999952316284, 0.1430000066757202, 0.13950000703334808, 0.14550000429153442, 0.13899999856948853, 0.13650000095367432, 0.1445000022649765, 0.1414999961853027, 0.15950000286102295, 0.15649999678134918, 0.1404999941587448, 0.13449999690055847, 0.1445000022649765, 0.16099999845027924, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.14900000393390656, 0.14949999749660492, 0.12600000202655792, 0.1354999989271164, 0.1225000023841858, 0.12600000202655792, 0.15000000596046448, 0.14949999749660492, 0.12449999898672104, 0.1274999976158142, 0.1449999958276749, 0.1414999961853027, 0.14550000429153442, 0.1469999998807907, 0.13850000500679016, 0.14100000262260437, 0.13349999487400055, 0.14249999821186066, 0.14399999380111694, 0.1535000056028366, 0.12999999523162842, 0.1354999989271164, 0.13699999451637268, 0.13950000703334808, 0.14949999749660492, 0.1469999998807907, 0.119999997317791, 0.1315000057220459, 0.12200000137090684, 0.12150000035762788, 0.14800000190734863, 0.15649999678134918, 0.12449999898672104, 0.12700000405311584, 0.119999997317791, 0.119999997317791, 0.12600000202655792, 0.13050000369548798, 0.11900000274181366, 0.1274999976158142, 0.1404999941587448, 0.12999999523162842, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.14900000393390656, 0.15000000596046448, 0.15000000596046448, 0.14399999380111694, 0.13600000739097595, 0.1315000057220459, 0.15000000596046448, 0.15299999713897705, 0.1354999989271164, 0.13899999856948853, 0.14749999344348907, 0.1404999941587448, 0.1449999958276749, 0.1420000046491623, 0.12549999356269836, 0.1414999961853027, 0.125, 0.13500000536441803, 0.12549999356269836, 0.1274999976158142, 0.12600000202655792, 0.1274999976158142, 0.12150000035762788, 0.12700000405311584, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.13449999690055847, 0.1404999941587448, 0.14100000262260437, 0.1430000066757202, 0.14000000059604645, 0.1420000046491623, 0.13950000703334808, 0.14100000262260437, 0.148499995470047, 0.1330000013113022, 0.13950000703334808, 0.1354999989271164, 0.15549999475479126, 0.14249999821186066, 0.1404999941587448, 0.12950000166893005, 0.12800000607967377, 0.1354999989271164, 0.15000000596046448, 0.14949999749660492, 0.1330000013113022, 0.1225000023841858, 0.14249999821186066, 0.14350000023841858, 0.14949999749660492, 0.148499995470047, 0.1354999989271164, 0.14100000262260437, 0.13500000536441803, 0.1315000057220459, 0.14249999821186066, 0.1414999961853027, 0.14749999344348907, 0.1330000013113022, 0.12950000166893005, 0.13249999284744263, 0.15600000321865082, 0.15700000524520874, 0.148499995470047, 0.14100000262260437, 0.15199999511241913, 0.1525000035762787, 0.1449999958276749, 0.1469999998807907, 0.148499995470047, 0.1430000066757202, 0.1379999965429306, 0.14249999821186066, 0.15399999916553497, 0.15199999511241913, 0.1315000057220459, 0.125, 0.148499995470047, 0.14350000023841858, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.1655000001192093, 0.14749999344348907, 0.14249999821186066, 0.13950000703334808, 0.1420000046491623, 0.12200000137090684, 0.12099999934434892, 0.1420000046491623, 0.13500000536441803, 0.12999999523162842, 0.1315000057220459, 0.1264999955892563, 0.1274999976158142, 0.15549999475479126, 0.15299999713897705, 0.1185000017285347, 0.12099999934434892, 0.13249999284744263, 0.13750000298023224, 0.1379999965429306, 0.14650000631809235, 0.1225000023841858, 0.13449999690055847, 0.13249999284744263, 0.13050000369548798, 0.15000000596046448, 0.14399999380111694, 0.12849999964237213, 0.1289999932050705, 0.1315000057220459, 0.12549999356269836, 0.15049999952316284, 0.15600000321865082, 0.1449999958276749, 0.12349999696016312, 0.12600000202655792, 0.12600000202655792, 0.14350000023841858, 0.1449999958276749, 0.13500000536441803, 0.1330000013113022, 0.1430000066757202, 0.1354999989271164, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1430000066757202, 0.14350000023841858, 0.1449999958276749, 0.1404999941587448, 0.13899999856948853, 0.14350000023841858, 0.13650000095367432, 0.13899999856948853, 0.13349999487400055, 0.13650000095367432, 0.13349999487400055, 0.1340000033378601, 0.15299999713897705, 0.15199999511241913, 0.13899999856948853, 0.13099999725818634, 0.13699999451637268, 0.13750000298023224, 0.13050000369548798, 0.14000000059604645, 0.14100000262260437, 0.13899999856948853, 0.1315000057220459, 0.14650000631809235, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12950000166893005, 0.1379999965429306, 0.1330000013113022, 0.13500000536441803, 0.13950000703334808, 0.1449999958276749, 0.14100000262260437, 0.1459999978542328, 0.1379999965429306, 0.13850000500679016, 0.1315000057220459, 0.13500000536441803, 0.14100000262260437, 0.14749999344348907, 0.13500000536441803, 0.12999999523162842, 0.12999999523162842, 0.13199999928474426, 0.1509999930858612, 0.15000000596046448, 0.13899999856948853, 0.1340000033378601, 0.13500000536441803, 0.13850000500679016, 0.15700000524520874, 0.15449999272823334, 0.13750000298023224, 0.12999999523162842, 0.13950000703334808, 0.14000000059604645, 0.14749999344348907, 0.13850000500679016, 0.14249999821186066, 0.13349999487400055, 0.14350000023841858, 0.1420000046491623, 0.1615000069141388, 0.1599999964237213, 0.14350000023841858, 0.1430000066757202, 0.1449999958276749, 0.14650000631809235, 0.13950000703334808, 0.14100000262260437, 0.15049999952316284, 0.1340000033378601, 0.13950000703334808, 0.1459999978542328, 0.16050000488758087, 0.15600000321865082, 0.12449999898672104, 0.13449999690055847, 0.1449999958276749, -0.01], "bvgjtmzk": [0.11349999904632568, 0.11299999803304672, 0.12049999833106996, 0.14800000190734863, 0.1014999970793724, 0.12200000137090684, 0.10999999940395357, -0.01, 0.11100000143051147, 0.15399999916553497, 0.09950000047683716, 0.11100000143051147, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12999999523162842, 0.12700000405311584, 0.11150000244379044, 0.14949999749660492, 0.1094999983906746, 0.10599999874830246, 0.12099999934434892, 0.12399999797344208, 0.10750000178813934, 0.15049999952316284, -0.01, 0.1225000023841858, 0.13650000095367432, 0.12999999523162842, 0.12150000035762788, 0.1599999964237213, 0.10700000077486038, 0.1040000021457672, 0.12800000607967377, 0.12849999964237213, 0.096500001847744, 0.14650000631809235, 0.11150000244379044, -0.01, 0.12549999356269836, 0.13050000369548798, 0.11050000041723251, 0.12999999523162842, 0.11900000274181366, 0.10450000315904616, 0.11649999767541884, 0.13099999725818634, 0.11050000041723251, 0.15800000727176666, 0.1094999983906746, 0.10249999910593031, 0.11400000005960464, 0.13600000739097595, -0.01, 0.15299999713897705, 0.11800000071525574, 0.11599999666213988, 0.1315000057220459, 0.1274999976158142, 0.10899999737739564, 0.1509999930858612, 0.11900000274181366, 0.11550000309944151, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11800000071525574, 0.12950000166893005, 0.09449999779462814, 0.15150000154972076, 0.12099999934434892, 0.12549999356269836, 0.11249999701976776, 0.119999997317791, 0.11900000274181366, 0.14350000023841858, 0.09950000047683716, 0.10899999737739564, 0.12049999833106996, 0.119999997317791, 0.11599999666213988, 0.13950000703334808, 0.11749999970197678, 0.12049999833106996, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.119999997317791, 0.12349999696016312, 0.12200000137090684, 0.148499995470047, 0.10750000178813934, 0.1225000023841858, 0.12399999797344208, 0.11299999803304672, 0.11249999701976776, 0.1449999958276749, 0.1145000010728836, 0.10999999940395357, 0.12200000137090684, 0.11649999767541884, 0.11150000244379044, 0.1330000013113022, 0.10899999737739564, 0.10899999737739564, 0.11900000274181366, 0.13050000369548798, 0.10350000113248824, 0.1469999998807907, 0.12150000035762788, 0.12150000035762788, 0.11550000309944151, 0.11050000041723251, 0.11299999803304672, 0.125, 0.11400000005960464, 0.11249999701976776, 0.1185000017285347, 0.125, 0.10599999874830246, 0.14949999749660492, 0.10199999809265135, 0.1094999983906746, 0.11400000005960464, 0.1169999986886978, 0.11749999970197678, 0.13750000298023224, 0.11800000071525574, 0.11649999767541884, 0.125, 0.1264999955892563, 0.1145000010728836, 0.14749999344348907, 0.11400000005960464, 0.11749999970197678, 0.13099999725818634, 0.11949999630451202, 0.1094999983906746, 0.1449999958276749, 0.1120000034570694, 0.1185000017285347, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.13050000369548798, 0.12200000137090684, 0.13199999928474426, 0.14350000023841858, 0.1054999977350235, 0.11550000309944151, 0.1169999986886978, 0.12049999833106996, 0.1040000021457672, 0.14000000059604645, 0.11550000309944151, 0.119999997317791, 0.13199999928474426, 0.1185000017285347, 0.1120000034570694, 0.15299999713897705, 0.096500001847744, 0.1145000010728836, 0.1330000013113022, 0.13899999856948853, 0.11050000041723251, 0.14949999749660492, 0.10499999672174454, 0.1080000028014183, 0.12099999934434892, 0.11949999630451202, 0.11050000041723251, 0.1315000057220459, 0.09600000083446504, 0.08799999952316284, 0.11649999767541884, 0.1264999955892563, 0.11949999630451202, 0.15199999511241913, 0.1120000034570694, 0.1145000010728836, 0.12700000405311584, 0.13199999928474426, 0.10499999672174454, 0.1550000011920929, 0.10199999809265135, 0.11050000041723251, 0.12600000202655792, 0.1330000013113022, 0.11050000041723251, 0.1420000046491623, 0.125, 0.13699999451637268, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12349999696016312, 0.12300000339746477, 0.10750000178813934, -0.01, 0.12449999898672104, 0.11900000274181366, 0.1054999977350235, 0.12300000339746477, 0.1145000010728836, 0.15150000154972076, 0.10300000011920928, 0.10849999636411668, 0.11150000244379044, 0.10700000077486038, 0.1169999986886978, 0.1459999978542328, 0.11500000208616255, 0.11800000071525574, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1145000010728836, 0.11550000309944151, 0.0949999988079071, 0.14249999821186066, 0.10649999976158142, 0.10899999737739564, 0.119999997317791, 0.1080000028014183, -0.01, 0.14350000023841858, 0.10599999874830246, 0.1094999983906746, 0.11949999630451202, 0.13099999725818634, 0.11550000309944151, -0.01, 0.10649999976158142, 0.11800000071525574, 0.1289999932050705, 0.12150000035762788, -0.01, 0.1379999965429306, -0.01, 0.10499999672174454, 0.1054999977350235, 0.11800000071525574, 0.09950000047683716, 0.125, 0.1080000028014183, 0.11100000143051147, 0.13449999690055847, 0.12600000202655792, 0.1145000010728836, 0.1525000035762787, 0.10199999809265135, 0.10750000178813934, 0.10700000077486038, 0.11949999630451202, 0.1014999970793724, 0.14949999749660492, -0.01, 0.11150000244379044, 0.11800000071525574, 0.11100000143051147, 0.10899999737739564, 0.1430000066757202, 0.11749999970197678, 0.11400000005960464, 0.1225000023841858, 0.11249999701976776, 0.1040000021457672, 0.14350000023841858, 0.12549999356269836, 0.11349999904632568, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12849999964237213, 0.13050000369548798, 0.12099999934434892, 0.13950000703334808, 0.11150000244379044, 0.11400000005960464, -0.01, 0.12200000137090684, 0.10999999940395357, 0.1420000046491623, 0.12200000137090684, 0.1120000034570694, 0.13349999487400055, 0.13699999451637268, 0.11349999904632568, 0.14900000393390656, 0.1054999977350235, 0.10499999672174454, 0.1379999965429306, 0.1420000046491623, 0.1274999976158142, 0.15549999475479126, 0.12300000339746477, -0.01, 0.12800000607967377, 0.13199999928474426, -0.01, 0.12549999356269836, 0.119999997317791, -0.01, 0.12099999934434892, 0.12399999797344208, 0.10899999737739564, 0.15449999272823334, 0.11150000244379044, 0.11299999803304672, 0.12349999696016312, -0.01, 0.10000000149011612, 0.16099999845027924, 0.11249999701976776, 0.11349999904632568, -0.01, 0.11749999970197678, -0.01, 0.14249999821186066, 0.13600000739097595, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12549999356269836, -0.01, 0.11649999767541884, -0.01, 0.1054999977350235, 0.10100000351667404, 0.12849999964237213, -0.01, -0.01, -0.01, 0.12049999833106996, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12200000137090684, -0.01, 0.14100000262260437, 0.11749999970197678, 0.119999997317791, 0.119999997317791, 0.11150000244379044, 0.1120000034570694, 0.13899999856948853, 0.13500000536441803, 0.1145000010728836, 0.13099999725818634, -0.01, 0.1169999986886978, 0.1404999941587448, 0.10300000011920928, 0.119999997317791, 0.11550000309944151, 0.12800000607967377, 0.11800000071525574, 0.15600000321865082, 0.10300000011920928, 0.10050000250339508, 0.12800000607967377, 0.12800000607967377, 0.10499999672174454, 0.12549999356269836, 0.11749999970197678, 0.11599999666213988, 0.12049999833106996, 0.13899999856948853, 0.09549999982118608, 0.15049999952316284, 0.1080000028014183, 0.11349999904632568, 0.13199999928474426, 0.11749999970197678, 0.125, 0.1449999958276749, 0.1120000034570694, 0.11249999701976776], "viqji691": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1599999964237213, 0.1599999964237213, 0.1599999964237213, 0.1599999964237213, 0.1599999964237213, 0.1599999964237213, 0.1599999964237213, 0.1599999964237213, 0.14749999344348907, 0.15150000154972076, 0.15600000321865082, 0.1445000022649765, 0.1665000021457672, 0.15549999475479126, 0.14249999821186066, 0.13699999451637268, 0.14399999380111694, 0.14800000190734863, 0.1459999978542328, 0.14000000059604645, 0.16099999845027924, 0.1449999958276749, 0.15600000321865082, 0.14749999344348907, 0.13750000298023224, 0.15150000154972076, 0.1185000017285347, 0.125, 0.1379999965429306, 0.1430000066757202, 0.15950000286102295, 0.1449999958276749, 0.15649999678134918, 0.1550000011920929, 0.15000000596046448, 0.15600000321865082, 0.16449999809265137, 0.1574999988079071, 0.1509999930858612, 0.16300000250339508, 0.1599999964237213, 0.1655000001192093, 0.16899999976158142, 0.1599999964237213, 0.1679999977350235, 0.1675000041723251, 0.1599999964237213, 0.1599999964237213, 0.1469999998807907, 0.1330000013113022, 0.1525000035762787, 0.15649999678134918, 0.15150000154972076, 0.15150000154972076, 0.1354999989271164, 0.16200000047683716, 0.148499995470047, 0.13750000298023224, 0.17399999499320984, 0.17249999940395355, 0.14100000262260437, 0.15600000321865082, 0.14900000393390656, 0.1469999998807907, 0.1615000069141388, 0.16500000655651093, 0.1459999978542328, 0.1354999989271164, 0.1264999955892563, 0.1330000013113022, 0.1509999930858612, 0.15800000727176666, 0.15549999475479126, 0.15549999475479126, 0.16099999845027924, 0.15449999272823334, 0.1720000058412552, 0.17149999737739563, 0.15449999272823334, 0.15649999678134918, 0.1710000038146973, 0.16850000619888306, 0.17649999260902405, 0.17599999904632568, 0.15950000286102295, 0.17350000143051147, 0.1599999964237213, 0.1599999964237213, 0.14399999380111694, 0.14550000429153442, 0.1459999978542328, 0.15299999713897705, 0.13850000500679016, 0.1574999988079071, 0.1404999941587448, 0.15000000596046448, 0.14100000262260437, 0.1379999965429306, 0.1665000021457672, 0.16850000619888306, 0.14350000023841858, 0.14650000631809235, 0.14650000631809235, 0.1449999958276749, 0.15150000154972076, 0.148499995470047, 0.13249999284744263, 0.12800000607967377, 0.1414999961853027, 0.12950000166893005, 0.16449999809265137, 0.1550000011920929, 0.15950000286102295, 0.14900000393390656, 0.15700000524520874, 0.1414999961853027, 0.17000000178813934, 0.1615000069141388, 0.15600000321865082, 0.15000000596046448], "r5o2z89s": [-0.01, 0.1455, -0.01, -0.01, 0.1415, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1715, -0.01, -0.01, -0.01, -0.01, 0.103, 0.1665, -0.01, -0.01, 0.153, -0.01, -0.01, 0.1315, 0.1295, 0.134, 0.161, 0.1615, 0.1395, 0.1515, 0.1545, 0.0905, 0.1575, 0.154, 0.1075, 0.147, 0.1375, 0.1155, 0.103, 0.144, 0.152, 0.15, 0.1505, 0.0875, 0.1185, 0.1495, 0.13, 0.125, 0.119, 0.159, 0.1615, 0.1375, 0.1565, 0.168, 0.0955, 0.151, 0.166, 0.159, 0.1005, 0.128, 0.144, 0.1095, 0.1105, 0.149, 0.149, 0.1475, 0.128, 0.072, 0.107, 0.146, 0.125, 0.1155, 0.156, 0.1495, 0.1325, 0.152, 0.1495, 0.1515, 0.164, 0.098, 0.15, 0.148, 0.102, 0.1105, 0.139, 0.143, 0.129, 0.1365, 0.0815, 0.108, 0.1485], "lfanvedj": [0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.9160125851631165, 0.9097331166267396, 0.912872850894928, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9152276515960692, 0.9097331166267396, 0.9120879173278807, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.9152276515960692, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.906593382358551, 0.912872850894928, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.9152276515960692, 0.912872850894928, 0.9160125851631165, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.9207221269607544, 0.9089481830596924, 0.9136577844619752, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.9160125851631165, 0.9097331166267396, 0.9160125851631165, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.9113029837608336, 0.9120879173278807, 0.9144427180290222, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.907378315925598, 0.912872850894928, 0.9105180501937866, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.918367326259613, 0.8987441062927246, 0.912872850894928, 0.9207221269607544, 0.9207221269607544, 0.918367326259613, 0.907378315925598, 0.9152276515960692, 0.918367326259613, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.918367326259613, 0.918367326259613, 0.9167974591255188, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.918367326259613, 0.918367326259613, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.9191522598266602, 0.9105180501937866, 0.907378315925598, 0.9215070605278016, 0.9215070605278016, 0.918367326259613, 0.8971742391586304, 0.9199371933937072, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.9081632494926452, 0.9167974591255188, 0.918367326259613, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.9191522598266602, 0.917582392692566, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.9167974591255188, 0.9207221269607544, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.9215070605278016, 0.907378315925598, 0.9152276515960692, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.9160125851631165, 0.9160125851631165, 0.918367326259613, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.9160125851631165, 0.9144427180290222, 0.9160125851631165, 0.9215070605278016, 0.9215070605278016, 0.9191522598266602, 0.9144427180290222, 0.9199371933937072, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9191522598266602, 0.905808448791504, 0.9160125851631165, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.9152276515960692, 0.9152276515960692, 0.9191522598266602, 0.9215070605278016, 0.9215070605278016, 0.9191522598266602, 0.9191522598266602, 0.9152276515960692, 0.9144427180290222, 0.8924646973609924, 0.8846153616905212, 0.8744112849235535, 0.912872850894928, 0.905808448791504, 0.8956043720245361, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.9089481830596924, 0.912872850894928, 0.9120879173278807, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.901098906993866, 0.9113029837608336, 0.912872850894928, 0.907378315925598, 0.9026687741279602, 0.8712716102600098, 0.9167974591255188, 0.894819438457489, 0.8775510191917419, 0.8908948302268982, 0.7527472376823425, 0.905808448791504, 0.907378315925598, 0.9081632494926452, 0.8956043720245361, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.918367326259613, 0.917582392692566, 0.9160125851631165, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.917582392692566, 0.9152276515960692, 0.9026687741279602, 0.9042386412620544, 0.9034537076950072, 0.9199371933937072, 0.907378315925598, 0.8901098966598511, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.9050235748291016, 0.9167974591255188, 0.9199371933937072, 0.9215070605278016, 0.9215070605278016, -0.01, 0.9152276515960692, 0.9167974591255188, 0.9191522598266602, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.9207221269607544, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.917582392692566, 0.9207221269607544, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9191522598266602, 0.9199371933937072, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9191522598266602, 0.918367326259613, 0.9081632494926452, 0.9144427180290222, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9199371933937072, 0.9191522598266602, 0.907378315925598, 0.9089481830596924, 0.9215070605278016, 0.9215070605278016, 0.917582392692566, 0.9160125851631165, 0.9144427180290222, 0.9160125851631165, 0.9215070605278016, 0.9215070605278016, 0.918367326259613, 0.917582392692566, 0.917582392692566, 0.9199371933937072, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.905808448791504, 0.9105180501937866, 0.9199371933937072, 0.9215070605278016, 0.9215070605278016, 0.918367326259613, 0.9152276515960692, 0.9144427180290222, 0.9191522598266602, 0.9215070605278016, 0.9215070605278016, 0.918367326259613, 0.9207221269607544, 0.9152276515960692, 0.9160125851631165, 0.9215070605278016, 0.9215070605278016, 0.9191522598266602, 0.9167974591255188, 0.9120879173278807, 0.9160125851631165, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.918367326259613, 0.9120879173278807, 0.9113029837608336, 0.9113029837608336, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.9026687741279602, 0.9136577844619752, 0.9144427180290222, 0.9215070605278016, 0.9215070605278016, 0.9089481830596924, 0.917582392692566, 0.8995290398597717, 0.9120879173278807, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.8979591727256775, 0.9152276515960692, 0.912872850894928, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9191522598266602, 0.918367326259613, 0.9167974591255188, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.917582392692566, 0.9152276515960692, 0.9215070605278016, 0.9215070605278016, 0.9152276515960692, 0.9191522598266602, 0.9034537076950072, 0.9050235748291016, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.8963893055915833, 0.918367326259613, 0.9199371933937072, 0.9215070605278016, 0.9215070605278016, 0.918367326259613, 0.901098906993866, 0.917582392692566, 0.9199371933937072, 0.9215070605278016, 0.9215070605278016, 0.9160125851631165, 0.9199371933937072, 0.9191522598266602, 0.9199371933937072, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.9167974591255188, 0.9207221269607544, 0.9207221269607544, 0.9215070605278016, 0.9215070605278016, 0.9207221269607544, 0.917582392692566, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9215070605278016, 0.9167974591255188, 0.9207221269607544, 0.9097331166267396, 0.9152276515960692], "lx05p3vr": [0.8563579320907593, 0.8642072081565857, 0.8351648449897766, 0.9105180501937866, 0.843014121055603, 0.8445839881896973, 0.8712716102600098, 0.8634222745895386, 0.831240177154541, 0.9105180501937866, 0.8453689217567444, 0.8571428656578064, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8736263513565063, 0.8775510191917419, 0.8186812996864319, 0.9105180501937866, 0.84929358959198, 0.8500784635543823, 0.8594976663589478, 0.8642072081565857, 0.8351648449897766, 0.9113029837608336, 0.8485086560249329, 0.8540031313896179, 0.8775510191917419, 0.8830455541610718, 0.8383045792579651, 0.9113029837608336, 0.831240177154541, 0.8296703100204468, 0.9003139734268188, 0.8987441062927246, 0.819466233253479, 0.9113029837608336, 0.8335949778556824, 0.8335949778556824, 0.8814756870269775, 0.8806907534599304, 0.825745701789856, 0.9081632494926452, 0.8422291874885559, 0.84929358959198, 0.8830455541610718, 0.8846153616905212, 0.8171114325523376, 0.9105180501937866, 0.8226059675216675, 0.8281004428863525, 0.8971742391586304, 0.8987441062927246, 0.8186812996864319, 0.9113029837608336, 0.8453689217567444, 0.8422291874885559, 0.8359497785568237, 0.8383045792579651, 0.8320251107215881, 0.905808448791504, 0.7990580797195435, 0.8006279468536377, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8744112849235535, 0.8751962184906006, 0.8461538553237915, 0.907378315925598, 0.8037676811218262, 0.8037676811218262, 0.8571428656578064, 0.8626373410224915, 0.8155416250228882, 0.9097331166267396, 0.8226059675216675, 0.8131868243217468, 0.8288853764533997, 0.8178963661193848, 0.8720565438270569, 0.9105180501937866, 0.8328100442886353, 0.8485086560249329, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8540031313896179, 0.8532181978225708, 0.8744112849235535, 0.9105180501937866, 0.8516483306884766, 0.8508633971214294, 0.8524332642555237, 0.8563579320907593, 0.843014121055603, 0.9105180501937866, 0.8390894532203674, 0.8202511668205261, 0.8500784635543823, 0.8532181978225708, 0.8155416250228882, 0.9113029837608336, 0.8461538553237915, 0.8390894532203674, 0.8594976663589478, 0.8555729985237122, 0.8485086560249329, 0.9113029837608336, 0.8233909010887146, 0.8233909010887146, 0.813971757888794, 0.8037676811218262, 0.8453689217567444, 0.8759811520576477, 0.8273155689239502, 0.8233909010887146, 0.8642072081565857, 0.8657770752906799, 0.8273155689239502, 0.9105180501937866, 0.8281004428863525, 0.8351648449897766, 0.8799058198928833, 0.8697017431259155, 0.8422291874885559, 0.9105180501937866, 0.8383045792579651, 0.8437990546226501, 0.8720565438270569, 0.8720565438270569, 0.8555729985237122, 0.9105180501937866, 0.8422291874885559, 0.854788064956665, 0.8712716102600098, 0.8744112849235535, 0.854788064956665, 0.9097331166267396, 0.8618524074554443, 0.8634222745895386, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8728414177894592, 0.8689168095588684, 0.8540031313896179, 0.9097331166267396, -0.01, 0.8587127327919006, 0.8555729985237122, 0.8657770752906799, 0.8437990546226501, 0.9113029837608336, 0.8524332642555237, 0.8540031313896179, 0.8830455541610718, 0.8924646973609924, 0.8461538553237915, 0.9113029837608336, 0.8296703100204468, 0.8351648449897766, 0.9003139734268188, 0.9026687741279602, 0.8296703100204468, 0.9113029837608336, 0.8328100442886353, 0.8218210339546204, 0.8783359527587891, 0.8854002952575684, 0.8281004428863525, 0.9097331166267396, 0.84929358959198, 0.8579277992248535, 0.8846153616905212, 0.8877550959587097, 0.8359497785568237, 0.9105180501937866, 0.8367347121238708, 0.8335949778556824, 0.894819438457489, 0.8908948302268982, 0.831240177154541, 0.9113029837608336, 0.8390894532203674, 0.8367347121238708, 0.84929358959198, 0.8524332642555237, 0.854788064956665, 0.9050235748291016, -0.01, 0.7967032790184021, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8806907534599304, 0.8783359527587891, 0.8657770752906799, 0.9097331166267396, 0.8053375482559204, 0.8014128804206848, 0.8799058198928833, 0.8830455541610718, 0.8367347121238708, 0.9097331166267396, 0.8069073557853699, 0.8171114325523376, 0.8406593203544617, 0.8437990546226501, 0.8987441062927246, 0.9105180501937866, 0.837519645690918, 0.8335949778556824, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.861067533493042, 0.861067533493042, 0.8838304281234741, 0.9097331166267396, 0.8508633971214294, 0.8461538553237915, 0.8634222745895386, 0.8618524074554443, 0.8508633971214294, 0.9097331166267396, 0.8406593203544617, 0.8532181978225708, 0.8720565438270569, 0.8759811520576477, -0.01, 0.9105180501937866, 0.8320251107215881, 0.825745701789856, 0.8940345644950867, 0.8963893055915833, 0.807692289352417, 0.9097331166267396, 0.8359497785568237, 0.8461538553237915, 0.7927786707878113, 0.7857142686843872, 0.8422291874885559, -0.01, 0.8398743867874146, 0.8437990546226501, 0.866562008857727, 0.8720565438270569, 0.8359497785568237, 0.9105180501937866, 0.8532181978225708, 0.854788064956665, 0.8806907534599304, 0.8806907534599304, 0.8265306353569031, 0.9105180501937866, 0.8563579320907593, 0.8508633971214294, 0.8579277992248535, 0.8594976663589478, 0.8343799114227295, 0.9105180501937866, 0.8540031313896179, 0.8594976663589478, 0.8657770752906799, 0.8704866766929626, 0.8618524074554443, 0.9105180501937866, 0.8437990546226501, 0.8485086560249329, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8571428656578064, 0.8626373410224915, 0.8500784635543823, 0.9105180501937866, 0.8445839881896973, 0.8524332642555237, 0.8485086560249329, 0.8594976663589478, 0.8485086560249329, 0.9113029837608336, 0.861067533493042, 0.866562008857727, 0.8830455541610718, 0.8885400295257568, 0.8335949778556824, 0.9113029837608336, 0.8351648449897766, 0.8226059675216675, 0.8995290398597717, 0.8987441062927246, 0.8485086560249329, 0.9113029837608336, 0.8053375482559204, 0.802982747554779, 0.8767660856246948, 0.8759811520576477, 0.819466233253479, 0.907378315925598, 0.8006279468536377, 0.8116169571876526, 0.8861852288246155, 0.8861852288246155, 0.8218210339546204, 0.9105180501937866, 0.831240177154541, 0.8296703100204468, 0.8908948302268982, 0.8956043720245361, 0.7967032790184021, 0.9113029837608336, 0.8304552435874939, 0.831240177154541, 0.8359497785568237, -0.01, -0.01, -0.01, 0.7967032790184021, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8704866766929626, -0.01, 0.831240177154541, 0.9081632494926452, 0.8178963661193848, -0.01, 0.8689168095588684, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.889324963092804, 0.9097331166267396, 0.8218210339546204, 0.8296703100204468, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8626373410224915, 0.8618524074554443, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8485086560249329, -0.01, 0.831240177154541, -0.01, 0.8320251107215881, 0.9105180501937866, -0.01, 0.8335949778556824, 0.8532181978225708, 0.861067533493042, 0.8351648449897766, 0.9113029837608336, 0.8186812996864319, 0.8288853764533997, 0.7802197933197021, 0.7700157165527344, 0.8469387888908386, 0.8712716102600098, 0.8249607682228088, 0.8351648449897766, 0.8634222745895386, -0.01, -0.01, -0.01, 0.8320251107215881, 0.8320251107215881, 0.8736263513565063, 0.8736263513565063, 0.8422291874885559, 0.9105180501937866, 0.8265306353569031, 0.8390894532203674], "4oz0cf4p": [0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, -0.01, -0.01, -0.01, -0.01, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.905808448791504, 0.9042386412620544, -0.01, -0.01, -0.01, -0.01, 0.906593382358551, 0.9026687741279602, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9081632494926452, 0.9113029837608336, 0.906593382358551, 0.9089481830596924, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9081632494926452, 0.9089481830596924, 0.9105180501937866, 0.9081632494926452, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9089481830596924, 0.9113029837608336, 0.9081632494926452, 0.9105180501937866, 0.9081632494926452, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336, 0.9105180501937866, 0.9105180501937866, 0.9113029837608336, 0.9113029837608336, 0.9113029837608336], "kdroab03": [0.8178963893249608, 0.869701726844584, -0.01, 0.8053375196232339, 0.9199372056514914, 0.923861852433281, 0.914442700156986, 0.923861852433281, 0.9230769230769232, 0.771585557299843, -0.01, 0.923861852433281, 0.9222919937205653, -0.01, -0.01, 0.868916797488226, -0.01, 0.923861852433281, 0.9167974882260596, -0.01, -0.01, 0.8579277864992151, 0.8202511773940345, 0.9160125588697016, 0.9152276295133438, 0.9113029827315542, 0.9199372056514914, 0.7590266875981162, 0.8218210361067504, 0.9207221350078492, -0.01, -0.01, -0.01, 0.8029827315541601, 0.923861852433281, 0.923861852433281, 0.9152276295133438, 0.9222919937205653, 0.923861852433281, 0.750392464678179, 0.9097331240188384, 0.9230769230769232, 0.9199372056514914, -0.01, -0.01, 0.8281004709576139, -0.01, 0.923861852433281, 0.9175824175824177, -0.01, -0.01, 0.7951334379905809, 0.8076923076923077, 0.9160125588697016, 0.9152276295133438, 0.914442700156986, 0.9183673469387756, -0.01, 0.8076923076923077, 0.9199372056514914, 0.8375196232339089, 0.8053375196232339, -0.01, -0.01, 0.923861852433281, 0.9215070643642072, 0.913657770800628, -0.01, 0.9222919937205653, 0.7810047095761381, 0.9073783359497644, -0.01, 0.923861852433281, -0.01, -0.01, 0.868916797488226, 0.9003139717425431, -0.01, 0.9050235478806908, -0.01, -0.01, 0.8579277864992151, 0.8296703296703297, 0.914442700156986, 0.9160125588697016, 0.9175824175824177, 0.9175824175824177, 0.7590266875981162, 0.8375196232339089, 0.913657770800628], "gsqa6qn6": [0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4494999945163727, 0.44600000977516174, 0.4505000114440918, 0.4519999921321869, 0.4379999935626984, 0.4465000033378601, 0.4555000066757202, 0.4494999945163727, 0.4569999873638153, 0.4379999935626984, 0.44699999690055847, 0.4494999945163727, 0.4544999897480011, 0.4490000009536743, 0.4465000033378601, 0.4429999887943268, 0.4440000057220459, 0.4569999873638153, 0.43650001287460327, 0.44600000977516174, 0.4370000064373016, 0.445499986410141, 0.4300000071525574, 0.43650001287460327, 0.44600000977516174, 0.4519999921321869, 0.45649999380111694, 0.4390000104904175, 0.43950000405311584, 0.4244999885559082, 0.46149998903274536, 0.453000009059906, 0.44350001215934753, 0.4244999885559082, 0.4345000088214874, -0.01, 0.4704999923706054, 0.46799999475479126, 0.43950000405311584, 0.4465000033378601, 0.4399999976158142, 0.4309999942779541, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4584999978542328, 0.4650000035762787, 0.4519999921321869, 0.45500001311302185, 0.43849998712539673, 0.44449999928474426, 0.4429999887943268, 0.44200000166893005, 0.44699999690055847, 0.4399999976158142, 0.4350000023841858, -0.01, 0.4699999988079071, 0.4684999883174896, 0.42899999022483826, 0.4350000023841858, 0.4399999976158142, -0.01, 0.4449999928474426, 0.45399999618530273, 0.4519999921321869, 0.45100000500679016, 0.4555000066757202, 0.4514999985694885, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44350001215934753, 0.4325000047683716, 0.4359999895095825, -0.01, 0.4485000073909759, 0.4350000023841858, 0.4449999928474426, 0.4449999928474426, 0.4334999918937683, 0.4424999952316284, 0.42800000309944153, 0.4205000102519989, 0.45100000500679016, 0.4584999978542328, 0.44200000166893005, 0.4424999952316284, 0.4269999861717224, 0.4230000078678131, 0.4625000059604645, 0.46050000190734863, 0.4474999904632568, 0.44699999690055847, 0.4505000114440918, 0.45100000500679016, 0.45649999380111694, 0.46799999475479126, 0.45249998569488525, 0.4535000026226044, 0.45500001311302185, 0.4555000066757202, 0.4569999873638153, 0.4620000123977661, -0.01, 0.44999998807907104, 0.45100000500679016, 0.44350001215934753, -0.01, 0.4424999952316284, 0.4555000066757202, -0.01, 0.44449999928474426, 0.4429999887943268, -0.01, 0.4410000145435333, 0.4429999887943268, 0.44999998807907104, -0.01, 0.4300000071525574, 0.4589999914169311, 0.4629999995231629, 0.4375, 0.44449999928474426, 0.4180000126361847, 0.4205000102519989, 0.4684999883174896, 0.4684999883174896, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.44600000977516174, 0.4544999897480011, 0.4625000059604645, 0.4569999873638153, 0.4325000047683716, 0.4350000023841858, 0.4555000066757202, 0.45249998569488525, 0.44699999690055847, 0.4284999966621399, 0.44449999928474426, 0.43149998784065247, -0.01, 0.4359999895095825, 0.4449999928474426, 0.43650001287460327, 0.4485000073909759, 0.4555000066757202, 0.4449999928474426, 0.4404999911785126, 0.44200000166893005, 0.44350001215934753, 0.4465000033378601, 0.45649999380111694, 0.4449999928474426, 0.45249998569488525, 0.4415000081062317, 0.44200000166893005, 0.4465000033378601, 0.453000009059906, 0.4584999978542328, 0.44999998807907104, 0.4275000095367432, 0.4255000054836273, 0.4390000104904175, 0.4404999911785126, 0.43849998712539673, 0.4255000054836273, 0.43950000405311584, 0.43849998712539673, 0.43849998712539673, 0.42800000309944153, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4505000114440918, 0.4490000009536743, 0.4474999904632568, 0.44699999690055847, 0.4309999942779541, 0.43549999594688416, 0.4580000042915344, 0.445499986410141, 0.43849998712539673, 0.44449999928474426, 0.4404999911785126, 0.4359999895095825, 0.46149998903274536, 0.46149998903274536, 0.42250001430511475, 0.42399999499320984, 0.43849998712539673, 0.4345000088214874, 0.44449999928474426, 0.4399999976158142, 0.44350001215934753, 0.4639999866485596, 0.44449999928474426, 0.43050000071525574, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.45249998569488525, 0.4474999904632568, 0.4494999945163727, 0.45500001311302185, 0.44449999928474426, 0.44350001215934753, 0.44350001215934753, 0.44200000166893005, 0.4390000104904175, -0.01, 0.43650001287460327, 0.429500013589859, 0.4690000116825104, 0.4449999928474426, 0.4269999861717224, 0.4334999918937683, 0.4440000057220459, 0.41749998927116394, 0.46650001406669617, 0.4625000059604645, 0.4480000138282776, 0.44449999928474426, 0.4555000066757202, 0.4555000066757202, 0.4715000092983246, 0.4634999930858612, 0.4424999952316284, 0.4404999911785126, 0.4480000138282776, 0.44600000977516174, 0.4639999866485596, 0.460999995470047, 0.4505000114440918, 0.42899999022483826, 0.4480000138282776, 0.45399999618530273, 0.44350001215934753, -0.01, 0.4514999985694885, 0.4569999873638153, 0.4480000138282776, 0.4519999921321869, -0.01, 0.4519999921321869, 0.445499986410141, 0.4440000057220459, 0.44350001215934753, 0.4309999942779541, 0.46799999475479126, 0.4650000035762787, 0.45249998569488525, 0.44350001215934753, 0.43050000071525574, 0.42399999499320984, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, -0.01, 0.4684999883174896, 0.4684999883174896, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, 0.4684999883174896, -0.01, 0.4684999883174896, 0.4684999883174896, 0.4480000138282776, 0.45399999618530273, 0.44350001215934753, 0.453000009059906, 0.4404999911785126, 0.4390000104904175, 0.4379999935626984, 0.4375, 0.460999995470047, 0.43950000405311584, -0.01, 0.4429999887943268, 0.4589999914169311, 0.4345000088214874, 0.445499986410141, 0.4379999935626984, 0.43549999594688416, 0.4375, 0.44449999928474426, 0.4440000057220459, 0.4485000073909759, 0.4485000073909759, 0.4514999985694885, 0.45100000500679016, 0.4544999897480011, 0.4580000042915344, 0.4440000057220459, 0.45100000500679016, 0.43950000405311584, 0.4449999928474426, 0.4690000116825104, 0.4505000114440918, 0.4399999976158142, 0.4309999942779541, 0.4404999911785126, 0.43849998712539673, 0.46050000190734863, 0.460999995470047, 0.43849998712539673, 0.4440000057220459, 0.4490000009536743, 0.42800000309944153, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4600000083446502, 0.4589999914169311, 0.4474999904632568, 0.45500001311302185, 0.4485000073909759, 0.4485000073909759, 0.44449999928474426, 0.445499986410141, 0.43650001287460327, 0.4399999976158142, 0.42100000381469727, 0.4244999885559082, 0.47099998593330383, -0.01, 0.4390000104904175, 0.43549999594688416, 0.4334999918937683, 0.4334999918937683, 0.4410000145435333, 0.4560000002384186, 0.4519999921321869, 0.45399999618530273, 0.4670000076293946, 0.44699999690055847, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4370000064373016, 0.44200000166893005, 0.4320000112056732, 0.4474999904632568, 0.44600000977516174, 0.4339999854564667, 0.4375, 0.4379999935626984, 0.4390000104904175, 0.4505000114440918, 0.4325000047683716, 0.42399999499320984, 0.4494999945163727, 0.460999995470047, 0.4359999895095825, 0.44350001215934753, 0.43849998712539673, 0.4255000054836273, 0.4684999883174896, 0.4620000123977661, 0.45249998569488525, 0.44600000977516174, 0.45649999380111694, 0.4514999985694885, 0.453000009059906, 0.4620000123977661, 0.44350001215934753, 0.4514999985694885, 0.4519999921321869, 0.45249998569488525, 0.4555000066757202, 0.4625000059604645, 0.44200000166893005, 0.4535000026226044, 0.44999998807907104, 0.4424999952316284, 0.4404999911785126, 0.43299999833106995, -0.01, 0.4505000114440918, 0.43950000405311584, 0.4410000145435333, 0.4359999895095825, 0.4379999935626984, 0.44350001215934753, 0.44699999690055847, 0.44200000166893005, 0.4325000047683716, 0.4600000083446502, 0.4625000059604645, 0.4325000047683716, 0.45100000500679016, -0.01, -0.01], "vwy5n0wm": [0.4205000102519989, 0.4180000126361847, 0.4079999923706054, 0.4269999861717224, 0.41350001096725464, 0.4099999964237213, 0.41850000619888306, 0.4235000014305115, 0.4034999907016754, 0.4320000112056732, 0.4194999933242798, 0.40849998593330383, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4059999883174896, 0.421999990940094, 0.4124999940395355, 0.429500013589859, 0.4065000116825104, 0.4214999973773956, 0.4194999933242798, 0.4244999885559082, 0.3970000147819519, 0.4379999935626984, 0.4124999940395355, 0.3964999914169311, 0.4205000102519989, 0.4359999895095825, 0.4014999866485596, 0.43149998784065247, 0.4345000088214874, 0.41350001096725464, 0.42399999499320984, 0.44200000166893005, 0.4124999940395355, 0.4474999904632568, 0.4099999964237213, 0.4154999852180481, 0.4375, 0.44449999928474426, 0.4255000054836273, 0.4399999976158142, 0.40950000286102295, 0.4124999940395355, 0.4325000047683716, 0.4264999926090241, -0.01, 0.43050000071525574, 0.3995000123977661, 0.3975000083446502, 0.4399999976158142, 0.4115000069141388, 0.40400001406669617, 0.4359999895095825, 0.42100000381469727, 0.43299999833106995, -0.01, -0.01, -0.01, -0.01, -0.01, 0.40400001406669617, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4045000076293946, 0.4269999861717224, 0.40299999713897705, 0.43650001287460327, 0.4000000059604645, 0.4074999988079071, -0.01, 0.4169999957084656, 0.42100000381469727, -0.01, -0.01, 0.4205000102519989, 0.4334999918937683, 0.4099999964237213, 0.39500001072883606, 0.4000000059604645, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4309999942779541, 0.4149999916553498, 0.4045000076293946, 0.429500013589859, 0.40299999713897705, -0.01, 0.41749998927116394, 0.4104999899864197, 0.421999990940094, 0.41850000619888306, 0.38350000977516174, 0.3944999873638153, 0.4160000085830689, 0.4129999876022339, 0.3944999873638153, 0.42500001192092896, 0.39500001072883606, 0.3959999978542328, 0.4230000078678131, 0.4110000133514404, -0.01, 0.4214999973773956, 0.40299999713897705, 0.3849999904632568, 0.421999990940094, 0.4165000021457672, 0.40700000524520874, 0.4205000102519989, 0.3995000123977661, 0.3955000042915344, 0.4235000014305115, 0.4235000014305115, 0.39899998903274536, 0.4320000112056732, 0.4025000035762787, 0.41350001096725464, 0.4255000054836273, 0.4514999985694885, 0.4124999940395355, -0.01, 0.4065000116825104, 0.4065000116825104, 0.4255000054836273, 0.4154999852180481, 0.4014999866485596, 0.43149998784065247, 0.4230000078678131, -0.01, 0.4059999883174896, 0.4264999926090241, -0.01, 0.4375, 0.3785000145435333, 0.398499995470047, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4090000092983246, -0.01, 0.4009999930858612, 0.42500001192092896, 0.40549999475479126, 0.41350001096725464, 0.4325000047683716, 0.41350001096725464, 0.4104999899864197, 0.4309999942779541, -0.01, -0.01, 0.45249998569488525, 0.4519999921321869, 0.41350001096725464, 0.4370000064373016, 0.4255000054836273, 0.4244999885559082, 0.43950000405311584, 0.4440000057220459, 0.40400001406669617, 0.4339999854564667, 0.4050000011920929, 0.4120000004768371, 0.43149998784065247, 0.42800000309944153, 0.4160000085830689, 0.4404999911785126, 0.41999998688697815, 0.40950000286102295, 0.4235000014305115, 0.4230000078678131, 0.41449999809265137, -0.01, 0.4000000059604645, 0.4050000011920929, -0.01, 0.4404999911785126, 0.4205000102519989, 0.43849998712539673, 0.4099999964237213, -0.01, 0.4034999907016754, 0.4025000035762787, 0.4079999923706054, 0.44449999928474426, 0.4079999923706054, 0.4059999883174896, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.398499995470047, 0.43549999594688416, 0.414000004529953, 0.4345000088214874, 0.4194999933242798, 0.4269999861717224, 0.4180000126361847, 0.4194999933242798, 0.4034999907016754, 0.4375, 0.4025000035762787, 0.4255000054836273, 0.4214999973773956, 0.4090000092983246, 0.4149999916553498, 0.39800000190734863, 0.39899998903274536, 0.4104999899864197, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4230000078678131, 0.42800000309944153, -0.01, 0.4259999990463257, 0.4205000102519989, 0.4129999876022339, 0.4269999861717224, 0.41850000619888306, 0.3975000083446502, 0.42899999022483826, 0.4065000116825104, 0.4045000076293946, 0.4230000078678131, -0.01, 0.41350001096725464, 0.42500001192092896, 0.40400001406669617, 0.3804999887943268, 0.4244999885559082, 0.4124999940395355, 0.39899998903274536, 0.4350000023841858, 0.4169999957084656, 0.3889999985694885, 0.4259999990463257, 0.4309999942779541, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42800000309944153, 0.398499995470047, 0.4214999973773956, 0.4034999907016754, 0.38850000500679016, 0.4334999918937683, 0.4205000102519989, -0.01, 0.4300000071525574, 0.3889999985694885, 0.39800000190734863, 0.3995000123977661, 0.4014999866485596, 0.4004999995231629, 0.4259999990463257, 0.4169999957084656, 0.4079999923706054, 0.4124999940395355, 0.41350001096725464, 0.43299999833106995, 0.42899999022483826, 0.3964999914169311, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4165000021457672, 0.41749998927116394, -0.01, -0.01, -0.01, 0.4275000095367432, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4410000145435333, 0.4169999957084656, -0.01, 0.4124999940395355, -0.01, -0.01, -0.01, 0.40849998593330383, -0.01, -0.01, -0.01, 0.4410000145435333, 0.43549999594688416, 0.3709999918937683, 0.4160000085830689, 0.4189999997615814, 0.4230000078678131, -0.01, -0.01, 0.4034999907016754, 0.4194999933242798, 0.39149999618530273, 0.40950000286102295, 0.4244999885559082, 0.4284999966621399, 0.4255000054836273, 0.42800000309944153, 0.41850000619888306, 0.41999998688697815, 0.42100000381469727, 0.4169999957084656, 0.39399999380111694, 0.4345000088214874, 0.4099999964237213, 0.39899998903274536, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.39899998903274536, -0.01, 0.39500001072883606, 0.42899999022483826, 0.42899999022483826, 0.4214999973773956, 0.4269999861717224, 0.4320000112056732, 0.4149999916553498, 0.421999990940094, 0.41350001096725464, 0.4230000078678131, 0.43149998784065247, 0.43299999833106995, 0.3930000066757202, 0.4050000011920929, 0.3790000081062317, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4255000054836273, 0.4160000085830689, 0.41850000619888306, 0.4275000095367432, 0.4165000021457672, -0.01, -0.01, -0.01, -0.01, 0.4165000021457672, 0.40299999713897705, 0.4009999930858612, 0.40299999713897705, 0.41350001096725464, 0.41749998927116394, 0.4244999885559082, 0.4059999883174896, 0.3964999914169311, 0.4345000088214874, 0.4390000104904175, 0.3869999945163727, 0.42399999499320984, 0.4115000069141388, 0.40299999713897705, 0.4309999942779541, 0.4339999854564667, 0.4115000069141388, 0.4205000102519989, 0.41449999809265137, 0.4050000011920929, 0.4160000085830689, 0.4399999976158142, -0.01, 0.42899999022483826, -0.01, -0.01, 0.45500001311302185, 0.44350001215934753, 0.3970000147819519, 0.4264999926090241, 0.4160000085830689, 0.3944999873638153], "rtybof1t": [0.4684999883174896, 0.4684999883174896, 0.4670000076293946, 0.4670000076293946, -0.01, -0.01, 0.4690000116825104, 0.4675000011920929, 0.4684999883174896, 0.4684999883174896, 0.45100000500679016, 0.4404999911785126, 0.4589999914169311, 0.4440000057220459, 0.4650000035762787, 0.4485000073909759, 0.4345000088214874, 0.43299999833106995, 0.4595000147819519, 0.4519999921321869, 0.4424999952316284, 0.4535000026226044, -0.01, -0.01, -0.01, -0.01, 0.4620000123977661, 0.4284999966621399, 0.4544999897480011, 0.4535000026226044, 0.4519999921321869, 0.45649999380111694, -0.01, 0.44699999690055847, 0.453000009059906, 0.4675000011920929, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42500001192092896, 0.4429999887943268, 0.44600000977516174, 0.43549999594688416, 0.44699999690055847, 0.44999998807907104, 0.4375, 0.4690000116825104, 0.4675000011920929, 0.4690000116825104, 0.46799999475479126, 0.4670000076293946, 0.4684999883174896, 0.4684999883174896, 0.4555000066757202, 0.45399999618530273, 0.4589999914169311, 0.46149998903274536, 0.45750001072883606, 0.46149998903274536, 0.4345000088214874, 0.4659999907016754, 0.4214999973773956, 0.4670000076293946, 0.4544999897480011, 0.46050000190734863, 0.4675000011920929, 0.44699999690055847, 0.4639999866485596, 0.45100000500679016, 0.4485000073909759, 0.4480000138282776, 0.44449999928474426, 0.43950000405311584, 0.4519999921321869, 0.453000009059906, 0.4505000114440918, 0.4410000145435333, 0.41850000619888306, 0.4269999861717224, 0.4259999990463257, 0.4410000145435333, 0.45100000500679016, 0.4569999873638153, 0.4670000076293946, 0.4485000073909759, 0.4650000035762787, 0.46549999713897705, 0.4589999914169311, 0.4740000069141388, 0.4675000011920929, 0.4569999873638153, 0.4684999883174896, 0.4639999866485596, 0.4639999866485596, 0.46799999475479126, 0.46549999713897705, 0.4659999907016754, 0.4684999883174896, 0.4684999883174896, 0.45249998569488525, 0.44699999690055847, 0.4589999914169311, 0.4309999942779541, 0.46650001406669617, 0.4320000112056732, 0.445499986410141, 0.4490000009536743, 0.4544999897480011, 0.4505000114440918, 0.4589999914169311, 0.4494999945163727, 0.445499986410141, 0.4404999911785126, 0.44699999690055847, 0.4449999928474426, 0.4625000059604645, 0.44449999928474426, 0.43549999594688416, 0.4485000073909759, 0.4424999952316284, 0.4320000112056732, 0.453000009059906, 0.4255000054836273, 0.44600000977516174, 0.4440000057220459, 0.453000009059906, 0.4404999911785126, 0.4595000147819519, 0.4639999866485596, 0.4595000147819519], "9ulcm4zs": [0.3555, 0.3805, -0.01, 0.3315, 0.4675, 0.448, 0.454, 0.4595, -0.01, 0.2505, 0.4625, 0.4525, 0.4505, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.285, 0.3375, -0.01, 0.448, -0.01, -0.01, 0.0395, 0.3375, 0.4545, -0.01, -0.01, -0.01, 0.305, 0.465, 0.445, 0.453, 0.451, 0.4645, -0.01, 0.4645, 0.4505, -0.01, -0.01, -0.01, 0.2605, 0.431, 0.461, 0.448, -0.01, -0.01, 0.288, 0.33, 0.443, 0.4375, 0.4435, 0.4485, -0.01, 0.3755, 0.454, 0.3455, 0.331, -0.01, 0.32, 0.451, 0.438, 0.4205, 0.451, 0.448, 0.26, 0.4585, 0.4575, 0.458, -0.01, -0.01, 0.267, 0.424, 0.4425, 0.454, -0.01, -0.01, 0.276, 0.362, 0.4415, 0.4445, 0.4455, 0.438, 0.0395, 0.3645, 0.4455], "hczkf4io": [-0.01, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, -0.01, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, -0.01, 0.5128205418586731, 0.5128205418586731, -0.01, -0.01, -0.01, 0.4822167158126831, -0.01, 0.44334161281585693, 0.4259718656539917, -0.01, 0.4350703060626984, 0.49545079469680786, -0.01, -0.01, 0.4210090935230255, 0.4516128897666931, 0.41356492042541504, 0.46815550327301025, 0.47477254271507263, 0.4582299292087555, 0.44334161281585693, 0.4590570628643036, 0.4598841965198517, 0.4780810475349426, 0.47146400809288025, 0.4483043849468231, 0.4177005887031555, 0.43920594453811646, 0.447477251291275, 0.4797353148460388, 0.4822167158126831, 0.41273778676986694, 0.4301075339317322, -0.01, 0.4334160387516022, 0.5045492053031921, 0.503722071647644, 0.4077750146389008, 0.44499585032463074, 0.4292804002761841, 0.4168734550476074, 0.4780810475349426, 0.4797353148460388, 0.4499586522579193, 0.4342431724071502, 0.4276261329650879, 0.44168734550476074, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4822167158126831, 0.4805624485015869, 0.465674102306366, 0.4185277223587036, 0.4755996763706207, 0.4755996763706207, 0.46815550327301025, 0.47229114174842834, 0.44416874647140503, 0.4218362271785736, 0.44086021184921265, 0.44499585032463074, 0.49379652738571167, 0.49793216586112976, 0.4267989993095398, 0.4003308415412903, 0.4234904944896698, 0.4334160387516022, 0.43755170702934265, 0.4524400234222412, 0.447477251291275, 0.44499585032463074, 0.4532671570777893, 0.447477251291275, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.47063690423965454, 0.47063690423965454, 0.47477254271507263, 0.44003307819366455, 0.4615384638309479, 0.4615384638309479, 0.47146400809288025, 0.46815550327301025, 0.46732836961746216, 0.4507857859134674, 0.46319273114204407, 0.46401986479759216, 0.4789081811904907, 0.49545079469680786, 0.43589743971824646, 0.3374689817428589, 0.4210090935230255, 0.44334161281585693, 0.5111662745475769, 0.5111662745475769, 0.481389582157135, 0.4309346675872803, 0.462365597486496, 0.4648469686508178, 0.5095120072364807, 0.5095120072364807, 0.4483043849468231, 0.4168734550476074, 0.4648469686508178, 0.46732836961746216, 0.5070306062698364, 0.5053763389587402, 0.4838709533214569, 0.4483043849468231, 0.47063690423965454, 0.4789081811904907, 0.511993408203125, 0.5103391408920288, 0.465674102306366, 0.425144761800766, 0.4880066215991974, 0.4929693937301636, 0.5111662745475769, 0.5086848735809326, 0.47229114174842834, 0.4425144791603088, 0.4822167158126831, 0.4855252206325531, 0.5128205418586731, 0.5128205418586731, 0.43755170702934265, 0.4234904944896698, 0.4350703060626984, 0.4383788108825683, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.4755996763706207, 0.4797353148460388, 0.44168734550476074, 0.428453266620636, 0.44086021184921265, 0.44086021184921265, 0.4855252206325531, 0.4855252206325531, 0.4507857859134674, 0.4201819598674774, -0.01, 0.428453266620636, 0.4797353148460388, 0.4830438494682312, 0.4615384638309479, 0.4590570628643036, 0.4590570628643036, 0.47229114174842834, 0.47229114174842834, 0.4731182754039765, 0.43589743971824646, -0.01, 0.4325889050960541, 0.43672457337379456, 0.4780810475349426, 0.4896608889102936, 0.4193548262119293, -0.01, 0.4019851088523865, 0.4119106829166413, 0.5070306062698364, 0.5062034726142883, 0.4160463213920593, 0.4499586522579193, 0.40612074732780457, 0.4201819598674774, 0.4830438494682312, 0.44168734550476074, 0.4383788108825683, 0.447477251291275, 0.4168734550476074, 0.40612074732780457, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4929693937301636, 0.49462366104125977, 0.47146400809288025, 0.40529364347457886, 0.4689826369285583, -0.01, 0.46650123596191406, 0.46815550327301025, 0.425144761800766, 0.4292804002761841, 0.4325889050960541, 0.4350703060626984, 0.4830438494682312, 0.4830438494682312, 0.43589743971824646, 0.44499585032463074, 0.40612074732780457, 0.3953680694103241, 0.3804797232151031, 0.4325889050960541, 0.462365597486496, 0.43672457337379456, 0.4491315186023712, 0.4267989993095398, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4458229839801788, 0.4193548262119293, 0.4731182754039765, 0.4607113301753998, 0.46732836961746216, 0.4557485580444336, 0.46401986479759216, 0.46650123596191406, 0.4598841965198517, 0.44003307819366455, 0.46815550327301025, 0.4574028253555298, 0.447477251291275, 0.484698086977005, 0.4044665098190307, 0.4334160387516022, 0.4301075339317322, 0.4011579751968384, 0.5136476159095764, 0.5128205418586731, 0.4540942907333374, 0.43589743971824646, 0.4499586522579193, 0.4565756916999817, 0.5136476159095764, 0.5111662745475769, 0.4582299292087555, 0.4350703060626984, 0.4507857859134674, 0.462365597486496, 0.502894937992096, 0.503722071647644, 0.4574028253555298, 0.4458229839801788, 0.46319273114204407, 0.4607113301753998, 0.511993408203125, 0.511993408203125, 0.446650117635727, 0.41356492042541504, 0.4929693937301636, 0.4880066215991974, 0.5103391408920288, 0.5111662745475769, 0.46732836961746216, 0.4218362271785736, 0.4822167158126831, 0.484698086977005, -0.01, 0.5128205418586731, 0.4350703060626984, 0.4292804002761841, 0.4301075339317322, 0.4516128897666931, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.5128205418586731, 0.47477254271507263, 0.4780810475349426, 0.4425144791603088, 0.4317618012428284, 0.4243176281452179, 0.4152191877365112, 0.49462366104125977, 0.4888337552547455, 0.446650117635727, 0.4259718656539917, 0.4425144791603088, 0.4342431724071502, 0.4574028253555298, 0.46401986479759216, 0.4532671570777893, 0.44499585032463074, 0.4532671570777893, 0.4483043849468231, 0.4780810475349426, 0.4755996763706207, 0.4301075339317322, 0.4193548262119293, 0.4458229839801788, 0.447477251291275, 0.4764268100261688, 0.484698086977005, 0.40860214829444885, 0.4160463213920593, 0.40942928194999695, 0.4201819598674774, 0.5012406706809998, 0.5045492053031921, 0.40694788098335266, 0.44168734550476074, 0.4234904944896698, 0.4160463213920593, 0.4797353148460388, 0.4764268100261688, 0.4582299292087555, 0.4325889050960541, 0.4383788108825683, 0.43920594453811646, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4904879927635193, 0.484698086977005, 0.47063690423965454, 0.40694788098335266, 0.46815550327301025, 0.462365597486496, 0.47146400809288025, 0.47394540905952454, 0.4540942907333374, 0.4226633608341217, 0.44334161281585693, 0.446650117635727, 0.49379652738571167, 0.4995864331722259, 0.4259718656539917, 0.41439205408096313, 0.4185277223587036, 0.43755170702934265, 0.43672457337379456, 0.4524400234222412, 0.4590570628643036, 0.4350703060626984, 0.4532671570777893, 0.44086021184921265, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4698097705841065, 0.47394540905952454, 0.4772539436817169, 0.44334161281585693, 0.4565756916999817, 0.4499586522579193, 0.4698097705841065, 0.4574028253555298, 0.46319273114204407, 0.446650117635727, 0.4689826369285583, 0.4549214243888855, 0.4772539436817169, -0.01, 0.446650117635727, 0.4888337552547455, 0.4317618012428284, 0.44416874647140503, 0.5111662745475769, 0.511993408203125, 0.462365597486496, 0.4648469686508178, 0.46732836961746216, 0.4698097705841065, 0.5095120072364807, 0.5103391408920288, 0.46401986479759216, 0.391232430934906, 0.4540942907333374, 0.4574028253555298, 0.5012406706809998, 0.5053763389587402, 0.47229114174842834, 0.447477251291275, 0.46815550327301025, 0.4731182754039765, 0.5111662745475769, 0.5111662745475769, 0.4797353148460388, 0.4218362271785736, 0.4921422600746155, 0.496277928352356, 0.5128205418586731, 0.5103391408920288, 0.47146400809288025, 0.44499585032463074, 0.4863523542881012, 0.4855252206325531, 0.5128205418586731, 0.5128205418586731, 0.447477251291275, 0.4540942907333374, 0.44086021184921265, 0.43920594453811646], "5wuups73": [0.3937138020992279, 0.41439205408096313, 0.3614557385444641, 0.4259718656539917, 0.34822165966033936, 0.3846153914928436, 0.3697270452976227, 0.37634408473968506, 0.34491315484046936, 0.4185277223587036, 0.3697270452976227, 0.35483869910240173, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3870967626571655, 0.4044665098190307, 0.35318446159362793, 0.4259718656539917, 0.3598015010356903, 0.3862696588039398, 0.4152191877365112, 0.4301075339317322, 0.37138131260871887, 0.4259718656539917, 0.34574028849601746, 0.3316790759563446, 0.40860214829444885, 0.41108354926109314, 0.3564929664134979, 0.46732836961746216, 0.35153019428253174, 0.3655914068222046, 0.41439205408096313, 0.4267989993095398, 0.357320100069046, 0.4615384638309479, 0.37634408473968506, 0.38378825783729553, 0.3564929664134979, 0.34822165966033936, 0.391232430934906, 0.357320100069046, 0.35070306062698364, 0.357320100069046, 0.44416874647140503, 0.41273778676986694, 0.34822165966033936, 0.4648469686508178, 0.3598015010356903, 0.3614557385444641, 0.4152191877365112, 0.4077750146389008, 0.3614557385444641, 0.4615384638309479, 0.3870967626571655, 0.3614557385444641, 0.3937138020992279, 0.4011579751968384, 0.3697270452976227, 0.4350703060626984, 0.3680727779865265, 0.37634408473968506, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3928866684436798, 0.3961952030658722, 0.41356492042541504, 0.4425144791603088, 0.3779983520507813, 0.3647642731666565, 0.34656742215156555, 0.3664185404777527, 0.357320100069046, 0.4342431724071502, 0.3589743673801422, 0.3688999116420746, 0.3846153914928436, 0.38296112418174744, 0.31844499707221985, 0.3995037078857422, 0.3598015010356903, 0.34656742215156555, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41108354926109314, 0.3978494703769684, 0.3705541789531708, 0.4334160387516022, 0.35235732793807983, 0.3664185404777527, 0.38378825783729553, 0.37634408473968506, 0.3937138020992279, 0.4152191877365112, 0.38213399052619934, 0.3862696588039398, 0.3904052972793579, 0.41108354926109314, 0.32258063554763794, 0.4317618012428284, 0.34904879331588745, 0.3614557385444641, 0.391232430934906, 0.4011579751968384, 0.31265509128570557, 0.4317618012428284, 0.3374689817428589, 0.3589743673801422, 0.40860214829444885, 0.3887510299682617, 0.4011579751968384, 0.3970223367214203, 0.3680727779865265, 0.34822165966033936, 0.4077750146389008, 0.394540935754776, 0.3705541789531708, 0.425144761800766, 0.338296115398407, 0.3300248086452484, 0.4011579751968384, 0.4019851088523865, 0.3779983520507813, 0.41439205408096313, 0.3655914068222046, 0.34491315484046936, 0.41356492042541504, 0.3771712183952331, 0.34491315484046936, 0.425144761800766, 0.357320100069046, 0.35401156544685364, 0.37965261936187744, 0.40694788098335266, 0.3664185404777527, 0.4201819598674774, 0.341604620218277, 0.3647642731666565, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.40363937616348267, 0.4003308415412903, 0.3308519423007965, 0.4210090935230255, 0.3581472337245941, 0.34822165966033936, 0.391232430934906, 0.40281224250793457, 0.35235732793807983, 0.425144761800766, 0.34491315484046936, 0.3316790759563446, 0.40529364347457886, 0.4383788108825683, 0.3349875807762146, 0.47394540905952454, 0.3564929664134979, 0.3655914068222046, 0.4317618012428284, 0.4259718656539917, 0.34656742215156555, 0.46319273114204407, 0.357320100069046, 0.3598015010356903, 0.35401156544685364, 0.3672456443309784, 0.3813068568706513, 0.37303557991981506, 0.3970223367214203, 0.341604620218277, 0.4491315186023712, 0.4201819598674774, 0.3333333432674408, -0.01, 0.3688999116420746, 0.34904879331588745, 0.4259718656539917, 0.4177005887031555, 0.35401156544685364, 0.4607113301753998, 0.37551695108413696, 0.38296112418174744, 0.3672456443309784, 0.3622828722000122, 0.31927213072776794, 0.43920594453811646, 0.3655914068222046, 0.3779983520507813, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3978494703769684, 0.3986766040325165, 0.21918940544128415, 0.44416874647140503, 0.37634408473968506, 0.3970223367214203, 0.394540935754776, 0.3995037078857422, -0.01, 0.4532671570777893, 0.3813068568706513, 0.3655914068222046, 0.3705541789531708, -0.01, 0.43589743971824646, 0.40529364347457886, 0.3705541789531708, 0.3655914068222046, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3895781636238098, 0.37965261936187744, 0.3870967626571655, 0.4301075339317322, 0.37551695108413696, 0.3622828722000122, 0.3953680694103241, 0.38213399052619934, 0.35566583275794983, 0.4301075339317322, 0.3424317538738251, 0.37220844626426697, 0.41273778676986694, 0.3928866684436798, 0.3283705413341522, -0.01, 0.3639371395111084, 0.35566583275794983, 0.3986766040325165, -0.01, 0.3870967626571655, 0.4177005887031555, 0.3316790759563446, 0.34656742215156555, 0.37634408473968506, 0.4019851088523865, -0.01, 0.40612074732780457, 0.3598015010356903, 0.35153019428253174, 0.4077750146389008, 0.4003308415412903, 0.35401156544685364, 0.4317618012428284, 0.338296115398407, 0.34491315484046936, 0.40942928194999695, 0.3672456443309784, 0.3961952030658722, 0.4210090935230255, 0.35566583275794983, 0.3664185404777527, 0.38296112418174744, 0.3614557385444641, 0.3598015010356903, 0.4342431724071502, -0.01, 0.35566583275794983, 0.37138131260871887, 0.3928866684436798, 0.3333333432674408, 0.425144761800766, 0.34325888752937317, 0.34491315484046936, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3581472337245941, 0.40860214829444885, 0.35153019428253174, 0.4317618012428284, 0.360628604888916, 0.34077751636505127, 0.38296112418174744, 0.38213399052619934, 0.3391232490539551, -0.01, 0.35153019428253174, 0.35483869910240173, 0.4193548262119293, 0.4317618012428284, 0.3614557385444641, 0.46815550327301025, 0.3887510299682617, 0.3639371395111084, 0.4325889050960541, 0.40860214829444885, 0.3358147144317627, 0.46732836961746216, 0.37303557991981506, 0.3688999116420746, 0.37965261936187744, 0.357320100069046, 0.3895781636238098, 0.37138131260871887, -0.01, 0.3870967626571655, 0.4193548262119293, 0.4259718656539917, 0.37138131260871887, 0.4582299292087555, 0.34408602118492126, 0.3688999116420746, 0.40942928194999695, 0.4201819598674774, 0.341604620218277, 0.46401986479759216, 0.3688999116420746, 0.3779983520507813, 0.3846153914928436, 0.3920595645904541, 0.360628604888916, 0.4342431724071502, 0.3705541789531708, 0.37303557991981506, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4210090935230255, 0.40860214829444885, 0.32175350189208984, 0.44499585032463074, 0.4011579751968384, 0.3813068568706513, 0.3870967626571655, 0.3961952030658722, 0.3779983520507813, 0.4342431724071502, 0.3688999116420746, 0.34656742215156555, 0.34904879331588745, 0.3639371395111084, 0.3664185404777527, 0.3870967626571655, 0.3358147144317627, 0.3589743673801422, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.40363937616348267, 0.4152191877365112, 0.35153019428253174, 0.4267989993095398, 0.37634408473968506, 0.37303557991981506, 0.3928866684436798, 0.3771712183952331, 0.3110008239746094, 0.41025641560554504, 0.3854425251483917, -0.01, 0.37468981742858887, 0.4011579751968384, 0.338296115398407, 0.4267989993095398, 0.35235732793807983, 0.34987592697143555, 0.38378825783729553, 0.3928866684436798, 0.3052109181880951, -0.01, 0.3672456443309784, -0.01, 0.3995037078857422, 0.41108354926109314, 0.3598015010356903, -0.01, 0.35235732793807983, 0.35153019428253174, 0.3986766040325165, 0.4201819598674774, 0.32009926438331604, 0.4267989993095398, 0.3366418480873108, 0.2977667450904846, 0.40281224250793457, 0.3920595645904541, 0.38213399052619934, 0.4160463213920593, 0.341604620218277, 0.34822165966033936], "zmxfvz4r": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4516128897666931, -0.01, -0.01, -0.01, -0.01, 0.4797353148460388, 0.4549214243888855, 0.47063690423965454, 0.4342431724071502, 0.5219189524650574, 0.5244003534317017, 0.5252274870872498, 0.5202646851539612, 0.5252274870872498, 0.5111662745475769, 0.5235732197761536, 0.5194375514984131, 0.5202646851539612, 0.5219189524650574, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, -0.01, -0.01, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, 0.49379652738571167, 0.4863523542881012, 0.5020678043365479, 0.5012406706809998, 0.4797353148460388, 0.46650123596191406, 0.5012406706809998, 0.4698097705841065, 0.49793216586112976, 0.5103391408920288, 0.4838709533214569, 0.4863523542881012, -0.01, -0.01, -0.01, -0.01, 0.5062034726142883, 0.49462366104125977, 0.4789081811904907, 0.47394540905952454, 0.5202646851539612, 0.5194375514984131, -0.01, -0.01, -0.01, -0.01, 0.49545079469680786, 0.465674102306366, 0.4789081811904907, 0.4532671570777893, 0.5244003534317017, 0.5235732197761536, 0.5194375514984131, 0.5244003534317017, 0.518610417842865, 0.5169561505317688, 0.5244003534317017, 0.5219189524650574, 0.5235732197761536, 0.5045492053031921, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, -0.01, -0.01, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, 0.5244003534317017, 0.5136476159095764, 0.5020678043365479, 0.5070306062698364, 0.5161290168762207, 0.4929693937301636, 0.47477254271507263, 0.5078577399253845, 0.4780810475349426, 0.518610417842865, 0.5053763389587402, 0.4755996763706207, 0.4896608889102936, -0.01, -0.01, -0.01, -0.01, 0.4913151264190674, 0.4863523542881012, 0.47229114174842834, 0.4929693937301636, 0.481389582157135, 0.47394540905952454, -0.01, -0.01, -0.01, -0.01, 0.4863523542881012, 0.4574028253555298, 0.46815550327301025, 0.4507857859134674, 0.5244003534317017, 0.5252274870872498, 0.5235732197761536, 0.5210918188095093, 0.5235732197761536, 0.5111662745475769, 0.5260545611381531, 0.5219189524650574, 0.5244003534317017, 0.5227460861206055], "zzzd70pb": [-0.01, 0.48966087675765096, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4210090984284533, -0.01, -0.01, 0.4855252274607113, -0.01, 0.4731182795698925, 0.34739454094292804, 0.3556658395368073, 0.4871794871794872, 0.36724565756823824, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3639371381306865, 0.3614557485525228, 0.4863523573200992, 0.47973531844499584, 0.3631100082712986, 0.4152191894127378, 0.3457402812241522, 0.3465674110835401, 0.5028949545078577, 0.5210918114143921, 0.413564929693962, 0.48469809760132343, 0.5235732009925558, 0.27791563275434245, 0.48056244830438377, 0.4425144747725393, 0.2555831265508685, 0.4143920595533499, 0.4665012406947891, 0.4317617866004963, 0.3548387096774194, 0.3664185277088503, 0.4913151364764268, 0.4921422663358147, 0.46732837055417703, 0.42018196856906537, 0.36228287841191065, 0.3953680727874277, 0.48883374689826303, 0.3614557485525228, 0.3606286186931349, 0.3688999172870141, 0.5210918114143921, 0.5202646815550042, 0.4143920595533499, 0.47146401985111663, 0.5268817204301075, 0.2638544251447477, 0.45822994210090984, 0.49710504549214224, 0.4483043837882548, 0.3027295285359802, 0.4822167080231596, 0.4491315136476427, 0.3556658395368073, 0.3159636062861869, 0.5028949545078577, 0.3556658395368073, 0.3523573200992556, 0.5161290322580645, 0.5177832919768404, 0.435070306038048, 0.4516129032258064, 0.52191894127378, 0.30355665839536805, 0.4656741108354012, 0.5119933829611248, 0.47146401985111663, 0.2564102564102564, 0.4325889164598842, 0.4358974358974359, 0.46732837055417703, 0.43424317617866, 0.4168734491315136, 0.49379652605459057], "6mib6vb3": [0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5099999904632568, 0.5034999847412109, 0.4485000073909759, 0.4050000011920929, 0.445499986410141, 0.4404999911785126, 0.5139999985694885, 0.5130000114440918, 0.4625000059604645, 0.3995000123977661, 0.4544999897480011, 0.4659999907016754, 0.5134999752044678, 0.5134999752044678, 0.4620000123977661, 0.3869999945163727, 0.460999995470047, 0.47699999809265137, 0.5024999976158142, 0.4975000023841858, -0.01, 0.4059999883174896, 0.4535000026226044, 0.4580000042915344, 0.5120000243186951, 0.5105000138282776, 0.4379999935626984, 0.41749998927116394, 0.4359999895095825, 0.42800000309944153, 0.5134999752044678, 0.5134999752044678, -0.01, 0.4634999930858612, 0.43650001287460327, 0.4359999895095825, 0.4675000011920929, 0.47699999809265137, 0.4025000035762787, 0.41350001096725464, 0.4099999964237213, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5034999847412109, 0.5065000057220459, 0.4839999973773956, 0.4165000021457672, 0.4934999942779541, 0.49549999833106995, 0.5024999976158142, 0.49900001287460327, 0.4699999988079071, 0.445499986410141, 0.4794999957084656, 0.4779999852180481, -0.01, 0.5115000009536743, 0.3564999997615814, 0.4625000059604645, 0.4050000011920929, 0.4004999995231629, 0.4790000021457672, 0.4639999866485596, 0.4214999973773956, 0.4375, 0.4115000069141388, 0.39800000190734863, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5015000104904175, 0.5015000104904175, 0.48750001192092896, 0.4350000023841858, 0.4839999973773956, 0.4900000095367432, 0.5049999952316284, 0.5019999742507935, 0.4830000102519989, 0.45399999618530273, 0.4790000021457672, 0.48500001430511475, 0.5059999823570251, -0.01, 0.3824999928474426, -0.01, 0.4014999866485596, 0.3869999945163727, 0.5134999752044678, 0.5134999752044678, 0.4410000145435333, 0.4189999997615814, 0.4675000011920929, 0.4555000066757202, 0.5134999752044678, 0.5134999752044678, 0.4600000083446502, 0.4309999942779541, 0.4754999876022339, 0.4715000092983246, -0.01, 0.5134999752044678, 0.4580000042915344, 0.4494999945163727, 0.4779999852180481, 0.4659999907016754, 0.5134999752044678, 0.5134999752044678, 0.503000020980835, 0.4429999887943268, -0.01, 0.5084999799728394, 0.5134999752044678, 0.5134999752044678, 0.4934999942779541, 0.45649999380111694, -0.01, 0.5009999871253967, 0.5134999752044678, 0.5134999752044678, 0.4404999911785126, 0.4745000004768371, 0.45100000500679016, 0.453000009059906, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, 0.5134999752044678, -0.01, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, 0.5134999752044678, -0.01, 0.5074999928474426, 0.44999998807907104, 0.4165000021457672, 0.4465000033378601, 0.4449999928474426, 0.5134999752044678, -0.01, 0.47200000286102295, 0.39800000190734863, -0.01, 0.4659999907016754, 0.5134999752044678, 0.5134999752044678, 0.4729999899864197, 0.4065000116825104, 0.4639999866485596, 0.4819999933242798, 0.4880000054836273, 0.492000013589859, 0.4600000083446502, 0.3860000073909759, 0.4645000100135803, 0.4699999988079071, 0.5109999775886536, 0.5080000162124634, 0.4480000138282776, 0.40950000286102295, 0.43849998712539673, 0.4379999935626984, 0.5134999752044678, 0.5134999752044678, 0.4235000014305115, 0.4645000100135803, 0.43650001287460327, 0.429500013589859, 0.4474999904632568, 0.4485000073909759, 0.4079999923706054, 0.38350000977516174, 0.3824999928474426, 0.38999998569488525, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5074999928474426, 0.5080000162124634, 0.49549999833106995, 0.4465000033378601, 0.5024999976158142, 0.5070000290870667, 0.4729999899864197, 0.4684999883174896, 0.4839999973773956, 0.45100000500679016, 0.476500004529953, 0.4774999916553498, 0.5, 0.4970000088214874, 0.33649998903274536, 0.4415000081062317, 0.35350000858306885, 0.33649998903274536, 0.48649999499320984, 0.4675000011920929, 0.4154999852180481, 0.4014999866485596, 0.3894999921321869, 0.3894999921321869, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5120000243186951, 0.5120000243186951, 0.5044999718666077, 0.45500001311302185, 0.5090000033378601, 0.5099999904632568, 0.4945000112056732, 0.49399998784065247, 0.49399998784065247, 0.48249998688697815, 0.49149999022483826, 0.4909999966621399, 0.5059999823570251, 0.3774999976158142, 0.34549999237060547, 0.42100000381469727, 0.33399999141693115, 0.3465000092983246, 0.5134999752044678, 0.5134999752044678, 0.4325000047683716, 0.43299999833106995, 0.4715000092983246, 0.4620000123977661, 0.5134999752044678, 0.5134999752044678, 0.4424999952316284, 0.4325000047683716, 0.4729999899864197, 0.4580000042915344, 0.5134999752044678, 0.5134999752044678, 0.4704999923706054, 0.43549999594688416, 0.4690000116825104, 0.46050000190734863, 0.5134999752044678, 0.5134999752044678, 0.5130000114440918, 0.48100000619888306, 0.5134999752044678, 0.5134999752044678, 0.512499988079071, 0.512499988079071, 0.5130000114440918, 0.5015000104904175, 0.5109999775886536, 0.5120000243186951, 0.5134999752044678, 0.5134999752044678, -0.01, 0.4894999861717224, 0.4555000066757202, 0.453000009059906, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, 0.5134999752044678, -0.01, 0.5134999752044678, 0.5109999775886536, 0.5084999799728394, 0.4494999945163727, 0.4025000035762787, 0.445499986410141, 0.44200000166893005, 0.5130000114440918, 0.5130000114440918, 0.46549999713897705, 0.4115000069141388, 0.4634999930858612, 0.4659999907016754, 0.5134999752044678, 0.5134999752044678, 0.46650001406669617, 0.3855000138282776, 0.4639999866485596, 0.48100000619888306, 0.4909999966621399, 0.4900000095367432, 0.4659999907016754, 0.39250001311302185, 0.46549999713897705, 0.4659999907016754, 0.5099999904632568, 0.5095000267028809, 0.45399999618530273, -0.01, 0.4379999935626984, 0.4359999895095825, 0.5134999752044678, 0.5134999752044678, 0.414000004529953, 0.46149998903274536, 0.42250001430511475, 0.4244999885559082, 0.45399999618530273, 0.4629999995231629, 0.3959999978542328, 0.4194999933242798, 0.4074999988079071, 0.4110000133514404, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5049999952316284, -0.01, 0.5009999871253967, 0.5034999847412109, 0.4790000021457672, -0.01, 0.4729999899864197, 0.4505000114440918, 0.4805000126361847, 0.48350000381469727, 0.5115000009536743, 0.512499988079071, 0.3709999918937683, 0.4970000088214874, 0.39899998903274536, 0.3959999978542328, 0.4819999933242798, 0.4699999988079071, 0.4034999907016754, 0.4370000064373016, 0.39899998903274536, 0.4050000011920929, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.512499988079071, 0.5120000243186951, 0.5065000057220459, 0.4505000114440918, -0.01, 0.5090000033378601, -0.01, 0.48750001192092896, 0.492000013589859, 0.476500004529953, 0.48350000381469727, 0.48249998688697815, 0.5034999847412109, 0.5084999799728394, 0.3754999935626984, 0.4440000057220459, 0.4050000011920929, 0.38850000500679016, 0.5134999752044678, 0.5134999752044678, 0.45100000500679016, 0.4275000095367432, -0.01, 0.4629999995231629, 0.5134999752044678, 0.5134999752044678, 0.4620000123977661, 0.4429999887943268, 0.4675000011920929, 0.4650000035762787, 0.5134999752044678, 0.5134999752044678, 0.4505000114440918, 0.4544999897480011, 0.4749999940395355, 0.46549999713897705, 0.5134999752044678, 0.5134999752044678, 0.5120000243186951, 0.4749999940395355, 0.5134999752044678, 0.5134999752044678, 0.5115000009536743, 0.5115000009536743, 0.5084999799728394, 0.49549999833106995, 0.5095000267028809, 0.5090000033378601, 0.5134999752044678, 0.5134999752044678, 0.42899999022483826, 0.46650001406669617, 0.4600000083446502, 0.45649999380111694], "7d180py8": [0.4264999926090241, 0.429500013589859, 0.36149999499320984, 0.47699999809265137, 0.320499986410141, 0.3240000009536743, 0.40299999713897705, 0.4099999964237213, 0.3400000035762787, 0.47099998593330383, 0.33550000190734863, 0.3544999957084656, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4334999918937683, 0.4189999997615814, 0.3400000035762787, 0.47600001096725464, 0.3499999940395355, 0.36800000071525574, 0.3860000073909759, 0.38449999690055847, 0.3785000145435333, 0.45100000500679016, 0.33799999952316284, 0.32850000262260437, 0.39899998903274536, 0.4194999933242798, 0.33799999952316284, 0.47099998593330383, 0.3370000123977661, 0.33550000190734863, -0.01, 0.4415000081062317, 0.3244999945163727, 0.4819999933242798, 0.35899999737739563, 0.3345000147819519, 0.4244999885559082, 0.4269999861717224, 0.34450000524520874, 0.4729999899864197, 0.3425000011920929, 0.328000009059906, 0.4410000145435333, 0.4429999887943268, 0.35499998927116394, 0.4779999852180481, 0.34200000762939453, 0.3540000021457672, 0.40299999713897705, 0.40299999713897705, 0.3555000126361847, 0.4670000076293946, 0.3555000126361847, 0.3745000064373016, 0.3605000078678131, 0.3720000088214874, 0.36899998784065247, 0.40950000286102295, 0.3375000059604645, 0.34049999713897705, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3765000104904175, 0.38100001215934753, 0.3305000066757202, 0.4544999897480011, -0.01, 0.37299999594688416, -0.01, 0.36800000071525574, 0.3639999926090241, 0.45500001311302185, -0.01, 0.32749998569488525, -0.01, 0.3564999997615814, 0.27300000190734863, -0.01, 0.3540000021457672, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3894999921321869, -0.01, -0.01, -0.01, 0.32249999046325684, 0.35350000858306885, 0.3684999942779541, 0.375, 0.3375000059604645, 0.476500004529953, 0.3644999861717224, 0.3504999876022339, 0.4120000004768371, -0.01, 0.34200000762939453, 0.4399999976158142, -0.01, 0.3465000092983246, 0.40700000524520874, 0.4050000011920929, 0.3544999957084656, 0.43650001287460327, -0.01, -0.01, 0.3714999854564667, 0.3774999976158142, 0.3345000147819519, 0.4339999854564667, -0.01, 0.34950000047683716, 0.4154999852180481, 0.42500001192092896, 0.36649999022483826, 0.47200000286102295, 0.3310000002384186, 0.3345000147819519, 0.4050000011920929, 0.39250001311302185, 0.33149999380111694, 0.47999998927116394, 0.3555000126361847, 0.359499990940094, 0.40700000524520874, 0.4205000102519989, 0.34299999475479126, 0.4449999928474426, 0.3745000064373016, 0.3745000064373016, 0.4065000116825104, 0.4045000076293946, 0.39149999618530273, 0.4754999876022339, 0.36149999499320984, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.40950000286102295, 0.35899999737739563, 0.44449999928474426, 0.3375000059604645, 0.3745000064373016, 0.39899998903274536, 0.4034999907016754, 0.351500004529953, -0.01, 0.3540000021457672, 0.3540000021457672, 0.4205000102519989, 0.4065000116825104, 0.3440000116825104, 0.4729999899864197, 0.35249999165534973, 0.3240000009536743, 0.4180000126361847, 0.4244999885559082, 0.3434999883174896, 0.4814999997615814, 0.33799999952316284, 0.3434999883174896, 0.4634999930858612, 0.4634999930858612, 0.35749998688697815, 0.4690000116825104, 0.359499990940094, 0.3580000102519989, 0.43950000405311584, 0.43849998712539673, 0.35899999737739563, 0.4440000057220459, 0.3619999885559082, -0.01, 0.3970000147819519, 0.4025000035762787, -0.01, 0.4675000011920929, 0.33799999952316284, 0.33250001072883606, 0.3639999926090241, 0.36899998784065247, 0.3605000078678131, 0.390500009059906, 0.34700000286102295, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.367000013589859, -0.01, 0.35749998688697815, 0.4300000071525574, 0.359499990940094, 0.36250001192092896, 0.3610000014305115, 0.34850001335144043, 0.34049999713897705, 0.43149998784065247, 0.3860000073909759, 0.3540000021457672, 0.3474999964237213, 0.351500004529953, 0.3700000047683716, 0.4320000112056732, 0.3684999942779541, 0.37599998712539673, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4020000100135803, 0.3970000147819519, 0.3409999907016754, 0.44449999928474426, 0.37049999833106995, 0.3610000014305115, 0.3894999921321869, 0.3569999933242798, 0.3529999852180481, 0.44699999690055847, 0.3639999926090241, 0.35499998927116394, 0.3779999911785126, 0.3930000066757202, 0.32600000500679016, 0.44999998807907104, 0.3695000112056732, 0.3504999876022339, 0.3855000138282776, 0.3840000033378601, 0.3409999907016754, 0.4474999904632568, 0.3529999852180481, 0.34450000524520874, 0.4020000100135803, 0.4065000116825104, 0.32350000739097595, 0.44449999928474426, -0.01, 0.3529999852180481, 0.3959999978542328, 0.3919999897480011, 0.3465000092983246, -0.01, 0.3605000078678131, 0.3630000054836273, -0.01, 0.3910000026226044, 0.33649998903274536, 0.44699999690055847, -0.01, 0.3425000011920929, 0.39500001072883606, 0.398499995470047, 0.3605000078678131, 0.4485000073909759, 0.3610000014305115, 0.3544999957084656, 0.4014999866485596, 0.36649999022483826, -0.01, -0.01, -0.01, 0.3684999942779541, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4034999907016754, -0.01, -0.01, 0.3434999883174896, -0.01, -0.01, 0.44200000166893005, 0.34150001406669617, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.35350000858306885, -0.01, -0.01, -0.01, 0.4099999964237213, -0.01, -0.01, -0.01, 0.3370000123977661, 0.3449999988079071, 0.359499990940094, 0.35899999737739563, -0.01, 0.4004999995231629, 0.3610000014305115, 0.3400000035762787, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3869999945163727, 0.36000001430511475, 0.33500000834465027, 0.43849998712539673, 0.3605000078678131, 0.3894999921321869, -0.01, 0.3619999885559082, 0.3564999997615814, 0.4370000064373016, 0.3465000092983246, 0.335999995470047, 0.3644999861717224, 0.3504999876022339, 0.35850000381469727, 0.4325000047683716, 0.35100001096725464, 0.35600000619888306, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4059999883174896, 0.3935000002384186, 0.36000001430511475, 0.4480000138282776, 0.3569999933242798, 0.35600000619888306, 0.367000013589859, 0.3499999940395355, 0.31349998712539673, 0.4485000073909759, 0.3779999911785126, 0.3650000095367432, 0.42899999022483826, 0.41449999809265137, 0.3100000023841858, 0.4505000114440918, 0.3790000081062317, 0.3785000145435333, 0.4045000076293946, 0.4110000133514404, 0.3425000011920929, 0.445499986410141, 0.3400000035762787, 0.3474999964237213, 0.4104999899864197, 0.39500001072883606, 0.3529999852180481, 0.43650001287460327, 0.3504999876022339, 0.3499999940395355, 0.36550000309944153, 0.37049999833106995, 0.3499999940395355, 0.4480000138282776, 0.35600000619888306, 0.35249999165534973, 0.3695000112056732, 0.3725000023841858, 0.3544999957084656, 0.4375, 0.34700000286102295, 0.3540000021457672], "aqfmsmpx": [0.5115000009536743, 0.5115000009536743, 0.5115000009536743, 0.5115000009536743, -0.01, -0.01, 0.5115000009536743, 0.5115000009536743, 0.5115000009536743, 0.5115000009536743, 0.5074999928474426, 0.5034999847412109, 0.5115000009536743, 0.5105000138282776, 0.5115000009536743, 0.5115000009536743, 0.4909999966621399, 0.4975000023841858, 0.5059999823570251, 0.5019999742507935, 0.484499990940094, 0.46050000190734863, -0.01, -0.01, -0.01, -0.01, 0.5044999718666077, 0.5005000233650208, 0.4959999918937683, 0.492000013589859, 0.4629999995231629, 0.4855000078678131, -0.01, -0.01, -0.01, -0.01, 0.503000020980835, 0.5034999847412109, 0.4805000126361847, 0.4884999990463257, 0.5109999775886536, 0.5109999775886536, 0.5099999904632568, 0.5109999775886536, 0.5109999775886536, 0.5095000267028809, 0.5115000009536743, 0.5115000009536743, 0.5109999775886536, 0.5109999775886536, -0.01, -0.01, 0.5115000009536743, 0.5109999775886536, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5109999775886536, 0.5109999775886536, 0.5115000009536743, 0.5090000033378601, 0.5115000009536743, 0.4984999895095825, 0.5019999742507935, 0.5115000009536743, 0.5115000009536743, 0.5015000104904175, 0.5115000009536743, 0.5105000138282776, 0.5099999904632568, 0.5115000009536743, 0.5015000104904175, 0.5009999871253967, 0.5, 0.5105000138282776, 0.5115000009536743, 0.5115000009536743, 0.5099999904632568, 0.5115000009536743, 0.4839999973773956, 0.460999995470047, 0.5055000185966492, 0.5005000233650208, 0.484499990940094, 0.49050000309944153, 0.5070000290870667, 0.5015000104904175, 0.4424999952316284, 0.44200000166893005, 0.5115000009536743, 0.5080000162124634, 0.4830000102519989, 0.4794999957084656, 0.5115000009536743, 0.5109999775886536, 0.5109999775886536, 0.5115000009536743, 0.5084999799728394, 0.5115000009536743, 0.5095000267028809, 0.5105000138282776, 0.5080000162124634, 0.5105000138282776, 0.5109999775886536, 0.5109999775886536, 0.5115000009536743, 0.5115000009536743, 0.5115000009536743, 0.5109999775886536, 0.5115000009536743, 0.4794999957084656, 0.46149998903274536, 0.5059999823570251, 0.5040000081062317, 0.4690000116825104, 0.4544999897480011, 0.5044999718666077, 0.5015000104904175, 0.4675000011920929, 0.47099998593330383, 0.4925000071525574, 0.49300000071525574, -0.01, 0.5090000033378601, 0.4659999907016754, 0.4555000066757202, 0.5115000009536743, 0.5115000009536743, 0.5115000009536743, 0.5115000009536743, 0.5109999775886536, 0.5115000009536743, 0.5115000009536743, 0.5115000009536743, 0.5109999775886536], "ipf0tqke": [0.4985, -0.01, -0.01, 0.5005, 0.5005, 0.5005, -0.01, -0.01, -0.01, -0.01, 0.4565, 0.5005, 0.5005, 0.5005, 0.4995, 0.5005, -0.01, -0.01, 0.5, -0.01, 0.5005, -0.01, -0.01, -0.01, -0.01, -0.01, 0.0255, -0.01, -0.01, -0.01, 0.5005, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5005, -0.01, 0.494, 0.476, 0.5005, 0.5005, 0.5005, 0.379, 0.5005, 0.465, 0.496, 0.5005, 0.5005, 0.497, 0.5005, 0.292, 0.0555, 0.482, 0.5005, 0.5005, 0.5, 0.5005, 0.5005, 0.0935, 0.474, 0.5005, 0.5005, 0.473, 0.5005, 0.5005, 0.5005, 0.5005, 0.496, 0.5005, 0.057, 0.4835, 0.5005, 0.4995, 0.5005, 0.5005, 0.5005, 0.5005, 0.5005, 0.11, 0.4825, 0.5005, 0.5005, 0.0285, 0.4925, 0.5005, 0.5005, 0.5005, 0.499, 0.5005], "7v3lwalo": [0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7919999957084656, 0.7925000190734863, 0.7799999713897705, 0.7620000243186951, 0.7749999761581421, 0.7770000100135803, 0.7950000166893005, 0.7950000166893005, 0.7940000295639038, 0.7450000047683716, 0.7835000157356262, 0.7864999771118164, 0.7950000166893005, 0.7950000166893005, 0.7910000085830688, 0.7335000038146973, 0.7879999876022339, 0.7885000109672546, 0.7925000190734863, 0.7894999980926514, 0.7875000238418579, 0.7210000157356262, 0.7885000109672546, 0.7885000109672546, 0.7950000166893005, 0.7950000166893005, 0.7785000205039978, 0.7670000195503235, 0.7720000147819519, 0.7749999761581421, 0.7950000166893005, 0.7950000166893005, 0.7705000042915344, 0.7774999737739563, 0.7599999904632568, 0.765999972820282, 0.762499988079071, 0.7670000195503235, 0.7450000047683716, 0.7670000195503235, 0.753000020980835, 0.7480000257492065, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7919999957084656, 0.7904999852180481, 0.7829999923706055, 0.7524999976158142, 0.781499981880188, 0.784500002861023, 0.781000018119812, 0.7799999713897705, 0.781000018119812, 0.7684999704360962, 0.7735000252723694, 0.7749999761581421, 0.7944999933242798, 0.7950000166893005, 0.7285000085830688, 0.7720000147819519, 0.7394999861717224, 0.7484999895095825, 0.7760000228881836, 0.7820000052452087, 0.765500009059906, 0.7615000009536743, 0.7475000023841858, 0.7384999990463257, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7904999852180481, 0.7914999723434448, 0.7875000238418579, 0.7645000219345093, 0.7820000052452087, 0.7850000262260437, 0.7854999899864197, 0.7825000286102295, 0.7774999737739563, 0.7639999985694885, 0.7785000205039978, -0.01, 0.7944999933242798, 0.7935000061988831, 0.7329999804496765, 0.7804999947547913, 0.7390000224113464, 0.7329999804496765, 0.7950000166893005, 0.7950000166893005, 0.7825000286102295, 0.765500009059906, 0.7724999785423279, 0.7760000228881836, 0.7950000166893005, 0.7950000166893005, 0.7825000286102295, 0.7689999938011169, 0.7789999842643738, 0.784500002861023, 0.7950000166893005, 0.7950000166893005, 0.784500002861023, 0.7509999871253967, 0.7764999866485596, 0.777999997138977, 0.7950000166893005, 0.7950000166893005, 0.7914999723434448, 0.7705000042915344, 0.7950000166893005, 0.7950000166893005, 0.7954999804496765, 0.7954999804496765, 0.7870000004768372, 0.7799999713897705, 0.7885000109672546, 0.7885000109672546, 0.7950000166893005, 0.7950000166893005, 0.7835000157356262, 0.7749999761581421, 0.7770000100135803, 0.7680000066757202, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7929999828338623, 0.7919999957084656, 0.7804999947547913, 0.7574999928474426, 0.7739999890327454, 0.7749999761581421, 0.7950000166893005, 0.7950000166893005, 0.7879999876022339, 0.7555000185966492, 0.781000018119812, 0.7820000052452087, 0.7950000166893005, 0.7950000166893005, 0.7900000214576721, 0.7335000038146973, 0.7894999980926514, 0.7910000085830688, 0.7914999723434448, 0.7919999957084656, 0.7864999771118164, 0.7304999828338623, 0.7854999899864197, 0.7885000109672546, 0.7944999933242798, 0.7940000295639038, 0.7720000147819519, 0.7609999775886536, 0.7724999785423279, 0.7695000171661377, 0.7950000166893005, 0.7950000166893005, 0.765500009059906, 0.7839999794960022, 0.7599999904632568, 0.7649999856948853, 0.7480000257492065, 0.7384999990463257, 0.7559999823570251, 0.75, 0.734499990940094, 0.7369999885559082, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7925000190734863, 0.7919999957084656, 0.7900000214576721, 0.7419999837875366, 0.7835000157356262, 0.7864999771118164, 0.7825000286102295, 0.781499981880188, 0.7789999842643738, 0.7739999890327454, 0.7774999737739563, 0.7789999842643738, 0.7829999923706055, 0.7825000286102295, 0.7264999747276306, 0.7710000276565552, 0.7329999804496765, 0.7039999961853027, 0.7699999809265137, 0.7735000252723694, 0.7325000166893005, 0.7580000162124634, 0.7490000128746033, 0.7210000157356262, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7904999852180481, 0.7914999723434448, 0.7875000238418579, 0.7580000162124634, 0.7860000133514404, 0.7900000214576721, 0.7795000076293945, 0.7795000076293945, 0.7875000238418579, 0.7705000042915344, 0.7804999947547913, 0.7839999794960022, 0.7944999933242798, 0.7935000061988831, 0.7129999995231628, 0.781499981880188, 0.7335000038146973, 0.6664999723434448, 0.7950000166893005, 0.7950000166893005, 0.7799999713897705, 0.7595000267028809, 0.7714999914169312, 0.7764999866485596, 0.7950000166893005, 0.7950000166893005, 0.7804999947547913, 0.7649999856948853, 0.7789999842643738, 0.7839999794960022, 0.7950000166893005, 0.7950000166893005, 0.7850000262260437, 0.7559999823570251, 0.7785000205039978, 0.777999997138977, 0.7950000166893005, 0.7950000166893005, 0.7925000190734863, 0.7720000147819519, 0.7940000295639038, 0.7950000166893005, 0.7944999933242798, 0.7944999933242798, 0.7904999852180481, 0.777999997138977, 0.7900000214576721, 0.7900000214576721, 0.7950000166893005, 0.7950000166893005, 0.7735000252723694, 0.7850000262260437, 0.7785000205039978, 0.7670000195503235, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, 0.7950000166893005, -0.01, 0.7914999723434448, 0.7820000052452087, 0.7524999976158142, 0.7745000123977661, 0.7789999842643738, 0.7950000166893005, 0.7940000295639038, 0.7889999747276306, 0.7325000166893005, 0.7770000100135803, 0.7785000205039978, 0.7950000166893005, 0.7950000166893005, 0.7919999957084656, 0.7559999823570251, 0.7889999747276306, 0.7904999852180481, 0.7894999980926514, 0.7889999747276306, 0.7879999876022339, 0.7200000286102295, 0.7854999899864197, 0.7889999747276306, 0.7944999933242798, 0.7954999804496765, 0.7764999866485596, 0.7674999833106995, 0.7710000276565552, 0.7735000252723694, 0.7950000166893005, 0.7950000166893005, 0.7620000243186951, 0.781499981880188, 0.765500009059906, 0.7705000042915344, 0.762499988079071, 0.7684999704360962, 0.7584999799728394, 0.7645000219345093, 0.7480000257492065, 0.7559999823570251, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7919999957084656, 0.7914999723434448, 0.7904999852180481, 0.7509999871253967, 0.7829999923706055, 0.7870000004768372, 0.7799999713897705, 0.7804999947547913, 0.7789999842643738, 0.7730000019073486, 0.7724999785423279, 0.7754999995231628, 0.7950000166893005, 0.7950000166893005, 0.7429999709129333, 0.7760000228881836, 0.7350000143051147, 0.7365000247955322, 0.7799999713897705, 0.7850000262260437, 0.7605000138282776, 0.7599999904632568, 0.7440000176429749, 0.7419999837875366, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7925000190734863, 0.7894999980926514, 0.7875000238418579, 0.7584999799728394, 0.7864999771118164, 0.7879999876022339, 0.781000018119812, 0.7825000286102295, 0.7774999737739563, 0.7674999833106995, 0.7789999842643738, 0.7764999866485596, 0.7944999933242798, 0.7935000061988831, 0.7384999990463257, 0.7829999923706055, 0.7409999966621399, 0.7279999852180481, 0.7950000166893005, 0.7950000166893005, 0.7839999794960022, -0.01, -0.01, 0.7789999842643738, 0.7950000166893005, 0.7950000166893005, 0.7910000085830688, 0.7730000019073486, 0.7764999866485596, 0.7804999947547913, 0.7950000166893005, 0.7950000166893005, 0.7835000157356262, 0.7645000219345093, 0.7760000228881836, 0.7825000286102295, 0.7950000166893005, 0.7950000166893005, 0.7929999828338623, 0.7714999914169312, 0.7925000190734863, 0.7925000190734863, 0.7954999804496765, 0.7954999804496765, 0.7875000238418579, 0.7795000076293945, 0.7919999957084656, 0.7900000214576721, 0.7950000166893005, 0.7950000166893005, 0.7825000286102295, 0.7875000238418579, 0.7764999866485596, 0.7649999856948853], "gbqweu7x": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7455000281333923, -0.01, -0.01, 0.7760000228881836, -0.01, 0.7549999952316284, 0.7825000286102295, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7910000085830688, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7710000276565552, 0.7465000152587891, 0.7425000071525574, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7570000290870667, 0.7584999799728394, 0.7549999952316284, 0.7509999871253967, 0.7365000247955322, 0.7789999842643738, 0.7894999980926514, 0.7505000233650208, 0.7524999976158142, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7120000123977661, -0.01, 0.7590000033378601, 0.781499981880188, 0.7730000019073486, 0.7335000038146973, 0.7450000047683716, 0.7639999985694885, 0.7444999814033508, 0.7885000109672546, 0.7760000228881836, 0.762499988079071, 0.7444999814033508, 0.7645000219345093, 0.7509999871253967, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7820000052452087, 0.7789999842643738, 0.7490000128746033, 0.7415000200271606, 0.7639999985694885, 0.7524999976158142, 0.7615000009536743, 0.7609999775886536, 0.7490000128746033, 0.7365000247955322, 0.765500009059906, 0.7570000290870667, 0.7835000157356262, 0.7829999923706055, 0.7490000128746033, 0.7475000023841858, 0.7534999847412109, 0.7565000057220459, 0.7839999794960022, 0.7820000052452087, 0.7559999823570251, 0.7609999775886536, 0.7599999904632568, 0.7639999985694885, 0.7854999899864197, 0.7850000262260437, 0.7484999895095825, 0.7444999814033508, 0.75, 0.7490000128746033, 0.7804999947547913, 0.7515000104904175, 0.7459999918937683, 0.7565000057220459, 0.7494999766349792, 0.7425000071525574, 0.781499981880188, 0.7785000205039978, 0.7310000061988831, 0.7544999718666077, 0.7544999718666077, 0.7540000081062317, 0.7595000267028809, 0.7549999952316284, 0.7505000233650208, 0.7195000052452087, 0.7565000057220459, 0.7630000114440918, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7699999809265137, 0.7714999914169312, 0.7214999794960022, 0.7315000295639038, 0.7415000200271606, 0.7354999780654907, 0.7599999904632568, 0.7724999785423279, 0.7664999961853027, 0.7229999899864197, 0.7524999976158142, 0.7465000152587891, 0.7490000128746033, 0.7174999713897705, 0.7245000004768372, 0.7599999904632568, 0.7540000081062317, 0.7524999976158142, 0.7620000243186951, 0.7615000009536743, 0.7595000267028809, 0.7519999742507935, 0.7670000195503235, 0.7649999856948853, 0.7484999895095825, 0.7480000257492065, 0.7440000176429749, 0.7415000200271606, 0.7689999938011169, 0.7269999980926514, 0.7524999976158142, 0.7590000033378601, 0.7730000019073486, 0.7730000019073486, 0.7059999704360962, 0.7335000038146973, 0.7710000276565552, 0.7609999775886536, 0.777999997138977, 0.7350000143051147, 0.753000020980835, 0.753000020980835, 0.7450000047683716, 0.7795000076293945, 0.7754999995231628, 0.7494999766349792, 0.7480000257492065, 0.753000020980835, 0.7544999718666077, 0.7459999918937683, 0.7455000281333923, 0.7494999766349792, 0.7480000257492065, 0.7544999718666077, 0.7724999785423279, 0.7684999704360962, 0.7360000014305115, 0.7450000047683716, 0.7444999814033508, 0.7749999761581421, 0.7490000128746033, 0.7484999895095825, 0.7555000185966492, 0.7329999804496765, 0.7739999890327454, 0.7384999990463257, 0.75, 0.7570000290870667, 0.7544999718666077, 0.7580000162124634, 0.7549999952316284, 0.7409999966621399, 0.7250000238418579, 0.7674999833106995, 0.7664999961853027, 0.7820000052452087, 0.7705000042915344, 0.7315000295639038, 0.7494999766349792, 0.7540000081062317, 0.7475000023841858, 0.7935000061988831, 0.7940000295639038, 0.7620000243186951, 0.7615000009536743, 0.7519999742507935, 0.7574999928474426, 0.7944999933242798, 0.7350000143051147, 0.7360000014305115, 0.7484999895095825, 0.7595000267028809, 0.7864999771118164, 0.777999997138977, 0.7559999823570251, 0.7595000267028809, 0.7509999871253967, 0.7524999976158142, 0.7770000100135803, 0.7854999899864197, 0.7390000224113464, 0.7484999895095825, 0.7620000243186951, 0.7555000185966492, 0.7649999856948853, 0.7615000009536743, 0.7384999990463257, 0.7210000157356262, 0.753000020980835, 0.75, 0.765500009059906, 0.7590000033378601, 0.7360000014305115, 0.7250000238418579, 0.7494999766349792, 0.7540000081062317, 0.7450000047683716, 0.7549999952316284, 0.7434999942779541, 0.7204999923706055, 0.7425000071525574, 0.7480000257492065, 0.7419999837875366, 0.7404999732971191, 0.7250000238418579, 0.7429999709129333, 0.7699999809265137, 0.7634999752044678, 0.7494999766349792, 0.7465000152587891, 0.7524999976158142, 0.7475000023841858, 0.7440000176429749, 0.7524999976158142, 0.7400000095367432, 0.7415000200271606, 0.7735000252723694, 0.7699999809265137, 0.6899999976158142, 0.7455000281333923, 0.7480000257492065, 0.7584999799728394, 0.7695000171661377, 0.7724999785423279, 0.7409999966621399, 0.7664999961853027, 0.7630000114440918, 0.7735000252723694, 0.7770000100135803, 0.7505000233650208, 0.7584999799728394, 0.7590000033378601, 0.746999979019165, 0.7639999985694885, 0.7804999947547913, 0.7440000176429749, 0.7509999871253967, 0.7620000243186951, 0.7465000152587891, 0.7450000047683716, 0.7429999709129333, 0.7509999871253967, 0.7459999918937683, 0.7559999823570251, 0.765500009059906, 0.7749999761581421, 0.7310000061988831, 0.7450000047683716, 0.7285000085830688, 0.7714999914169312, 0.7689999938011169, 0.7304999828338623, 0.7475000023841858, 0.7534999847412109, 0.7549999952316284, 0.7730000019073486, 0.777999997138977, 0.7519999742507935, 0.7480000257492065, 0.762499988079071, 0.7580000162124634, 0.7394999861717224, 0.7835000157356262, 0.7440000176429749, 0.7940000295639038, 0.7620000243186951, 0.7940000295639038, 0.7705000042915344, 0.7710000276565552, 0.7559999823570251, 0.7494999766349792, 0.7494999766349792, 0.7365000247955322, 0.7475000023841858, 0.7524999976158142, 0.7509999871253967, 0.7555000185966492, 0.7254999876022339, 0.7549999952316284, 0.7689999938011169, 0.762499988079071, 0.7490000128746033, 0.7289999723434448, 0.7319999933242798, 0.7319999933242798, 0.7509999871253967, 0.7444999814033508, 0.7595000267028809, 0.7214999794960022, 0.7549999952316284, 0.7599999904632568, 0.7540000081062317, 0.7540000081062317, 0.7390000224113464, 0.7245000004768372, 0.7459999918937683, 0.7400000095367432, 0.7770000100135803, 0.7630000114440918, 0.7720000147819519, 0.7490000128746033, 0.7509999871253967, 0.7440000176429749, 0.7200000286102295, 0.7509999871253967, 0.75, 0.7505000233650208, 0.753000020980835, 0.7770000100135803, 0.7764999866485596, 0.7580000162124634, 0.7490000128746033, 0.7369999885559082, 0.7730000019073486, 0.7749999761581421, 0.7415000200271606, 0.7390000224113464, 0.7574999928474426, 0.7664999961853027, 0.7839999794960022, 0.7710000276565552, 0.7434999942779541, 0.7570000290870667, 0.7544999718666077, 0.7429999709129333, 0.7760000228881836, 0.7664999961853027, 0.7544999718666077, 0.7515000104904175, 0.7509999871253967, 0.7404999732971191, 0.7494999766349792, 0.7200000286102295, 0.7565000057220459, 0.7480000257492065, 0.7429999709129333], "pnrn8w7g": [0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, -0.01, -0.01, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.796500027179718, 0.8080000281333923, 0.8054999709129333, 0.8090000152587891, 0.8090000152587891, 0.7879999876022339, 0.7870000004768372, 0.8059999942779541, 0.8004999756813049, 0.784500002861023, 0.765500009059906, -0.01, -0.01, -0.01, -0.01, 0.7990000247955322, 0.7944999933242798, 0.7764999866485596, 0.7590000033378601, 0.7950000166893005, 0.8034999966621399, -0.01, -0.01, -0.01, -0.01, 0.8015000224113464, 0.7944999933242798, 0.7695000171661377, 0.7684999704360962, 0.8080000281333923, 0.8080000281333923, 0.8075000047683716, 0.8084999918937683, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8090000152587891, 0.8090000152587891, -0.01, -0.01, 0.8084999918937683, 0.7944999933242798, 0.8090000152587891, 0.8044999837875366, 0.8084999918937683, 0.8050000071525574, 0.8090000152587891, 0.8084999918937683, 0.8080000281333923, 0.8090000152587891, 0.8090000152587891, 0.8080000281333923, 0.8084999918937683, 0.8090000152587891, 0.8009999990463257, 0.7879999876022339, 0.8044999837875366, 0.8054999709129333, 0.7994999885559082, 0.8080000281333923, 0.8019999861717224, 0.7994999885559082, 0.7705000042915344, 0.7695000171661377, 0.8025000095367432, 0.8050000071525574, 0.8040000200271606, 0.7960000038146973, 0.7720000147819519, 0.7735000252723694, 0.8090000152587891, 0.8090000152587891, 0.8054999709129333, 0.8054999709129333, 0.8075000047683716, 0.8084999918937683, 0.8080000281333923, 0.8090000152587891, 0.8059999942779541, 0.8069999814033508, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8090000152587891, 0.8065000176429749, 0.8029999732971191, 0.8084999918937683, 0.8050000071525574, 0.8090000152587891, 0.8084999918937683, 0.8015000224113464, 0.7910000085830688, 0.8050000071525574, 0.7985000014305115, 0.7885000109672546, 0.7699999809265137, 0.8080000281333923, 0.7914999723434448, 0.7799999713897705, 0.777999997138977, 0.8080000281333923, 0.796500027179718, 0.8019999861717224, 0.7950000166893005, 0.7789999842643738, 0.7789999842643738, 0.8084999918937683, 0.8090000152587891, 0.8090000152587891, 0.8084999918937683, 0.8054999709129333, 0.8080000281333923, 0.8059999942779541, 0.8090000152587891, 0.8029999732971191], "hw7iu7r7": [0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25049999356269836, 0.2419999986886978, 0.2175000011920929, 0.21400000154972076, 0.22499999403953552, 0.22699999809265137, 0.23600000143051147, 0.2419999986886978, 0.20499999821186063, 0.2080000042915344, 0.2004999965429306, 0.2084999978542328, 0.22750000655651093, 0.23399999737739563, 0.22750000655651093, 0.22300000488758087, 0.21299999952316284, 0.2175000011920929, 0.23549999296665192, 0.23399999737739563, 0.2045000046491623, 0.20999999344348907, 0.22349999845027924, 0.21549999713897705, 0.2409999966621399, 0.2434999942779541, 0.2080000042915344, 0.2055000066757202, 0.21299999952316284, 0.210999995470047, 0.2409999966621399, 0.244499996304512, 0.2179999947547913, 0.2160000056028366, 0.20999999344348907, 0.2055000066757202, 0.24150000512599945, 0.24549999833106995, 0.2175000011920929, 0.2179999947547913, 0.2175000011920929, 0.2240000069141388, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2419999986886978, 0.2440000027418137, 0.22499999403953552, 0.2280000001192093, 0.23100000619888303, 0.2329999953508377, 0.23600000143051147, 0.23849999904632568, 0.2134999930858612, 0.2084999978542328, 0.2175000011920929, 0.21699999272823337, 0.2529999911785126, 0.25200000405311584, 0.21699999272823337, -0.01, 0.210999995470047, 0.2070000022649765, 0.23149999976158145, 0.2329999953508377, 0.22499999403953552, 0.22300000488758087, 0.2160000056028366, 0.21299999952316284, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2524999976158142, 0.25200000405311584, 0.2395000010728836, 0.22550000250339508, 0.2419999986886978, 0.23849999904632568, 0.23749999701976776, 0.2304999977350235, 0.22100000083446503, 0.23549999296665192, 0.22050000727176663, -0.01, 0.25, 0.24950000643730164, 0.22050000727176663, 0.226500004529953, 0.2080000042915344, 0.1955000013113022, 0.244499996304512, 0.2440000027418137, 0.2345000058412552, 0.21299999952316284, 0.21150000393390656, 0.2074999958276749, 0.2524999976158142, 0.25049999356269836, 0.2080000042915344, 0.22699999809265137, 0.23149999976158145, 0.23600000143051147, 0.24899999797344208, 0.24650000035762787, 0.2294999957084656, 0.22100000083446503, 0.23549999296665192, 0.2370000034570694, 0.25200000405311584, 0.25049999356269836, 0.22450000047683716, 0.2280000001192093, 0.23999999463558197, 0.23849999904632568, 0.2535000145435333, -0.01, 0.2370000034570694, 0.2370000034570694, 0.24650000035762787, 0.24549999833106995, 0.25949999690055847, 0.2554999887943268, 0.22450000047683716, 0.2070000022649765, 0.22200000286102295, 0.22100000083446503, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.22750000655651093, 0.22599999606609344, 0.22450000047683716, 0.1965000033378601, 0.2134999930858612, 0.2134999930858612, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23999999463558197, 0.23749999701976776, 0.22100000083446503, 0.2160000056028366, 0.23849999904632568, 0.23999999463558197, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.0005000000237487257, -0.01, -0.01, -0.01, 0.24549999833106995, 0.2189999967813492, 0.20350000262260437, 0.21250000596046448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25699999928474426, 0.2605000138282776, 0.25200000405311584, 0.22349999845027924, 0.2475000023841858, 0.2475000023841858, 0.23649999499320984, 0.23549999296665192, 0.23149999976158145, -0.01, 0.2195000052452087, 0.226500004529953, 0.25200000405311584, 0.2485000044107437, 0.1914999932050705, 0.20499999821186063, 0.22050000727176663, 0.21549999713897705, 0.2345000058412552, 0.2395000010728836, 0.2304999977350235, -0.01, 0.2160000056028366, 0.21199999749660492, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25600001215934753, 0.25, 0.24250000715255737, 0.2290000021457672, 0.2460000067949295, 0.2419999986886978, 0.2240000069141388, 0.22750000655651093, 0.2240000069141388, 0.210999995470047, 0.21299999952316284, 0.21649999916553497, 0.1655000001192093, 0.2529999911785126, 0.18799999356269836, 0.21699999272823337, 0.2185000032186508, 0.22100000083446503, 0.23649999499320984, 0.24699999392032623, 0.21449999511241913, 0.2199999988079071, 0.2084999978542328, 0.21199999749660492, 0.24050000309944153, 0.24300000071525577, 0.23399999737739563, 0.21699999272823337, 0.22349999845027924, 0.21199999749660492, 0.24250000715255737, 0.2450000047683716, 0.2195000052452087, 0.22100000083446503, 0.23250000178813937, 0.22450000047683716, 0.24950000643730164, 0.25200000405311584, 0.2524999976158142, 0.2335000038146973, 0.24250000715255737, 0.2419999986886978, 0.2590000033378601, -0.01, 0.2434999942779541, 0.23100000619888303, 0.23549999296665192, 0.2419999986886978, 0.2574999928474426, 0.25999999046325684, 0.1955000013113022, 0.20900000631809235, 0.22200000286102295, 0.2179999947547913, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, -0.01, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.25999999046325684, 0.24650000035762787, 0.2395000010728836, 0.2199999988079071, 0.2080000042915344, 0.2160000056028366, 0.22050000727176663, 0.24150000512599945, 0.23849999904632568, -0.01, 0.21699999272823337, 0.22750000655651093, 0.2189999967813492, 0.2329999953508377, 0.23100000619888303, 0.2134999930858612, 0.21199999749660492, 0.22499999403953552, 0.22200000286102295, 0.2335000038146973, 0.22699999809265137, 0.2185000032186508, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2160000056028366, 0.2214999943971634, 0.22499999403953552, 0.22699999809265137, 0.244499996304512, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2565000057220459, 0.257999986410141, 0.2329999953508377, 0.2280000001192093, 0.2574999928474426, 0.2574999928474426, 0.2419999986886978, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2335000038146973, 0.22849999368190765, 0.22450000047683716, 0.2280000001192093, 0.22100000083446503, 0.22300000488758087, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2535000145435333, 0.25099998712539673, 0.2280000001192093, 0.22550000250339508, 0.23600000143051147, 0.23800000548362732, 0.2434999942779541, 0.23399999737739563, 0.22050000727176663, 0.22349999845027924, 0.2179999947547913, 0.21400000154972076, 0.24050000309944153, 0.23899999260902405, 0.22100000083446503, 0.22349999845027924, 0.2070000022649765, 0.19599999487400055, 0.2460000067949295, 0.24650000035762787, 0.2185000032186508, 0.21199999749660492, 0.21549999713897705, 0.20149999856948853, 0.2485000044107437, 0.25200000405311584, 0.23600000143051147, 0.2224999964237213, 0.23649999499320984, 0.22750000655651093, 0.2535000145435333, 0.2485000044107437, 0.22699999809265137, 0.2240000069141388, 0.23499999940395355, 0.22849999368190765, 0.25450000166893005, 0.25450000166893005, 0.2460000067949295, 0.23250000178813937, 0.24899999797344208, 0.2515000104904175, 0.24650000035762787, 0.2450000047683716, 0.2370000034570694, 0.2319999933242798, 0.23600000143051147, 0.24250000715255737, 0.2554999887943268, 0.257999986410141, 0.2214999943971634, 0.21400000154972076, 0.2189999967813492, 0.22050000727176663], "lxi0z80g": [0.22349999845027924, 0.21050000190734863, 0.19750000536441803, 0.23399999737739563, 0.20999999344348907, 0.20999999344348907, 0.22100000083446503, 0.22699999809265137, 0.2134999930858612, 0.22300000488758087, 0.2150000035762787, 0.2080000042915344, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22599999606609344, 0.22499999403953552, 0.19750000536441803, 0.23100000619888303, 0.2150000035762787, 0.20499999821186063, 0.2055000066757202, 0.2070000022649765, 0.2094999998807907, 0.2195000052452087, 0.2179999947547913, 0.2055000066757202, 0.22450000047683716, 0.2294999957084656, 0.19750000536441803, 0.2345000058412552, 0.21299999952316284, 0.21199999749660492, 0.226500004529953, 0.21699999272823337, 0.20900000631809235, 0.24050000309944153, 0.22100000083446503, 0.2084999978542328, 0.2084999978542328, 0.20149999856948853, 0.1979999989271164, 0.181999996304512, 0.2045000046491623, 0.20999999344348907, 0.23549999296665192, 0.2409999966621399, 0.2004999965429306, 0.2189999967813492, 0.22050000727176663, 0.2045000046491623, 0.21699999272823337, 0.21549999713897705, 0.21199999749660492, 0.23149999976158145, 0.20350000262260437, 0.2045000046491623, 0.21299999952316284, 0.2175000011920929, 0.21400000154972076, 0.2240000069141388, 0.19949999451637268, 0.2039999961853027, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22450000047683716, 0.2199999988079071, 0.20600000023841855, 0.22100000083446503, 0.20999999344348907, 0.1965000033378601, 0.2084999978542328, 0.21400000154972076, 0.2094999998807907, 0.23849999904632568, 0.2055000066757202, 0.2134999930858612, 0.2150000035762787, 0.22050000727176663, 0.20649999380111697, 0.24699999392032623, 0.2084999978542328, 0.2094999998807907, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2045000046491623, 0.20250000059604645, 0.193000003695488, 0.2294999957084656, 0.2189999967813492, 0.1914999932050705, 0.2160000056028366, 0.21449999511241913, 0.2179999947547913, 0.23250000178813937, 0.2189999967813492, 0.2214999943971634, 0.210999995470047, 0.21449999511241913, 0.2179999947547913, 0.22750000655651093, 0.20900000631809235, 0.20499999821186063, 0.2134999930858612, 0.22050000727176663, 0.1934999972581863, 0.24549999833106995, 0.2045000046491623, 0.2080000042915344, 0.2179999947547913, 0.2189999967813492, 0.1899999976158142, 0.23649999499320984, 0.22550000250339508, 0.1934999972581863, -0.01, 0.21050000190734863, 0.21299999952316284, 0.22750000655651093, 0.2150000035762787, 0.2070000022649765, 0.22100000083446503, -0.01, 0.1889999955892563, 0.2294999957084656, 0.22100000083446503, 0.19599999487400055, 0.2290000021457672, 0.23100000619888303, 0.21250000596046448, 0.2370000034570694, 0.2160000056028366, 0.19099999964237213, 0.23600000143051147, 0.22200000286102295, 0.2055000066757202, 0.23649999499320984, 0.20499999821186063, 0.19900000095367432, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.21250000596046448, 0.2029999941587448, 0.20900000631809235, 0.2395000010728836, 0.1965000033378601, 0.19449999928474423, 0.21400000154972076, 0.22200000286102295, 0.181999996304512, 0.22750000655651093, 0.2160000056028366, 0.20149999856948853, 0.2070000022649765, 0.2214999943971634, 0.2070000022649765, 0.24300000071525577, 0.20649999380111697, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22750000655651093, 0.23749999701976776, 0.21199999749660492, 0.22699999809265137, 0.20999999344348907, 0.1979999989271164, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2055000066757202, 0.21150000393390656, 0.19750000536441803, 0.2300000041723251, 0.1924999952316284, 0.2074999958276749, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22699999809265137, 0.22300000488758087, 0.20499999821186063, 0.22849999368190765, 0.2029999941587448, 0.2175000011920929, 0.21250000596046448, 0.2084999978542328, 0.20100000500679016, 0.22100000083446503, 0.21449999511241913, 0.19900000095367432, 0.2055000066757202, 0.20649999380111697, 0.2080000042915344, 0.2395000010728836, 0.2185000032186508, 0.1955000013113022, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.21449999511241913, 0.22100000083446503, 0.19099999964237213, -0.01, 0.21150000393390656, 0.20499999821186063, 0.2074999958276749, 0.2094999998807907, 0.19050000607967377, 0.23749999701976776, 0.22200000286102295, 0.20600000023841855, 0.2175000011920929, 0.21649999916553497, 0.21549999713897705, -0.01, 0.19900000095367432, 0.20499999821186063, 0.2290000021457672, 0.22349999845027924, 0.22050000727176663, 0.23849999904632568, 0.2004999965429306, 0.20499999821186063, -0.01, 0.21050000190734863, 0.19900000095367432, 0.2329999953508377, 0.2189999967813492, 0.20000000298023224, 0.2300000041723251, 0.23600000143051147, 0.2134999930858612, 0.23549999296665192, 0.20600000023841855, 0.21250000596046448, 0.21649999916553497, 0.2195000052452087, 0.1860000044107437, 0.24699999392032623, 0.2134999930858612, 0.23250000178813937, 0.2185000032186508, 0.2045000046491623, 0.20149999856948853, 0.2224999964237213, 0.19099999964237213, 0.1979999989271164, 0.2160000056028366, 0.2134999930858612, 0.2160000056028366, 0.2335000038146973, 0.1899999976158142, 0.20149999856948853, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20900000631809235, 0.2029999941587448, 0.20000000298023224, 0.23600000143051147, 0.20350000262260437, 0.2029999941587448, 0.2179999947547913, 0.2070000022649765, 0.19599999487400055, 0.22100000083446503, 0.20149999856948853, 0.2094999998807907, 0.226500004529953, 0.2224999964237213, 0.19949999451637268, 0.23549999296665192, 0.21699999272823337, 0.2189999967813492, 0.2199999988079071, 0.2160000056028366, 0.2150000035762787, 0.2460000067949295, 0.20600000023841855, 0.21050000190734863, 0.17900000512599945, 0.20200000703334808, 0.2134999930858612, 0.20600000023841855, 0.19499999284744263, 0.20000000298023224, 0.22300000488758087, 0.2195000052452087, 0.19499999284744263, 0.22599999606609344, 0.20649999380111697, 0.20000000298023224, 0.22349999845027924, 0.2224999964237213, 0.19699999690055847, 0.24250000715255737, 0.210999995470047, 0.20000000298023224, 0.2185000032186508, 0.2074999958276749, 0.1899999976158142, -0.01, 0.19099999964237213, 0.2029999941587448, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.21549999713897705, 0.22200000286102295, -0.01, 0.22550000250339508, 0.22100000083446503, 0.2045000046491623, 0.20000000298023224, -0.01, 0.21549999713897705, 0.2304999977350235, 0.2150000035762787, 0.19699999690055847, 0.22200000286102295, 0.19949999451637268, 0.21250000596046448, 0.24300000071525577, 0.2189999967813492, 0.20499999821186063, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22349999845027924, 0.2150000035762787, 0.2150000035762787, 0.23549999296665192, 0.1940000057220459, 0.2045000046491623, 0.2039999961853027, 0.2189999967813492, -0.01, 0.2370000034570694, -0.01, 0.20499999821186063, -0.01, -0.01, 0.2029999941587448, 0.23849999904632568, 0.20999999344348907, 0.2160000056028366, 0.20149999856948853, 0.2070000022649765, 0.20350000262260437, 0.24150000512599945, 0.21150000393390656, 0.2150000035762787, 0.21199999749660492, 0.2084999978542328, 0.21699999272823337, 0.21699999272823337, 0.2070000022649765, 0.20200000703334808, 0.22599999606609344, 0.2199999988079071, 0.2134999930858612, 0.2199999988079071, 0.19699999690055847, -0.01, 0.21699999272823337, 0.2224999964237213, 0.20999999344348907, 0.2329999953508377, 0.20000000298023224, 0.20900000631809235], "gl8a9d5v": [0.2770000100135803, 0.2750000059604645, 0.2759999930858612, 0.2759999930858612, -0.01, -0.01, 0.27399998903274536, 0.2759999930858612, 0.2759999930858612, 0.2759999930858612, 0.2434999942779541, 0.25200000405311584, 0.23749999701976776, 0.2395000010728836, 0.2524999976158142, 0.2294999957084656, 0.23399999737739563, 0.22300000488758087, 0.24300000071525577, 0.24250000715255737, 0.2434999942779541, 0.24650000035762787, -0.01, -0.01, -0.01, -0.01, 0.2529999911785126, 0.24950000643730164, 0.25, 0.2434999942779541, 0.25, 0.2304999977350235, -0.01, -0.01, -0.01, -0.01, 0.23800000548362732, 0.23100000619888303, 0.22750000655651093, 0.2395000010728836, 0.2630000114440918, 0.2524999976158142, 0.26499998569488525, 0.2475000023841858, 0.24250000715255737, 0.2475000023841858, 0.2535000145435333, 0.24150000512599945, 0.25699999928474426, 0.2535000145435333, 0.2745000123977661, 0.27149999141693115, 0.2639999985694885, 0.27149999141693115, -0.01, -0.01, 0.2669999897480011, 0.2694999873638153, 0.2759999930858612, 0.2759999930858612, -0.01, 0.23899999260902405, -0.01, -0.01, -0.01, -0.01, 0.20600000023841855, 0.20499999821186063, -0.01, -0.01, 0.2300000041723251, 0.24050000309944153, -0.01, -0.01, -0.01, -0.01, 0.2615000009536743, 0.25099998712539673, 0.2370000034570694, 0.23749999701976776, 0.2370000034570694, 0.24250000715255737, -0.01, -0.01, -0.01, -0.01, 0.23399999737739563, 0.23149999976158145, 0.23250000178813937, 0.22450000047683716, 0.2565000057220459, 0.2529999911785126, 0.257999986410141, 0.2450000047683716, 0.2540000081062317, 0.25699999928474426, 0.2540000081062317, 0.26100000739097595, 0.26100000739097595, 0.25850000977516174, 0.2720000147819519, 0.27149999141693115, 0.2669999897480011, 0.27000001072883606, -0.01, -0.01, 0.27149999141693115, 0.2709999978542328, 0.2759999930858612, 0.2759999930858612, 0.2529999911785126, 0.2370000034570694, 0.24650000035762787, 0.2515000104904175, 0.2179999947547913, 0.21250000596046448, 0.22349999845027924, 0.23100000619888303, 0.2395000010728836, 0.2319999933242798, 0.2440000027418137, 0.23999999463558197, -0.01, -0.01, -0.01, -0.01, 0.25450000166893005, 0.2549999952316284, 0.24549999833106995, 0.2460000067949295, 0.22599999606609344, 0.24050000309944153, -0.01, -0.01, -0.01, -0.01, 0.2419999986886978, 0.2529999911785126, 0.23399999737739563, 0.25450000166893005, 0.2524999976158142, 0.2619999945163727, 0.2440000027418137, 0.2574999928474426, 0.257999986410141, 0.23600000143051147, 0.26649999618530273, 0.25850000977516174, 0.25600001215934753, 0.25699999928474426], "w4ju135u": [0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5755540728569031, 0.5755540728569031, 0.5023505687713623, 0.4754869043827057, 0.49630624055862427, 0.474815309047699, 0.5789120197296143, 0.5782404541969299, 0.5312290191650391, 0.49093350768089294, 0.5319005846977234, 0.5419744849205017, 0.5795835852622986, 0.5795835852622986, 0.5285426378250122, 0.4889187514781952, 0.5312290191650391, 0.5319005846977234, 0.574882447719574, 0.5735393166542053, 0.5057085156440735, 0.4398925304412842, 0.4989926218986511, 0.4627266526222229, 0.5775688290596008, 0.5762256383895874, 0.4949630498886109, 0.5050369501113892, 0.5083948969841003, 0.48757556080818176, 0.5795835852622986, 0.5789120197296143, 0.48690396547317505, 0.48690396547317505, 0.4895903170108795, 0.44392210245132446, 0.5721961259841919, 0.5708529353141785, 0.5245131254196167, 0.4882471561431885, 0.4714573621749878, 0.4278039038181305, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5708529353141785, 0.5668233633041382, 0.5231699347496033, 0.446608453989029, 0.5090664625167847, 0.49630624055862427, 0.5728676915168762, 0.5708529353141785, 0.5117528438568115, 0.4472800493240357, 0.49160510301589966, 0.4714573621749878, 0.5728676915168762, 0.5735393166542053, 0.5171256065368652, 0.4667562246322632, 0.5063801407814026, 0.4499664306640625, 0.5768972635269165, 0.5715245008468628, 0.5057085156440735, 0.5137676000595093, 0.5271994471549988, 0.4949630498886109, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5654801726341248, 0.5607790350914001, 0.542646050453186, 0.4983210265636444, 0.5486903786659241, 0.5104096531867981, 0.5735393166542053, 0.5688381195068359, 0.5319005846977234, 0.4936198890209198, 0.536601722240448, 0.46877098083496094, 0.5735393166542053, 0.5721961259841919, 0.53055739402771, 0.496977835893631, 0.525184690952301, 0.458697110414505, 0.5795835852622986, 0.5795835852622986, 0.546004056930542, 0.4627266526222229, 0.5345869660377502, 0.4956346452236175, 0.5795835852622986, 0.5795835852622986, 0.542646050453186, 0.4472800493240357, 0.539959728717804, 0.5137676000595093, 0.5795835852622986, 0.5789120197296143, 0.5567495226860046, 0.5204835534095764, 0.5332437753677368, 0.5271994471549988, 0.5795835852622986, 0.5795835852622986, 0.5567495226860046, 0.4761584997177124, 0.5594358444213867, 0.5540631413459778, 0.5795835852622986, 0.5795835852622986, 0.5439892411231995, 0.4795164465904236, 0.557421088218689, 0.539959728717804, 0.5795835852622986, 0.5795835852622986, 0.5406312942504883, 0.45265278220176697, 0.5211551189422607, 0.4701141715049744, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5742108821868896, 0.5721961259841919, 0.4761584997177124, 0.46608462929725647, 0.5070517063140869, 0.45601075887680054, 0.5802552103996277, 0.580926775932312, 0.48757556080818176, 0.4754869043827057, 0.5177971720695496, 0.5204835534095764, 0.5795835852622986, 0.5789120197296143, 0.49630624055862427, 0.4506380259990692, 0.496977835893631, 0.5177971720695496, 0.5688381195068359, 0.5708529353141785, 0.5083948969841003, 0.4351913928985596, 0.4949630498886109, 0.4848891794681549, 0.5762256383895874, 0.574882447719574, 0.5157824158668518, 0.4855607748031616, 0.5198119282722473, 0.4942914843559265, 0.5795835852622986, 0.5789120197296143, 0.4580255150794983, 0.4828744232654571, 0.4956346452236175, 0.4378777742385864, 0.5594358444213867, 0.5580926537513733, 0.4949630498886109, 0.49026191234588623, 0.5177971720695496, 0.4009402394294739, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5332437753677368, 0.5231699347496033, 0.5124244689941406, 0.43922096490859985, 0.4942914843559265, 0.47414371371269226, 0.5708529353141785, 0.5701813101768494, 0.5319005846977234, 0.43854936957359314, 0.4929482936859131, 0.4707857668399811, 0.46877098083496094, 0.2444593757390976, 0.4942914843559265, 0.5110812783241272, 0.42981866002082825, 0.34788447618484497, 0.5554063320159912, 0.5507051944732666, 0.536601722240448, 0.4942914843559265, 0.5258562564849854, 0.3774345219135285, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.557421088218689, 0.5453324317932129, 0.5419744849205017, 0.4983210265636444, 0.5345869660377502, 0.47750169038772583, 0.5735393166542053, 0.5688381195068359, 0.5433176755905151, 0.4989926218986511, 0.536601722240448, 0.5023505687713623, 0.5231699347496033, 0.4492948353290558, 0.4949630498886109, 0.5063801407814026, 0.44392210245132446, 0.4029549956321716, 0.5795835852622986, 0.5795835852622986, 0.5379449129104614, 0.4721289575099945, 0.5480188131332397, 0.53055739402771, 0.5795835852622986, 0.5795835852622986, 0.563465416431427, 0.480859637260437, 0.5285426378250122, 0.5090664625167847, 0.5795835852622986, 0.5795835852622986, 0.5648086071014404, 0.5083948969841003, 0.5406312942504883, 0.5292142629623413, 0.5795835852622986, 0.5795835852622986, 0.542646050453186, 0.4828744232654571, 0.5533915162086487, 0.5540631413459778, 0.5795835852622986, 0.5795835852622986, 0.5507051944732666, 0.48623237013816833, 0.563465416431427, 0.5439892411231995, 0.5795835852622986, 0.5795835852622986, 0.5661517977714539, 0.5030221343040466, 0.5278710722923279, 0.48757556080818176, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5795835852622986, 0.5762256383895874, 0.5728676915168762, 0.4701141715049744, 0.474815309047699, 0.5083948969841003, 0.4580255150794983, 0.5795835852622986, 0.5789120197296143, 0.5332437753677368, 0.5010073781013489, 0.5345869660377502, 0.5339154005050659, 0.5789120197296143, 0.5782404541969299, 0.5406312942504883, 0.5023505687713623, 0.5406312942504883, 0.5446608662605286, 0.5721961259841919, 0.5735393166542053, 0.501679003238678, 0.44257891178131104, 0.48623237013816833, 0.4828744232654571, 0.574882447719574, 0.5762256383895874, 0.5083948969841003, 0.4922766983509064, 0.5164539813995361, 0.4815312325954437, 0.5795835852622986, 0.5789120197296143, 0.5057085156440735, 0.48354601860046387, 0.4828744232654571, 0.4459368586540222, 0.5721961259841919, 0.5715245008468628, 0.4983210265636444, 0.4848891794681549, 0.48757556080818176, 0.4271323084831238, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.569509744644165, 0.5661517977714539, 0.5164539813995361, 0.4452652931213379, 0.5057085156440735, 0.4815312325954437, 0.5728676915168762, 0.5708529353141785, 0.5285426378250122, 0.4452652931213379, 0.4956346452236175, 0.45198118686676025, 0.5735393166542053, 0.5742108821868896, 0.5110812783241272, 0.480859637260437, 0.5097380876541138, 0.4667562246322632, 0.574882447719574, 0.5715245008468628, 0.539959728717804, 0.5117528438568115, 0.5023505687713623, 0.4620550572872162, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5654801726341248, 0.5607790350914001, 0.5325722098350525, 0.4983210265636444, 0.5513767600059509, 0.5110812783241272, 0.574882447719574, 0.569509744644165, 0.5681665539741516, 0.49630624055862427, 0.5386165380477905, 0.47750169038772583, 0.5735393166542053, 0.5735393166542053, 0.5265278816223145, 0.5137676000595093, 0.5278710722923279, 0.48623237013816833, 0.5795835852622986, 0.5795835852622986, 0.5325722098350525, 0.4620550572872162, 0.5258562564849854, 0.49093350768089294, 0.5795835852622986, 0.5795835852622986, 0.5379449129104614, 0.43854936957359314, 0.5339154005050659, 0.5036937594413757, 0.5795835852622986, 0.5795835852622986, 0.5547347068786621, 0.5204835534095764, 0.5480188131332397, 0.5198119282722473, -0.01, 0.5795835852622986, 0.5480188131332397, 0.474815309047699, 0.5540631413459778, 0.5527199506759644, 0.5795835852622986, 0.5795835852622986, 0.5520483255386353, 0.4815312325954437, 0.5533915162086487, 0.5433176755905151, 0.5795835852622986, 0.5795835852622986, 0.5258562564849854, 0.4533243775367737, 0.5151107907295227, 0.4573539197444916], "2efkko22": [0.4667562246322632, 0.4882471561431885, 0.40899932384490967, 0.5036937594413757, 0.4271323084831238, 0.3767629265785218, 0.4593687057495117, 0.42108798027038574, 0.41773003339767456, 0.5097380876541138, 0.3532572090625763, 0.39556750655174255, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4593687057495117, 0.4479516446590424, 0.3928811252117157, 0.5050369501113892, 0.40362659096717834, 0.414372056722641, 0.4445936977863312, 0.4224311709403992, 0.3969106674194336, 0.4936198890209198, 0.4251175224781037, 0.45198118686676025, 0.3875083923339844, 0.35930153727531433, 0.42981866002082825, 0.5043653249740601, 0.31296172738075256, 0.3223640024662018, 0.4472800493240357, 0.436534583568573, 0.4063129723072052, 0.5298858284950256, 0.4486232399940491, 0.44392210245132446, 0.4674277901649475, 0.45668232440948486, 0.43854936957359314, 0.4479516446590424, 0.42646071314811707, 0.43854936957359314, 0.4271323084831238, 0.46474143862724304, 0.3995970487594605, 0.5238415002822876, 0.3445265293121338, 0.3633311092853546, 0.4029549956321716, 0.4150436520576477, 0.38616520166397095, 0.5117528438568115, 0.3525856137275696, 0.33781060576438904, 0.42108798027038574, 0.44392210245132446, 0.3404969871044159, 0.4889187514781952, 0.3995970487594605, 0.4244459271430969, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3787777125835418, 0.3834788501262665, 0.3451981246471405, 0.4828744232654571, 0.34251174330711365, 0.3404969871044159, 0.4251175224781037, 0.42981866002082825, 0.3586299419403076, 0.4855607748031616, 0.30826058983802795, 0.30355942249298096, 0.40765613317489624, 0.4137004613876343, 0.3149764835834503, 0.5057085156440735, 0.4284754991531372, 0.4271323084831238, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4492948353290558, 0.4546675682067871, 0.4197447896003723, 0.5124244689941406, 0.398253858089447, 0.41638684272766113, 0.4580255150794983, 0.4452652931213379, 0.31229013204574585, 0.5164539813995361, 0.3055742084980011, 0.2887844145298004, 0.4016118347644806, 0.3660174608230591, 0.37273338437080383, 0.5070517063140869, 0.4016118347644806, 0.4150436520576477, 0.43854936957359314, 0.4325050413608551, 0.4009402394294739, 0.5036937594413757, 0.4284754991531372, 0.4257891178131103, 0.4197447896003723, 0.4271323084831238, 0.3834788501262665, 0.3357958495616913, 0.4412357211112976, 0.4398925304412842, 0.4257891178131103, 0.4405641257762909, 0.3901947736740112, 0.4983210265636444, 0.37340497970581055, 0.3767629265785218, 0.3754197359085083, 0.38683679699897766, 0.48623237013816833, 0.5204835534095764, 0.43451979756355286, 0.4184015989303589, 0.4768300950527191, 0.4956346452236175, 0.42981866002082825, 0.5043653249740601, 0.42108798027038574, 0.4130288660526275, 0.4714573621749878, 0.49630624055862427, 0.42041638493537903, 0.5104096531867981, 0.3794493079185486, 0.436534583568573, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.45601075887680054, 0.40765613317489624, 0.3613163232803345, 0.5124244689941406, 0.41638684272766113, 0.414372056722641, 0.446608453989029, 0.4009402394294739, 0.4271323084831238, 0.4956346452236175, 0.42175957560539246, 0.4184015989303589, 0.4338482320308686, 0.46138349175453186, 0.3962390720844269, 0.4942914843559265, 0.3109469413757324, 0.3270651400089264, 0.4983210265636444, 0.47414371371269226, 0.37340497970581055, 0.5171256065368652, 0.42108798027038574, 0.4378777742385864, 0.48690396547317505, 0.4674277901649475, 0.4150436520576477, 0.446608453989029, 0.4721289575099945, 0.46608462929725647, 0.4492948353290558, 0.4237743318080902, 0.3995970487594605, 0.5171256065368652, 0.3498992621898651, 0.33445265889167786, 0.42041638493537903, 0.4580255150794983, 0.42646071314811707, 0.5003358125686646, 0.3881799876689911, 0.35997313261032104, 0.35124245285987854, 0.4284754991531372, 0.4237743318080902, 0.4882471561431885, 0.3935527205467224, 0.4257891178131103, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4116857051849365, 0.4237743318080902, 0.3411685824394226, 0.480859637260437, 0.2666218876838684, 0.292142391204834, 0.3653458654880524, 0.33781060576438904, 0.36870384216308594, 0.49630624055862427, 0.33848220109939575, 0.3149764835834503, 0.4479516446590424, 0.4244459271430969, 0.2975151240825653, 0.5023505687713623, 0.4257891178131103, 0.42041638493537903, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42041638493537903, 0.4311618506908417, 0.4063129723072052, 0.5036937594413757, 0.3969106674194336, 0.4278039038181305, 0.4257891178131103, 0.42175957560539246, 0.34318333864212036, 0.5117528438568115, 0.3230355978012085, 0.33445265889167786, 0.4546675682067871, 0.46474143862724304, 0.45198118686676025, 0.5063801407814026, 0.4103425145149231, 0.4190731942653656, 0.4983210265636444, 0.5063801407814026, 0.33781060576438904, 0.4942914843559265, 0.44325050711631775, 0.4372061789035797, 0.38213565945625305, 0.3767629265785218, 0.4358629882335663, 0.36937540769577026, 0.44257891178131104, 0.43922096490859985, 0.4882471561431885, 0.4224311709403992, 0.4412357211112976, 0.5050369501113892, 0.3787777125835418, 0.3901947736740112, 0.4197447896003723, 0.43854936957359314, 0.39892545342445374, 0.5090664625167847, 0.4190731942653656, 0.3787777125835418, 0.4278039038181305, 0.4580255150794983, 0.3935527205467224, 0.5003358125686646, 0.376091331243515, 0.3942243158817291, 0.42041638493537903, 0.42981866002082825, 0.436534583568573, 0.5110812783241272, 0.398253858089447, 0.40362659096717834, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4828744232654571, 0.4795164465904236, 0.4056413769721985, 0.5097380876541138, 0.37407657504081726, 0.4197447896003723, 0.4150436520576477, 0.4419073164463043, 0.42981866002082825, 0.49630624055862427, 0.4130288660526275, 0.4325050413608551, 0.38280725479125977, 0.4257891178131103, 0.35124245285987854, 0.5070517063140869, 0.3089321553707123, 0.3196776211261749, 0.4929482936859131, 0.4822028279304504, 0.3901947736740112, 0.525184690952301, 0.4251175224781037, 0.4063129723072052, 0.43049025535583496, 0.4506380259990692, 0.4271323084831238, 0.4452652931213379, 0.42108798027038574, 0.4123573005199432, 0.46406984329223633, 0.4157152473926544, 0.36064472794532776, 0.525184690952301, 0.35930153727531433, 0.3458697199821472, 0.4284754991531372, 0.4103425145149231, 0.3613163232803345, 0.49160510301589966, 0.392209529876709, 0.3848220407962799, 0.38213565945625305, 0.4405641257762909, 0.35661518573760986, 0.4828744232654571, 0.3975822627544403, 0.3942243158817291, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43049025535583496, 0.41705843806266785, 0.3787777125835418, 0.4848891794681549, 0.2968435287475586, 0.3008730709552765, 0.3458697199821472, 0.41705843806266785, 0.34251174330711365, 0.48354601860046387, 0.3364674150943756, 0.3190060555934906, 0.370047003030777, 0.36064472794532776, 0.4338482320308686, 0.5063801407814026, 0.4412357211112976, 0.4311618506908417, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.40832772850990295, 0.4472800493240357, 0.3969106674194336, 0.5104096531867981, 0.3633311092853546, 0.4278039038181305, 0.4405641257762909, 0.4452652931213379, 0.4096709191799164, 0.513096034526825, 0.3008730709552765, 0.3277367353439331, 0.4016118347644806, 0.4257891178131103, 0.4580255150794983, 0.5030221343040466, 0.40765613317489624, 0.40899932384490967, 0.4499664306640625, 0.4492948353290558, 0.3398253917694092, 0.4983210265636444, 0.4412357211112976, 0.4009402394294739, 0.4137004613876343, 0.3908663392066955, 0.4372061789035797, 0.3324378728866577, 0.4049697816371918, 0.4049697816371918, 0.474815309047699, 0.4721289575099945, 0.42646071314811707, 0.5003358125686646, 0.3498992621898651, 0.37340497970581055, 0.4029549956321716, 0.4318334460258484, 0.392209529876709, 0.513096034526825, 0.42981866002082825, 0.4251175224781037], "vim4nmzr": [0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, -0.01, -0.01, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.5601074695587158, 0.4895903170108795, 0.5614506602287292, 0.5540631413459778, 0.563465416431427, 0.5486903786659241, 0.3666890561580658, 0.5493620038032532, 0.496977835893631, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5567495226860046, 0.5480188131332397, 0.5372733473777771, 0.5621222257614136, 0.5238415002822876, 0.5493620038032532, 0.519140362739563, 0.5439892411231995, 0.5278710722923279, 0.5379449129104614, 0.4593687057495117, 0.5507051944732666, 0.5231699347496033, 0.5601074695587158, 0.5614506602287292, 0.5627938508987427, 0.563465416431427, 0.563465416431427, 0.5641369819641113, 0.5547347068786621, 0.5601074695587158, 0.5641369819641113, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.5560778975486755, 0.53055739402771, 0.563465416431427, 0.539959728717804, 0.563465416431427, 0.5439892411231995, 0.5446608662605286, 0.4271323084831238, 0.5594358444213867, 0.5224983096122742, 0.5453324317932129, 0.5580926537513733, 0.539959728717804, 0.47884485125541687, 0.5473471879959106, 0.5359301567077637, 0.5614506602287292, 0.5607790350914001, 0.5386165380477905, 0.4801880419254303, 0.5567495226860046, 0.5453324317932129, 0.5560778975486755, 0.5627938508987427, 0.5648086071014404, 0.5641369819641113, 0.5641369819641113, 0.563465416431427, 0.5621222257614136, 0.5594358444213867, 0.563465416431427, 0.5621222257614136, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.563465416431427, 0.5298858284950256, 0.49630624055862427, 0.5601074695587158, 0.5419744849205017, 0.5627938508987427, 0.5513767600059509, 0.5453324317932129, 0.376091331243515, 0.5453324317932129, 0.4358629882335663, 0.5413028597831726, 0.5473471879959106, 0.5560778975486755, 0.5245131254196167, 0.5513767600059509, 0.53055739402771, 0.5392881035804749, 0.5345869660377502, 0.5466756224632263, 0.5144392251968384, 0.5419744849205017, 0.5359301567077637, 0.5607790350914001, 0.5627938508987427, 0.563465416431427, 0.563465416431427, 0.5621222257614136, 0.5627938508987427, -0.01, 0.5594358444213867, 0.5627938508987427, 0.5627938508987427], "f0izdcdt": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4076561450638012, 0.4372061786433849, 0.4304902619207522, 0.5594358629952989, 0.5554063129617193, 0.5567494963062458, 0.5587642713230356, 0.5594358629952989, 0.4143720617864338, 0.5554063129617193, 0.5594358629952989, 0.5594358629952989, 0.4365345869711216, 0.4795164539959704, 0.5580926796507724, 0.5560779046339825, 0.4284754869039624, 0.43116185359301545, 0.5533915379449295, 0.5580926796507724, 0.5574210879785091, 0.5594358629952989, 0.4392209536601746, 0.48488918737407655, 0.5580926796507724, 0.4271323035594359, 0.4210879785090665, 0.432505036937542, 0.5594358629952989, 0.5560779046339825, 0.5601074546675622, 0.5560779046339825, 0.5587642713230356, 0.4036265950302216, 0.5359301544660846, 0.5594358629952989, 0.5587642713230356, 0.4486232370718603, 0.4546675621222297, 0.5587642713230356, 0.5540631296171927, 0.4143720617864338, 0.4331766286098052, 0.5540631296171927, 0.5567494963062458, 0.5594358629952989, 0.5580926796507724, 0.4190732034922766, 0.4486232370718603, 0.5580926796507724, 0.4022834116856951, 0.432505036937542, 0.4298186702484889, 0.5594358629952989, 0.5580926796507724, 0.5533915379449295, 0.554734721289456, 0.5594358629952989, 0.40899932840832776, 0.5507051712558765, 0.5527199462726662, 0.5594358629952989, 0.4365345869711216, 0.4694425789120215, 0.5594358629952989, 0.5567494963062458, 0.41840161182001345, 0.43854936198791133, 0.5567494963062458, 0.5554063129617193, 0.5580926796507724, 0.5587642713230356, 0.4412357286769644, 0.4204163868368032, 0.5574210879785091], "vg93532i": [0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5019999742507935, 0.4959999918937683, 0.4584999978542328, 0.42500001192092896, 0.46950000524520874, 0.47099998593330383, 0.49549999833106995, 0.49149999022483826, 0.4659999907016754, 0.4090000092983246, 0.4595000147819519, 0.46799999475479126, 0.48350000381469727, 0.4794999957084656, 0.4975000023841858, 0.5139999985694885, 0.5170000195503235, 0.5105000138282776, 0.5055000185966492, 0.49900001287460327, 0.4684999883174896, 0.4149999916553498, 0.4620000123977661, 0.4794999957084656, 0.49399998784065247, 0.4934999942779541, 0.44999998807907104, 0.4025000035762787, 0.4675000011920929, 0.46050000190734863, 0.5270000100135803, 0.5195000171661377, 0.44699999690055847, 0.4284999966621399, 0.4629999995231629, 0.4560000002384186, 0.5134999752044678, 0.5130000114440918, 0.45100000500679016, 0.4050000011920929, 0.4790000021457672, 0.4819999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5260000228881836, 0.5260000228881836, 0.49300000071525574, 0.4205000102519989, 0.5065000057220459, 0.503000020980835, 0.5090000033378601, 0.5080000162124634, 0.4620000123977661, 0.42500001192092896, 0.48350000381469727, 0.4839999973773956, 0.5289999842643738, 0.5285000205039978, 0.4625000059604645, 0.4079999923706054, 0.4754999876022339, 0.4855000078678131, 0.4959999918937683, 0.5009999871253967, 0.4490000009536743, 0.41449999809265137, 0.4670000076293946, 0.4699999988079071, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5205000042915344, 0.5199999809265137, 0.476500004529953, 0.42250001430511475, 0.4860000014305115, 0.4880000054836273, 0.4984999895095825, 0.5, 0.4569999873638153, 0.43149998784065247, 0.4639999866485596, 0.46950000524520874, 0.5299999713897705, 0.5289999842643738, 0.45500001311302185, 0.3790000081062317, 0.4645000100135803, 0.4589999914169311, 0.5299999713897705, 0.5304999947547913, 0.4514999985694885, 0.4099999964237213, 0.49050000309944153, 0.48649999499320984, 0.5295000076293945, 0.5295000076293945, 0.4670000076293946, 0.4244999885559082, 0.4805000126361847, 0.47999998927116394, 0.5205000042915344, 0.5184999704360962, 0.48100000619888306, 0.46050000190734863, 0.4830000102519989, 0.4754999876022339, 0.5295000076293945, 0.5295000076293945, 0.4819999933242798, 0.4244999885559082, 0.4964999854564667, 0.5009999871253967, 0.5264999866485596, 0.5264999866485596, 0.4745000004768371, 0.4465000033378601, 0.4839999973773956, 0.4880000054836273, 0.5299999713897705, 0.5299999713897705, 0.4580000042915344, 0.4160000085830689, 0.476500004529953, 0.4774999916553498, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.4959999918937683, 0.4950000047683716, 0.453000009059906, 0.42100000381469727, 0.4634999930858612, 0.4584999978542328, 0.4884999990463257, 0.4869999885559082, 0.44600000977516174, 0.4154999852180481, 0.4544999897480011, 0.4580000042915344, 0.476500004529953, 0.4779999852180481, 0.4880000054836273, 0.5065000057220459, 0.5015000104904175, 0.5065000057220459, 0.5074999928474426, 0.5084999799728394, 0.4634999930858612, 0.4269999861717224, 0.4625000059604645, 0.4659999907016754, 0.5055000185966492, 0.49300000071525574, 0.4675000011920929, 0.4045000076293946, 0.45249998569488525, 0.45399999618530273, 0.5164999961853027, 0.515999972820282, 0.4690000116825104, 0.3564999997615814, 0.4589999914169311, 0.4745000004768371, 0.5055000185966492, 0.5074999928474426, 0.4715000092983246, 0.4205000102519989, 0.46549999713897705, 0.46799999475479126, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.527999997138977, 0.5264999866485596, 0.49549999833106995, 0.4325000047683716, 0.5074999928474426, 0.5090000033378601, 0.5120000243186951, 0.5105000138282776, 0.47699999809265137, 0.43149998784065247, 0.4880000054836273, 0.48100000619888306, 0.5299999713897705, 0.5304999947547913, 0.4659999907016754, 0.4099999964237213, 0.4645000100135803, 0.4629999995231629, 0.4830000102519989, 0.4894999861717224, 0.46149998903274536, 0.4074999988079071, 0.4675000011920929, 0.4650000035762787, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5235000252723694, 0.5195000171661377, 0.47699999809265137, 0.4259999990463257, 0.4860000014305115, 0.4869999885559082, 0.5019999742507935, 0.5055000185966492, 0.45399999618530273, 0.4424999952316284, 0.4794999957084656, 0.4735000133514404, 0.5214999914169312, 0.5174999833106995, 0.460999995470047, 0.4189999997615814, 0.4620000123977661, 0.4670000076293946, 0.5295000076293945, 0.5295000076293945, 0.45500001311302185, 0.4154999852180481, 0.484499990940094, 0.4745000004768371, 0.5289999842643738, 0.5299999713897705, 0.4569999873638153, 0.4090000092983246, 0.4774999916553498, 0.484499990940094, 0.5239999890327454, 0.5239999890327454, 0.45100000500679016, 0.4375, 0.48649999499320984, 0.4855000078678131, 0.5295000076293945, 0.5295000076293945, 0.47999998927116394, 0.4255000054836273, 0.49900001287460327, 0.4975000023841858, 0.527999997138977, 0.5239999890327454, 0.4659999907016754, 0.4505000114440918, 0.4785000085830689, 0.48249998688697815, 0.5304999947547913, 0.5304999947547913, 0.4779999852180481, 0.41350001096725464, 0.4779999852180481, 0.484499990940094, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5299999713897705, 0.5080000162124634, 0.5019999742507935, 0.46149998903274536, 0.42250001430511475, 0.4629999995231629, 0.47200000286102295, 0.4900000095367432, 0.4880000054836273, 0.4555000066757202, 0.4214999973773956, 0.4514999985694885, 0.4569999873638153, 0.476500004529953, 0.4704999923706054, 0.49050000309944153, 0.5065000057220459, 0.5084999799728394, 0.5090000033378601, 0.5034999847412109, 0.5074999928474426, 0.4519999921321869, 0.4149999916553498, 0.460999995470047, 0.47600001096725464, 0.5, 0.49549999833106995, 0.45649999380111694, 0.4129999876022339, 0.4735000133514404, 0.4629999995231629, 0.5199999809265137, 0.5184999704360962, 0.4399999976158142, 0.4269999861717224, 0.4514999985694885, 0.45100000500679016, 0.5145000219345093, 0.5109999775886536, 0.4724999964237213, 0.4165000021457672, 0.47099998593330383, 0.4729999899864197, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5274999737739563, 0.5270000100135803, 0.4950000047683716, 0.42399999499320984, 0.5044999718666077, 0.5074999928474426, 0.5065000057220459, 0.5049999952316284, 0.4645000100135803, 0.4235000014305115, 0.4860000014305115, 0.4805000126361847, 0.5299999713897705, 0.5285000205039978, 0.45750001072883606, 0.398499995470047, 0.4645000100135803, 0.46799999475479126, 0.4964999854564667, 0.4984999895095825, 0.4670000076293946, 0.4110000133514404, 0.4715000092983246, 0.4659999907016754, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5239999890327454, 0.5220000147819519, 0.460999995470047, 0.414000004529953, 0.48750001192092896, 0.4830000102519989, 0.5019999742507935, 0.5044999718666077, 0.4715000092983246, 0.4320000112056732, 0.476500004529953, 0.47099998593330383, 0.5289999842643738, 0.5289999842643738, 0.46799999475479126, 0.42250001430511475, 0.460999995470047, 0.4729999899864197, 0.5299999713897705, 0.5304999947547913, 0.46549999713897705, 0.41850000619888306, 0.4774999916553498, 0.4785000085830689, 0.5285000205039978, 0.5289999842643738, 0.4569999873638153, 0.4230000078678131, 0.4830000102519989, 0.4790000021457672, 0.5239999890327454, 0.5174999833106995, 0.4805000126361847, 0.4569999873638153, 0.4909999966621399, 0.48500001430511475, 0.5295000076293945, 0.5289999842643738, 0.48500001430511475, 0.4205000102519989, 0.4925000071525574, 0.49399998784065247, 0.5260000228881836, 0.5254999995231628, 0.4790000021457672, 0.453000009059906, 0.4819999933242798, 0.4860000014305115, 0.5299999713897705, 0.5299999713897705, 0.47099998593330383, 0.4269999861717224, 0.4690000116825104, 0.4814999997615814], "1gc9d2ad": [0.4149999916553498, 0.40950000286102295, 0.34850001335144043, 0.4104999899864197, 0.3860000073909759, 0.36149999499320984, 0.4284999966621399, 0.4205000102519989, 0.36649999022483826, 0.4050000011920929, 0.3824999928474426, 0.3619999885559082, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42899999022483826, 0.4120000004768371, 0.34299999475479126, 0.4059999883174896, 0.398499995470047, 0.36250001192092896, 0.4090000092983246, 0.4074999988079071, 0.3440000116825104, 0.4099999964237213, 0.3754999935626984, 0.3785000145435333, 0.4440000057220459, 0.4410000145435333, 0.38749998807907104, 0.4180000126361847, 0.3840000033378601, 0.3865000009536743, 0.4580000042915344, 0.4544999897480011, 0.39250001311302185, 0.429500013589859, 0.3889999985694885, 0.38999998569488525, 0.4415000081062317, 0.4715000092983246, 0.3894999921321869, 0.45750001072883606, 0.45750001072883606, 0.4339999854564667, 0.4410000145435333, 0.45249998569488525, 0.3840000033378601, 0.4124999940395355, 0.3815000057220459, 0.3785000145435333, 0.4620000123977661, 0.460999995470047, 0.3855000138282776, 0.4264999926090241, 0.4000000059604645, 0.3919999897480011, 0.4235000014305115, 0.4269999861717224, 0.3255000114440918, 0.4045000076293946, 0.398499995470047, 0.3944999873638153, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4230000078678131, 0.42899999022483826, 0.3659999966621399, 0.4090000092983246, 0.4000000059604645, 0.4020000100135803, 0.41749998927116394, 0.414000004529953, 0.31049999594688416, 0.4275000095367432, 0.37700000405311584, 0.3725000023841858, 0.3910000026226044, 0.39800000190734863, 0.27149999141693115, 0.4065000116825104, 0.37049999833106995, 0.3754999935626984, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.40950000286102295, 0.4129999876022339, 0.33000001311302185, 0.4115000069141388, 0.367000013589859, 0.3700000047683716, 0.3880000114440918, 0.4014999866485596, 0.36649999022483826, 0.4050000011920929, 0.3425000011920929, 0.3714999854564667, 0.4110000133514404, 0.4090000092983246, 0.3395000100135803, 0.39899998903274536, 0.37299999594688416, 0.35850000381469727, 0.4255000054836273, 0.4165000021457672, 0.3725000023841858, 0.4050000011920929, 0.3675000071525574, 0.36250001192092896, 0.4045000076293946, 0.3964999914169311, 0.4065000116825104, 0.34950000047683716, 0.3725000023841858, 0.375, 0.42800000309944153, 0.42800000309944153, 0.34950000047683716, 0.40950000286102295, 0.4025000035762787, 0.3659999966621399, 0.4104999899864197, 0.40549999475479126, 0.38199999928474426, 0.41350001096725464, 0.3840000033378601, 0.37049999833106995, 0.40849998593330383, 0.4160000085830689, 0.33649998903274536, 0.40400001406669617, 0.38199999928474426, 0.3465000092983246, 0.4154999852180481, 0.4284999966621399, 0.3774999976158142, 0.4115000069141388, 0.3765000104904175, 0.367000013589859, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4165000021457672, 0.42100000381469727, 0.37049999833106995, 0.40849998593330383, 0.3790000081062317, 0.3865000009536743, 0.40299999713897705, 0.4014999866485596, 0.36000001430511475, 0.4000000059604645, 0.3630000054836273, 0.38199999928474426, 0.44699999690055847, 0.4410000145435333, 0.3564999997615814, 0.41850000619888306, 0.36649999022483826, 0.3880000114440918, 0.4584999978542328, 0.4620000123977661, 0.3840000033378601, 0.4350000023841858, 0.3955000042915344, 0.39399999380111694, 0.44999998807907104, 0.43149998784065247, 0.3970000147819519, 0.4429999887943268, 0.4309999942779541, 0.43650001287460327, 0.4264999926090241, 0.42250001430511475, 0.3564999997615814, 0.4255000054836273, 0.4020000100135803, 0.3930000066757202, 0.4429999887943268, 0.4180000126361847, 0.375, 0.42100000381469727, 0.367000013589859, 0.3774999976158142, 0.4284999966621399, 0.4189999997615814, 0.3215000033378601, 0.4079999923706054, 0.3955000042915344, 0.37700000405311584, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44449999928474426, 0.4379999935626984, 0.3754999935626984, 0.4110000133514404, 0.3964999914169311, 0.4025000035762787, 0.40849998593330383, 0.41449999809265137, 0.3149999976158142, 0.41749998927116394, 0.3919999897480011, 0.3880000114440918, 0.40299999713897705, 0.39800000190734863, 0.3824999928474426, 0.398499995470047, 0.37049999833106995, 0.382999986410141, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4165000021457672, 0.41449999809265137, 0.3465000092983246, 0.3955000042915344, 0.3779999911785126, 0.382999986410141, 0.40549999475479126, 0.4000000059604645, 0.33899998664855957, 0.40299999713897705, 0.3695000112056732, 0.3765000104904175, 0.4009999930858612, 0.4115000069141388, 0.35749998688697815, 0.3970000147819519, 0.37299999594688416, 0.375, 0.414000004529953, 0.4115000069141388, 0.3734999895095825, 0.4074999988079071, 0.3639999926090241, 0.3714999854564667, 0.41449999809265137, 0.4050000011920929, 0.3650000095367432, 0.3440000116825104, 0.36899998784065247, 0.3684999942779541, 0.4255000054836273, 0.4235000014305115, 0.3944999873638153, 0.4115000069141388, 0.3935000002384186, 0.3799999952316284, 0.4110000133514404, 0.42399999499320984, 0.34950000047683716, 0.40950000286102295, 0.3754999935626984, 0.3955000042915344, 0.4205000102519989, 0.4149999916553498, 0.359499990940094, 0.40950000286102295, 0.3745000064373016, 0.3659999966621399, 0.4124999940395355, 0.4074999988079071, 0.36250001192092896, 0.40700000524520874, 0.3779999911785126, 0.3849999904632568, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4090000092983246, 0.4034999907016754, 0.37400001287460327, 0.4104999899864197, 0.37049999833106995, 0.37400001287460327, 0.4020000100135803, 0.4104999899864197, 0.37700000405311584, 0.4104999899864197, 0.3709999918937683, 0.3765000104904175, 0.4480000138282776, 0.43650001287460327, 0.3639999926090241, 0.4124999940395355, 0.3700000047683716, 0.3790000081062317, 0.4519999921321869, 0.45100000500679016, 0.39250001311302185, 0.43050000071525574, 0.3799999952316284, 0.3849999904632568, 0.4490000009536743, 0.4404999911785126, 0.359499990940094, 0.45399999618530273, 0.44449999928474426, 0.45399999618530273, 0.45249998569488525, 0.42500001192092896, 0.3919999897480011, 0.40849998593330383, 0.3774999976158142, 0.3709999918937683, 0.44449999928474426, 0.44600000977516174, 0.3714999854564667, 0.4230000078678131, 0.39399999380111694, 0.39149999618530273, 0.4160000085830689, 0.4235000014305115, 0.3634999990463257, 0.4034999907016754, 0.3880000114440918, 0.3910000026226044, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43050000071525574, 0.4399999976158142, 0.3440000116825104, 0.4120000004768371, 0.4025000035762787, 0.3935000002384186, 0.40400001406669617, 0.4104999899864197, 0.3375000059604645, 0.42500001192092896, 0.3849999904632568, 0.3804999887943268, 0.38350000977516174, 0.3919999897480011, 0.3605000078678131, 0.39149999618530273, 0.3869999945163727, 0.3959999978542328, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42800000309944153, 0.4259999990463257, 0.3605000078678131, 0.4090000092983246, 0.3675000071525574, 0.3720000088214874, 0.3935000002384186, 0.3930000066757202, 0.3395000100135803, 0.4050000011920929, 0.38850000500679016, 0.3440000116825104, 0.4099999964237213, 0.4154999852180481, 0.3714999854564667, 0.3955000042915344, 0.3700000047683716, 0.367000013589859, 0.4255000054836273, 0.41999998688697815, 0.4034999907016754, 0.4020000100135803, 0.3610000014305115, 0.4014999866485596, 0.38100001215934753, 0.40700000524520874, 0.3725000023841858, 0.3440000116825104, 0.3894999921321869, 0.38449999690055847, 0.4259999990463257, 0.4244999885559082, 0.36800000071525574, 0.4090000092983246, 0.3700000047683716, 0.38100001215934753, 0.414000004529953, 0.4074999988079071, 0.3959999978542328, 0.4194999933242798, 0.38749998807907104, 0.37299999594688416], "n6knsnsf": [0.5065000057220459, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, -0.01, -0.01, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.484499990940094, 0.4774999916553498, 0.4934999942779541, 0.4839999973773956, 0.4650000035762787, 0.4284999966621399, 0.48350000381469727, 0.4684999883174896, 0.46650001406669617, 0.4740000069141388, 0.5049999952316284, 0.5009999871253967, -0.01, -0.01, -0.01, -0.01, 0.5015000104904175, 0.49300000071525574, 0.5, 0.5, 0.4925000071525574, 0.4900000095367432, -0.01, -0.01, -0.01, -0.01, 0.48649999499320984, 0.4794999957084656, 0.4869999885559082, 0.47699999809265137, 0.5009999871253967, 0.5055000185966492, 0.5024999976158142, 0.5059999823570251, 0.4984999895095825, 0.4945000112056732, 0.5074999928474426, 0.4995000064373016, 0.5065000057220459, 0.5109999775886536, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, -0.01, -0.01, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.4794999957084656, 0.4699999988079071, 0.49900001287460327, 0.492000013589859, 0.45649999380111694, 0.4600000083446502, 0.4869999885559082, 0.4659999907016754, 0.4950000047683716, 0.4785000085830689, 0.5005000233650208, 0.49799999594688416, -0.01, -0.01, -0.01, -0.01, 0.5005000233650208, 0.49549999833106995, 0.4945000112056732, 0.49399998784065247, 0.49549999833106995, 0.476500004529953, -0.01, -0.01, -0.01, -0.01, 0.4964999854564667, 0.48500001430511475, 0.49149999022483826, 0.4819999933242798, 0.5070000290870667, 0.5040000081062317, 0.5065000057220459, 0.5019999742507935, 0.49900001287460327, 0.4970000088214874, 0.5090000033378601, 0.5009999871253967, 0.5024999976158142, 0.503000020980835, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, -0.01, -0.01, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.5074999928474426, 0.4909999966621399, 0.4600000083446502, 0.49549999833106995, 0.4860000014305115, 0.4474999904632568, 0.4350000023841858, 0.4814999997615814, 0.45649999380111694, 0.49549999833106995, 0.49149999022483826, 0.5049999952316284, 0.5009999871253967, -0.01, -0.01, -0.01, -0.01, 0.5015000104904175, 0.4959999918937683, 0.5009999871253967, 0.49549999833106995, 0.4900000095367432, 0.476500004529953, -0.01, -0.01, -0.01, -0.01, 0.49300000071525574, 0.4894999861717224, 0.4805000126361847, 0.4774999916553498, 0.5040000081062317, 0.5084999799728394, 0.5080000162124634, -0.01, 0.5015000104904175, 0.4909999966621399, 0.5065000057220459, 0.5040000081062317, 0.5084999799728394, 0.5095000267028809], "jocmyjw4": [0.2565, 0.202, -0.01, 0.1915, 0.496, 0.498, 0.375, 0.482, 0.4955, 0.3295, 0.436, 0.466, 0.491, -0.01, -0.01, 0.039, 0.4905, 0.49, 0.487, -0.01, -0.01, 0.249, 0.4755, 0.4895, 0.496, 0.4945, 0.487, -0.01, 0.4855, 0.494, 0.2105, 0.1925, -0.01, 0.1865, 0.4975, 0.4985, 0.3815, 0.4705, 0.506, 0.2335, 0.461, 0.4855, 0.5015, -0.01, -0.01, 0.0395, 0.4565, 0.503, 0.4765, -0.01, -0.01, 0.239, 0.432, 0.4875, 0.495, 0.492, 0.4875, -0.01, 0.473, 0.5, 0.243, 0.1915, -0.01, 0.1915, 0.487, 0.493, 0.37, 0.4645, 0.503, 0.3135, 0.426, 0.4655, 0.4935, -0.01, -0.01, 0.042, 0.4915, 0.4965, 0.47, -0.01, -0.01, 0.243, 0.477, 0.4885, 0.4995, 0.4965, 0.484, -0.01, 0.4905, 0.49], "zw08f3vc": [0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.22050000727176663, 0.2179999947547913, 0.17800000309944153, 0.17399999499320984, 0.1850000023841858, 0.17800000309944153, 0.23149999976158145, 0.2300000041723251, 0.16699999570846558, 0.1710000038146973, 0.18449999392032623, 0.18050000071525577, 0.2345000058412552, 0.22699999809265137, 0.19850000739097595, 0.17800000309944153, 0.1965000033378601, 0.2029999941587448, 0.21549999713897705, 0.2175000011920929, 0.17649999260902405, 0.1889999955892563, 0.1979999989271164, 0.1979999989271164, 0.2179999947547913, 0.21299999952316284, 0.18700000643730164, 0.1815000027418137, 0.18649999797344208, 0.1784999966621399, 0.22550000250339508, 0.2300000041723251, 0.16200000047683716, 0.17350000143051147, 0.17499999701976776, 0.1710000038146973, 0.2179999947547913, 0.2074999958276749, 0.17599999904632568, 0.16599999368190765, 0.16200000047683716, 0.1710000038146973, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.244499996304512, 0.23600000143051147, 0.22100000083446503, 0.1955000013113022, 0.22349999845027924, 0.22300000488758087, 0.2084999978542328, 0.2074999958276749, 0.19050000607967377, 0.18299999833106995, 0.1784999966621399, 0.181999996304512, 0.23749999701976776, 0.2395000010728836, 0.17399999499320984, 0.1899999976158142, 0.17599999904632568, 0.1770000010728836, -0.01, 0.21449999511241913, 0.1914999932050705, 0.19200000166893005, 0.2004999965429306, 0.1875, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20900000631809235, 0.2045000046491623, 0.21400000154972076, 0.19499999284744263, 0.21150000393390656, 0.21199999749660492, 0.21400000154972076, 0.21449999511241913, 0.20600000023841855, 0.1835000067949295, 0.19750000536441803, 0.19699999690055847, 0.2290000021457672, 0.2300000041723251, 0.1655000001192093, 0.19850000739097595, 0.1875, 0.1899999976158142, 0.23149999976158145, 0.23749999701976776, 0.2134999930858612, 0.1784999966621399, 0.2045000046491623, 0.210999995470047, 0.22849999368190765, 0.226500004529953, 0.2074999958276749, 0.18449999392032623, 0.19949999451637268, 0.2080000042915344, 0.23149999976158145, 0.22750000655651093, 0.210999995470047, 0.1809999942779541, 0.20200000703334808, -0.01, 0.23499999940395355, 0.2319999933242798, 0.226500004529953, 0.20000000298023224, 0.23149999976158145, 0.23149999976158145, 0.22550000250339508, 0.22550000250339508, 0.2134999930858612, 0.1914999932050705, 0.2189999967813492, 0.21050000190734863, 0.23749999701976776, 0.23749999701976776, 0.1794999986886978, 0.20350000262260437, 0.210999995470047, 0.20900000631809235, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23749999701976776, 0.23749999701976776, -0.01, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, -0.01, 0.23749999701976776, 0.22100000083446503, 0.2150000035762787, 0.18449999392032623, -0.01, 0.1825000047683716, 0.1850000023841858, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2039999961853027, 0.2039999961853027, 0.2029999941587448, 0.17299999296665192, 0.1934999972581863, 0.19750000536441803, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.010999999940395355, -0.01, -0.01, 0.17900000512599945, 0.1784999966621399, 0.1710000038146973, 0.16850000619888306, 0.17749999463558197, 0.1694999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2189999967813492, 0.22550000250339508, 0.23649999499320984, 0.22200000286102295, 0.2290000021457672, 0.2294999957084656, 0.21250000596046448, 0.2199999988079071, 0.20350000262260437, 0.19449999928474423, 0.18299999833106995, 0.18850000202655792, 0.20200000703334808, 0.2004999965429306, 0.1694999933242798, -0.01, 0.15299999713897705, 0.15549999475479126, 0.1710000038146973, 0.17299999296665192, 0.1675000041723251, 0.16850000619888306, 0.1835000067949295, 0.17249999940395355, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2189999967813492, 0.21649999916553497, 0.23649999499320984, 0.226500004529953, 0.2319999933242798, 0.23499999940395355, 0.20200000703334808, 0.1924999952316284, 0.2039999961853027, 0.1965000033378601, 0.20149999856948853, 0.2055000066757202, 0.21400000154972076, 0.20100000500679016, -0.01, 0.2004999965429306, 0.16349999606609344, 0.18299999833106995, 0.2300000041723251, 0.2304999977350235, 0.2045000046491623, 0.18400000035762787, 0.2070000022649765, 0.2074999958276749, 0.2294999957084656, 0.2240000069141388, 0.20000000298023224, 0.1825000047683716, 0.19750000536441803, 0.2004999965429306, 0.2319999933242798, 0.23149999976158145, 0.21050000190734863, 0.1794999986886978, 0.21199999749660492, -0.01, 0.23549999296665192, 0.23600000143051147, 0.23600000143051147, 0.2319999933242798, 0.23899999260902405, 0.23849999904632568, 0.2290000021457672, 0.22849999368190765, -0.01, 0.210999995470047, 0.22100000083446503, 0.22100000083446503, 0.23800000548362732, 0.2409999966621399, 0.1875, 0.19599999487400055, 0.19949999451637268, 0.20350000262260437, 0.23749999701976776, 0.23749999701976776, -0.01, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, -0.01, 0.23749999701976776, 0.23749999701976776, 0.23749999701976776, 0.22550000250339508, 0.2304999977350235, 0.17649999260902405, 0.18950000405311584, 0.17000000178813934, 0.17299999296665192, 0.2195000052452087, 0.22300000488758087, 0.1934999972581863, 0.18850000202655792, 0.1704999953508377, 0.1745000034570694, 0.22699999809265137, 0.2214999943971634, 0.1875, 0.17800000309944153, 0.18400000035762787, 0.18799999356269836, 0.21400000154972076, 0.21299999952316284, 0.193000003695488, 0.17149999737739563, 0.2029999941587448, 0.19599999487400055, 0.2224999964237213, 0.21400000154972076, 0.17350000143051147, 0.17249999940395355, 0.17749999463558197, 0.1710000038146973, 0.2335000038146973, 0.22849999368190765, 0.15950000286102295, 0.17800000309944153, 0.18299999833106995, 0.17900000512599945, 0.20649999380111697, 0.2074999958276749, 0.1979999989271164, 0.17399999499320984, 0.17350000143051147, 0.17550000548362732, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.226500004529953, 0.22499999403953552, 0.2304999977350235, 0.226500004529953, 0.22750000655651093, 0.2304999977350235, 0.21199999749660492, 0.2195000052452087, 0.1784999966621399, 0.18299999833106995, -0.01, -0.01, 0.2329999953508377, 0.23149999976158145, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18449999392032623, 0.1784999966621399, 0.1899999976158142, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2185000032186508, 0.22300000488758087, 0.23549999296665192, 0.2224999964237213, 0.23549999296665192, -0.01, -0.01, 0.21199999749660492, 0.19499999284744263, 0.1860000044107437, 0.193000003695488, 0.1889999955892563, 0.22349999845027924, 0.22349999845027924, 0.17299999296665192, 0.1965000033378601, 0.18700000643730164, 0.1825000047683716, 0.2300000041723251, 0.2329999953508377, 0.1924999952316284, 0.1899999976158142, 0.20499999821186063, 0.20649999380111697, 0.23399999737739563, 0.2329999953508377, 0.21649999916553497, 0.1784999966621399, 0.20600000023841855, 0.20000000298023224, 0.2319999933242798, 0.22599999606609344, 0.2039999961853027, 0.1934999972581863, 0.20100000500679016, 0.1924999952316284, 0.2395000010728836, 0.23899999260902405, 0.22699999809265137, 0.2300000041723251, 0.23649999499320984, 0.2370000034570694, 0.226500004529953, 0.22499999403953552, 0.2039999961853027, 0.19850000739097595, 0.22100000083446503, 0.20999999344348907, 0.23749999701976776, 0.2370000034570694, 0.1875, 0.1815000027418137, 0.20200000703334808, 0.20250000059604645], "5j0mk5dm": [0.1784999966621399, 0.17299999296665192, 0.16099999845027924, 0.19949999451637268, 0.17149999737739563, 0.15299999713897705, 0.1655000001192093, 0.17000000178813934, 0.1459999978542328, 0.21250000596046448, 0.1599999964237213, 0.1550000011920929, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17749999463558197, 0.16899999976158142, 0.1599999964237213, 0.20900000631809235, 0.1589999943971634, 0.1675000041723251, 0.16449999809265137, 0.16099999845027924, 0.15150000154972076, 0.193000003695488, 0.14900000393390656, 0.15449999272823334, 0.18850000202655792, 0.1835000067949295, 0.12300000339746477, 0.19850000739097595, 0.15000000596046448, 0.1449999958276749, 0.18050000071525577, 0.18700000643730164, 0.15000000596046448, 0.22499999403953552, 0.15049999952316284, 0.16200000047683716, 0.17499999701976776, 0.1665000021457672, 0.15950000286102295, 0.1599999964237213, 0.1509999930858612, 0.1535000056028366, 0.16099999845027924, 0.16599999368190765, 0.1599999964237213, 0.21699999272823337, 0.16449999809265137, 0.14749999344348907, 0.18649999797344208, 0.17000000178813934, 0.14249999821186066, 0.2045000046491623, 0.1445000022649765, 0.148499995470047, 0.1615000069141388, 0.16050000488758087, 0.15049999952316284, 0.193000003695488, 0.15000000596046448, 0.15399999916553497, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17599999904632568, 0.18299999833106995, 0.1825000047683716, 0.20600000023841855, 0.15549999475479126, 0.15850000083446503, 0.1599999964237213, 0.1655000001192093, 0.1525000035762787, 0.2094999998807907, 0.15299999713897705, 0.1459999978542328, 0.17000000178813934, 0.16200000047683716, 0.15000000596046448, 0.18549999594688416, 0.1655000001192093, 0.16599999368190765, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15700000524520874, 0.1449999958276749, 0.16249999403953552, 0.2094999998807907, 0.1615000069141388, 0.1599999964237213, 0.1675000041723251, 0.1574999988079071, 0.15150000154972076, 0.19449999928474423, 0.1535000056028366, 0.1679999977350235, 0.17399999499320984, 0.1694999933242798, 0.15000000596046448, 0.20600000023841855, 0.1550000011920929, 0.15700000524520874, 0.1745000034570694, 0.1589999943971634, 0.1469999998807907, 0.1965000033378601, 0.164000004529953, 0.14249999821186066, 0.15950000286102295, 0.1704999953508377, 0.14800000190734863, 0.1875, 0.1469999998807907, 0.1525000035762787, 0.1675000041723251, 0.1615000069141388, 0.1655000001192093, 0.21199999749660492, 0.1720000058412552, 0.15399999916553497, 0.16449999809265137, 0.16249999403953552, 0.14949999749660492, 0.2039999961853027, 0.15600000321865082, 0.16050000488758087, 0.17000000178813934, 0.1825000047683716, 0.16099999845027924, 0.19050000607967377, 0.17399999499320984, 0.17000000178813934, 0.15950000286102295, 0.16349999606609344, 0.17149999737739563, 0.1965000033378601, 0.1770000010728836, 0.1679999977350235, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1720000058412552, 0.18700000643730164, 0.16500000655651093, 0.18950000405311584, 0.17299999296665192, 0.1784999966621399, 0.16899999976158142, 0.17249999940395355, 0.15549999475479126, 0.19449999928474423, 0.15950000286102295, 0.15950000286102295, 0.17350000143051147, 0.17399999499320984, 0.1535000056028366, 0.19200000166893005, 0.1535000056028366, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18799999356269836, 0.17649999260902405, 0.1710000038146973, 0.1850000023841858, 0.1720000058412552, 0.17599999904632568, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16249999403953552, 0.1794999986886978, 0.19099999964237213, 0.1445000022649765, 0.15150000154972076, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1940000057220459, 0.1794999986886978, 0.18400000035762787, 0.1899999976158142, 0.18000000715255737, 0.1899999976158142, 0.1535000056028366, 0.15950000286102295, 0.1535000056028366, 0.17749999463558197, 0.16599999368190765, 0.15449999272823334, 0.16599999368190765, 0.15549999475479126, 0.1875, 0.1860000044107437, 0.15950000286102295, 0.14399999380111694, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17000000178813934, 0.15600000321865082, 0.20100000500679016, 0.20000000298023224, 0.1784999966621399, 0.15950000286102295, 0.16699999570846558, 0.14949999749660492, 0.1535000056028366, 0.18850000202655792, 0.1589999943971634, 0.15549999475479126, 0.1599999964237213, 0.15850000083446503, 0.13650000095367432, 0.18950000405311584, 0.1550000011920929, 0.16349999606609344, 0.16200000047683716, 0.15649999678134918, 0.15449999272823334, 0.1850000023841858, 0.1414999961853027, 0.15299999713897705, 0.1574999988079071, 0.16699999570846558, 0.148499995470047, 0.2080000042915344, 0.16300000250339508, 0.1449999958276749, 0.19750000536441803, 0.19200000166893005, 0.16850000619888306, 0.19499999284744263, 0.1550000011920929, 0.1589999943971634, 0.15299999713897705, 0.14900000393390656, 0.1420000046491623, 0.18449999392032623, 0.15299999713897705, 0.14550000429153442, 0.16249999403953552, 0.1809999942779541, 0.1745000034570694, 0.19200000166893005, 0.181999996304512, 0.18299999833106995, 0.17900000512599945, 0.1704999953508377, 0.1720000058412552, 0.18449999392032623, 0.17000000178813934, 0.17649999260902405, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18299999833106995, 0.19499999284744263, 0.1574999988079071, 0.18950000405311584, 0.15649999678134918, 0.1655000001192093, 0.17000000178813934, 0.1694999933242798, 0.15449999272823334, 0.20100000500679016, 0.1589999943971634, 0.15600000321865082, 0.1770000010728836, 0.1704999953508377, 0.1535000056028366, 0.1940000057220459, 0.15150000154972076, 0.16050000488758087, 0.18549999594688416, 0.181999996304512, 0.15549999475479126, 0.2055000066757202, 0.148499995470047, 0.15549999475479126, 0.16899999976158142, 0.1599999964237213, 0.14249999821186066, 0.15150000154972076, 0.14350000023841858, 0.15000000596046448, 0.1955000013113022, 0.1914999932050705, 0.1815000027418137, 0.20000000298023224, 0.1720000058412552, 0.15600000321865082, 0.17299999296665192, 0.17149999737739563, 0.15399999916553497, 0.2029999941587448, 0.1414999961853027, 0.1414999961853027, 0.16300000250339508, -0.01, 0.14749999344348907, 0.18400000035762787, 0.15800000727176666, 0.16300000250339508, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18549999594688416, 0.1860000044107437, 0.19099999964237213, 0.18850000202655792, 0.18799999356269836, 0.1675000041723251, 0.1509999930858612, 0.15950000286102295, 0.148499995470047, 0.18449999392032623, 0.15449999272823334, 0.15399999916553497, 0.1509999930858612, 0.15299999713897705, 0.15000000596046448, 0.18700000643730164, 0.14949999749660492, 0.1525000035762787, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17749999463558197, 0.1794999986886978, 0.18649999797344208, 0.1914999932050705, 0.16699999570846558, 0.17499999701976776, 0.17599999904632568, 0.17599999904632568, 0.15850000083446503, 0.17649999260902405, 0.1694999933242798, 0.1615000069141388, 0.17149999737739563, 0.18449999392032623, 0.1330000013113022, 0.1899999976158142, 0.15449999272823334, 0.1509999930858612, 0.16500000655651093, 0.1694999933242798, 0.15299999713897705, 0.1955000013113022, 0.1675000041723251, 0.1535000056028366, 0.16699999570846558, 0.15950000286102295, 0.13699999451637268, 0.20149999856948853, 0.16099999845027924, 0.1509999930858612, 0.17000000178813934, 0.1835000067949295, 0.1850000023841858, 0.20200000703334808, 0.17350000143051147, 0.17299999296665192, 0.16249999403953552, 0.16449999809265137, 0.14650000631809235, 0.1809999942779541, 0.148499995470047, 0.1459999978542328], "h267r9gw": [0.23800000548362732, 0.23600000143051147, 0.23649999499320984, 0.23849999904632568, -0.01, -0.01, 0.23600000143051147, 0.2370000034570694, 0.2345000058412552, 0.2345000058412552, 0.18950000405311584, 0.19750000536441803, 0.23749999701976776, 0.22750000655651093, 0.2185000032186508, 0.2240000069141388, 0.20600000023841855, 0.19699999690055847, 0.20900000631809235, 0.1889999955892563, 0.1889999955892563, 0.18649999797344208, -0.01, -0.01, -0.01, -0.01, 0.2189999967813492, 0.210999995470047, 0.18400000035762787, 0.19099999964237213, 0.1889999955892563, 0.1720000058412552, -0.01, -0.01, -0.01, -0.01, 0.19499999284744263, 0.193000003695488, 0.19200000166893005, 0.20350000262260437, 0.22450000047683716, 0.22550000250339508, 0.22599999606609344, 0.2370000034570694, 0.22200000286102295, 0.23100000619888303, 0.22349999845027924, 0.2199999988079071, 0.2294999957084656, 0.2290000021457672, 0.23399999737739563, 0.23250000178813937, 0.23399999737739563, 0.23600000143051147, -0.01, -0.01, 0.2345000058412552, 0.22200000286102295, 0.2345000058412552, 0.2345000058412552, 0.20600000023841855, 0.20499999821186063, -0.01, -0.01, -0.01, -0.01, 0.1965000033378601, 0.20649999380111697, -0.01, -0.01, 0.20350000262260437, 0.1535000056028366, -0.01, -0.01, -0.01, -0.01, 0.2280000001192093, 0.22550000250339508, 0.1809999942779541, 0.1850000023841858, 0.1710000038146973, 0.1784999966621399, -0.01, -0.01, -0.01, -0.01, 0.21050000190734863, 0.22050000727176663, 0.16050000488758087, 0.16699999570846558, 0.2240000069141388, 0.21649999916553497, 0.22349999845027924, 0.21549999713897705, 0.22200000286102295, 0.21299999952316284, 0.2329999953508377, 0.2280000001192093, 0.22050000727176663, 0.22599999606609344, 0.2335000038146973, 0.2335000038146973, 0.23250000178813937, 0.23250000178813937, -0.01, -0.01, 0.2345000058412552, 0.23149999976158145, 0.2345000058412552, 0.2345000058412552, 0.21150000393390656, 0.210999995470047, 0.24050000309944153, 0.23549999296665192, 0.22849999368190765, 0.2134999930858612, 0.1979999989271164, 0.1850000023841858, 0.2240000069141388, 0.20499999821186063, 0.19699999690055847, 0.20499999821186063, -0.01, -0.01, -0.01, -0.01, 0.22450000047683716, 0.22100000083446503, 0.2004999965429306, 0.20499999821186063, 0.21050000190734863, 0.1899999976158142, -0.01, -0.01, -0.01, -0.01, 0.2294999957084656, 0.2175000011920929, 0.19699999690055847, 0.18449999392032623, 0.22200000286102295, 0.21449999511241913, 0.2185000032186508, 0.2319999933242798, 0.22550000250339508, 0.23250000178813937, 0.22699999809265137, 0.22849999368190765, 0.21250000596046448, 0.2224999964237213], "wcb9vpq4": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.219, 0.2265, -0.01, -0.01, -0.01, 0.17, 0.143, 0.1325, 0.2235, 0.22, 0.222, 0.228, 0.2295, 0.1165, 0.218, 0.216, 0.226, 0.05, 0.2195, 0.222, 0.2225, 0.1535, 0.219, 0.225, 0.219, 0.231, 0.222, 0.222, 0.2325, 0.224, 0.225, 0.221, 0.2135, 0.2195, 0.235, 0.219, 0.2155, 0.01, 0.226, 0.2115, 0.2465, 0.0115, 0.215, 0.217, 0.2145, 0.226, 0.2165, 0.2245, 0.2255, 0.2235, 0.2185, 0.233, 0.206, 0.235, 0.2135, 0.22, 0.2195, 0.0115, 0.223, 0.0155, 0.2235, 0.22, 0.209, 0.225, 0.2235, 0.2195, 0.2245], "yvdvm8br": [0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8621047139167786, 0.8341109156608582, 0.8465526103973389, 0.8201140761375427, 0.8750647902488708, 0.8750647902488708, 0.8729912042617798, 0.8004147410392761, 0.8496630191802979, 0.8512182235717773, 0.8724727630615234, 0.8740279674530029, 0.8750647902488708, 0.8740279674530029, 0.8740279674530029, 0.8750647902488708, 0.8740279674530029, 0.8750647902488708, 0.867807149887085, 0.8320373296737671, 0.8548470735549927, 0.8154484033584595, 0.8750647902488708, 0.8750647902488708, 0.864696741104126, 0.8315189480781555, 0.8543286919593811, 0.8325557112693787, 0.8750647902488708, 0.8750647902488708, 0.8621047139167786, 0.845515787601471, 0.8081907629966736, 0.7843441963195801, 0.8683255314826965, 0.8693623542785645, 0.8356661200523376, 0.8144116401672363, 0.8190772533416748, 0.7957490682601929, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8595126867294312, 0.8703991770744324, 0.8657335638999939, 0.81389319896698, 0.8506998419761658, 0.8195956349372864, 0.8745464086532593, 0.8729912042617798, 0.8574391007423401, 0.8211508393287659, 0.8475894331932068, 0.8299636840820312, 0.8740279674530029, 0.8740279674530029, 0.8310005068778992, 0.8320373296737671, 0.8195956349372864, 0.8325557112693787, 0.8569206595420837, 0.861586332321167, 0.8652151226997375, 0.845515787601471, 0.866770327091217, 0.7770865559577942, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8729912042617798, 0.8735095858573914, 0.867807149887085, 0.7812337875366211, 0.8506998419761658, 0.7973043322563171, 0.8745464086532593, 0.8745464086532593, 0.8714359998703003, 0.785381019115448, 0.8538102507591248, 0.7776049971580505, 0.8729912042617798, 0.8740279674530029, 0.8527734279632568, 0.8579574823379517, 0.8175220489501953, 0.7579056620597839, 0.8750647902488708, 0.8750647902488708, 0.8703991770744324, 0.8294453024864197, 0.8408501744270325, 0.8263348937034607, 0.8750647902488708, 0.8750647902488708, 0.8693623542785645, 0.8268532752990723, 0.8605495095252991, 0.861586332321167, 0.8750647902488708, 0.8750647902488708, 0.8698807954788208, 0.810782790184021, 0.8548470735549927, 0.8512182235717773, 0.8750647902488708, 0.8750647902488708, 0.8693623542785645, 0.8387765884399414, 0.8693623542785645, 0.8512182235717773, 0.8750647902488708, 0.8750647902488708, 0.8558838963508606, 0.8517366647720337, 0.867807149887085, 0.8465526103973389, 0.8750647902488708, 0.8750647902488708, 0.8662519454956055, 0.8496630191802979, 0.8144116401672363, 0.8055987358093262, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8657335638999939, 0.7931571006774902, 0.8320373296737671, 0.8004147410392761, 0.8750647902488708, 0.8750647902488708, 0.870917558670044, 0.7988595366477966, 0.8538102507591248, 0.8517366647720337, 0.8740279674530029, 0.8740279674530029, 0.8745464086532593, 0.8750647902488708, 0.8750647902488708, 0.8745464086532593, 0.8641783595085144, 0.8636599183082581, 0.8657335638999939, 0.8418869972229004, 0.858475923538208, 0.858475923538208, 0.8750647902488708, 0.8745464086532593, 0.864696741104126, 0.817003607749939, 0.8481078147888184, 0.8066355586051941, 0.8750647902488708, 0.8750647902488708, 0.8693623542785645, 0.8418869972229004, 0.8004147410392761, 0.8014515042304993, 0.8035251498222351, 0.7812337875366211, 0.8055987358093262, 0.7967858910560608, 0.754795253276825, 0.7496111989021301, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8735095858573914, 0.8719543814659119, 0.8729912042617798, 0.8444790244102478, 0.8506998419761658, 0.8387765884399414, 0.864696741104126, 0.864696741104126, 0.870917558670044, 0.8501814603805542, 0.864696741104126, 0.8569206595420837, 0.8273717164993286, 0.8061171770095825, 0.7604976892471313, 0.7848626375198364, 0.7153965830802917, 0.7133229374885559, 0.788491427898407, 0.8444790244102478, 0.8304821252822876, 0.8227060437202454, 0.8087092041969299, 0.7936754822731018, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8740279674530029, 0.8740279674530029, 0.8693623542785645, 0.817003607749939, 0.8242612481117249, 0.8278900980949402, 0.8745464086532593, 0.8750647902488708, 0.8693623542785645, 0.7952306866645813, 0.833074152469635, 0.7729393243789673, 0.7776049971580505, 0.759979248046875, 0.7102125287055969, 0.7993779182434082, 0.7247278094291687, 0.7418351769447327, 0.8750647902488708, 0.8750647902488708, 0.8589943051338196, 0.8310005068778992, 0.839294970035553, 0.8258165121078491, 0.8750647902488708, 0.8750647902488708, 0.836184561252594, 0.8133748173713684, 0.8403317928314209, 0.8657335638999939, 0.8750647902488708, 0.8750647902488708, 0.8714359998703003, 0.8211508393287659, 0.8574391007423401, 0.8506998419761658, 0.8750647902488708, 0.8750647902488708, 0.866770327091217, 0.8589943051338196, 0.8714359998703003, 0.8745464086532593, 0.8745464086532593, 0.8750647902488708, 0.8688439726829529, 0.8657335638999939, 0.8740279674530029, 0.8553654551506042, 0.8750647902488708, 0.8750647902488708, 0.8553654551506042, 0.6402280926704407, 0.8040435314178467, 0.8123379945755005, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8652151226997375, 0.839294970035553, 0.8517366647720337, 0.8154484033584595, 0.8750647902488708, 0.8750647902488708, 0.8688439726829529, 0.8113011717796326, 0.8605495095252991, 0.8631415367126465, 0.8703991770744324, 0.8714359998703003, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8750647902488708, 0.8652151226997375, 0.8641783595085144, 0.8595126867294312, 0.8449974060058594, 0.8636599183082581, 0.8610678911209106, 0.8745464086532593, 0.8750647902488708, 0.867807149887085, 0.8216692805290222, 0.858475923538208, 0.8356661200523376, 0.8750647902488708, 0.8750647902488708, 0.8672887682914734, 0.8657335638999939, 0.8066355586051941, 0.7807154059410095, 0.867807149887085, 0.8693623542785645, 0.845515787601471, 0.8190772533416748, 0.8221876621246338, 0.81389319896698, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8740279674530029, 0.8729912042617798, 0.870917558670044, 0.8449974060058594, 0.8517366647720337, 0.8356661200523376, 0.8729912042617798, 0.8724727630615234, 0.8740279674530029, 0.842405378818512, 0.8558838963508606, 0.8439605832099915, 0.8745464086532593, 0.8740279674530029, 0.8434422016143799, 0.8097459673881531, 0.8216692805290222, 0.8346293568611145, 0.8626230955123901, 0.866770327091217, 0.8672887682914734, 0.8460342288017273, 0.8683255314826965, 0.7931571006774902, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8735095858573914, 0.8735095858573914, 0.8719543814659119, 0.8133748173713684, 0.8247796893119812, 0.817003607749939, 0.8750647902488708, 0.8750647902488708, 0.867807149887085, 0.7864178419113159, 0.841368556022644, 0.7812337875366211, 0.8740279674530029, 0.8735095858573914, 0.8662519454956055, 0.8610678911209106, 0.8242612481117249, 0.7465007901191711, 0.8750647902488708, 0.8750647902488708, 0.8501814603805542, 0.839294970035553, 0.8506998419761658, 0.8387765884399414, 0.8750647902488708, 0.8750647902488708, 0.8724727630615234, 0.8387765884399414, 0.8657335638999939, 0.8595126867294312, 0.8750647902488708, 0.8750647902488708, 0.8729912042617798, 0.8113011717796326, 0.8574391007423401, 0.8517366647720337, 0.8750647902488708, 0.8750647902488708, 0.8672887682914734, 0.8558838963508606, 0.8683255314826965, 0.8703991770744324, 0.8750647902488708, 0.8750647902488708, 0.8569206595420837, 0.8631415367126465, 0.8698807954788208, 0.8538102507591248, 0.8750647902488708, 0.8750647902488708, 0.8703991770744324, 0.8501814603805542, 0.8180404305458069, 0.8066355586051941], "l3peh3ey": [0.7687920928001404, 0.7698289155960083, 0.6946604251861572, 0.8636599183082581, 0.6526697874069214, 0.6443753242492676, 0.7786417603492737, 0.7765681743621826, 0.6682218909263611, 0.858475923538208, 0.6547433733940125, 0.643856942653656, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7931571006774902, 0.7765681743621826, 0.6765163540840149, 0.8688439726829529, 0.6298600435256958, 0.6474857330322266, 0.7459823489189148, 0.731467068195343, 0.6661482453346252, 0.8372213840484619, 0.6573354005813599, 0.6640746593475342, 0.8097459673881531, 0.8123379945755005, 0.7174701690673828, 0.8501814603805542, 0.6868844032287598, 0.6832555532455444, 0.8382581472396851, 0.8398133516311646, 0.675479531288147, 0.8683255314826965, 0.6661482453346252, 0.6505961418151855, 0.7672368884086609, 0.7444271445274353, 0.7423535585403442, 0.8211508393287659, 0.7516847848892212, 0.7553136348724365, 0.8252980709075928, 0.8087092041969299, 0.7242094278335571, 0.867807149887085, 0.6759979128837585, 0.6682218909263611, 0.7874546647071838, 0.7983410954475403, 0.7226542234420776, 0.8512182235717773, 0.6962156295776367, 0.697770893573761, 0.731467068195343, 0.7449455857276917, 0.7957490682601929, 0.8449974060058594, 0.6791083216667175, 0.6837739944458008, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7858994007110596, 0.7770865559577942, 0.836184561252594, 0.8683255314826965, 0.6920684576034546, 0.6817003488540649, 0.7589424848556519, 0.7625712752342224, 0.7205806374549866, 0.8564022779464722, 0.7019180655479431, 0.7024365067481995, 0.7179886102676392, 0.7133229374885559, 0.8035251498222351, 0.864696741104126, 0.6713322997093201, 0.6692586541175842, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7376879453659058, 0.7356142997741699, 0.7055469155311584, 0.8688439726829529, 0.6848107576370239, 0.6899948120117188, 0.7527216076850891, 0.7527216076850891, 0.7444271445274353, 0.8631415367126465, 0.70088130235672, 0.6817003488540649, 0.7594608664512634, 0.7693105340003967, 0.7516847848892212, 0.8636599183082581, 0.653188169002533, 0.6588906049728394, 0.763089656829834, 0.7641264796257019, 0.7091757655143738, 0.8631415367126465, 0.6526697874069214, 0.6557801961898804, 0.7703473567962646, 0.7781233787536621, 0.6899948120117188, 0.8688439726829529, 0.6630378365516663, 0.6692586541175842, 0.8133748173713684, 0.807672381401062, 0.7045100927352905, 0.870917558670044, 0.6770347356796265, 0.6801451444625854, 0.7978227138519287, 0.7936754822731018, 0.6931052207946777, 0.8672887682914734, 0.6697770953178406, 0.6552618145942688, 0.7957490682601929, 0.785381019115448, 0.7133229374885559, 0.8574391007423401, 0.6702954769134521, 0.6713322997093201, 0.7744945287704468, 0.7682737112045288, 0.7076205015182495, 0.864696741104126, 0.6656298637390137, 0.6423017382621765, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7890098690986633, 0.7926386594772339, 0.7076205015182495, 0.8418869972229004, 0.6671850681304932, 0.6713322997093201, 0.7594608664512634, 0.6728875041007996, 0.6588906049728394, 0.8377397656440735, 0.6713322997093201, 0.6620010137557983, 0.8055987358093262, 0.8050803542137146, 0.7096941471099854, 0.8444790244102478, 0.674442708492279, 0.6583722233772278, 0.8284084796905518, 0.8242612481117249, 0.6858475804328918, 0.866770327091217, 0.6599274277687073, 0.6511145830154419, 0.7713841199874878, 0.7107309699058533, 0.7527216076850891, 0.8087092041969299, 0.7418351769447327, 0.7433903813362122, 0.817003607749939, 0.8081907629966736, 0.7174701690673828, 0.8221876621246338, 0.6879212260246277, 0.7013996839523315, 0.7869362235069275, 0.7947123050689697, 0.7257646322250366, 0.8610678911209106, 0.7205806374549866, -0.01, 0.699844479560852, 0.70088130235672, 0.8123379945755005, 0.8346293568611145, 0.6537066102027893, 0.6511145830154419, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.81389319896698, 0.8050803542137146, 0.8325557112693787, 0.804561972618103, 0.699844479560852, 0.6806635856628418, 0.81389319896698, 0.8030067682266235, 0.7967858910560608, 0.8024883270263672, 0.7304302453994751, 0.7522032260894775, 0.7153965830802917, 0.7091757655143738, 0.8341109156608582, 0.8470709919929504, 0.6858475804328918, 0.6925868391990662, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.788491427898407, 0.7874546647071838, 0.8252980709075928, 0.842405378818512, 0.6474857330322266, 0.6625194549560547, 0.7667185068130493, 0.7703473567962646, 0.759979248046875, 0.8595126867294312, 0.6879212260246277, 0.6925868391990662, 0.7724209427833557, 0.7729393243789673, 0.7527216076850891, 0.8558838963508606, 0.6614826321601868, 0.6583722233772278, 0.7387247085571289, 0.7340590953826904, 0.6936236619949341, 0.841368556022644, 0.6651114821434021, 0.6588906049728394, 0.7921202778816223, 0.7895282506942749, 0.7081389427185059, 0.8652151226997375, 0.6692586541175842, 0.6614826321601868, 0.8050803542137146, 0.8097459673881531, 0.7055469155311584, 0.8310005068778992, 0.699844479560852, 0.7003628611564636, 0.8055987358093262, 0.8081907629966736, 0.7392431497573853, 0.8304821252822876, 0.6749610900878906, 0.6936236619949341, 0.7812337875366211, 0.7770865559577942, 0.6853291988372803, 0.8579574823379517, 0.6651114821434021, 0.674442708492279, 0.7703473567962646, 0.7729393243789673, 0.6526697874069214, 0.8657335638999939, 0.6448937058448792, 0.6557801961898804, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7864178419113159, 0.7879730463027954, 0.70606529712677, 0.839294970035553, 0.6692586541175842, 0.6671850681304932, 0.7755313515663147, 0.7698289155960083, 0.6448937058448792, 0.8356661200523376, 0.6765163540840149, 0.6423017382621765, 0.7941938638687134, 0.7957490682601929, 0.7205806374549866, 0.8418869972229004, 0.6853291988372803, 0.6718506813049316, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8237428665161133, 0.8247796893119812, 0.7397615313529968, 0.8195956349372864, 0.729393482208252, 0.7273198366165161, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7257646322250366, 0.7309486865997314, 0.7962675094604492, 0.839294970035553, 0.6537066102027893, 0.6713322997093201, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.8133748173713684, 0.8201140761375427, 0.8144116401672363, 0.8055987358093262, 0.703991711139679, 0.7133229374885559, 0.7838258147239685, 0.788491427898407, 0.7076205015182495, 0.7967858910560608, 0.7589424848556519, 0.7615344524383545, 0.7164334058761597, 0.7247278094291687, 0.8341109156608582, 0.8512182235717773, 0.6822187900543213, 0.6837739944458008, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.7724209427833557, 0.7682737112045288, 0.8128563761711121, 0.8398133516311646, 0.6640746593475342, 0.6526697874069214, 0.7651633024215698, 0.7693105340003967, 0.7236910462379456, 0.8621047139167786, 0.7081389427185059, 0.6946604251861572, 0.7594608664512634, 0.7584240436553955, 0.7050285339355469, 0.8543286919593811, 0.6734058856964111, 0.6697770953178406, 0.7625712752342224, 0.7677553296089172, 0.7200621962547302, 0.841368556022644, 0.6713322997093201, 0.6713322997093201, 0.7864178419113159, 0.7858994007110596, 0.7153965830802917, 0.8631415367126465, 0.675479531288147, 0.6687402725219727, 0.8081907629966736, 0.8133748173713684, 0.70606529712677, 0.8289269208908081, 0.70606529712677, 0.7148782014846802, 0.7921202778816223, 0.7921202778816223, 0.7034733295440674, 0.8408501744270325, 0.6796267628669739, 0.6842923760414124], "z3v3k8xa": [0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, -0.01, -0.01, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8745464086532593, 0.8755832314491272, 0.8755832314491272, 0.867807149887085, 0.8367029428482056, 0.8750647902488708, 0.8460342288017273, 0.8729912042617798, 0.8735095858573914, 0.8626230955123901, 0.8605495095252991, -0.01, -0.01, -0.01, -0.01, 0.8735095858573914, 0.870917558670044, 0.870917558670044, 0.8698807954788208, 0.8631415367126465, 0.858475923538208, -0.01, -0.01, -0.01, -0.01, 0.8621047139167786, 0.866770327091217, 0.8672887682914734, 0.8729912042617798, 0.8729912042617798, 0.8719543814659119, 0.8740279674530029, 0.8740279674530029, 0.8688439726829529, 0.8714359998703003, 0.8750647902488708, 0.8750647902488708, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, -0.01, -0.01, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8750647902488708, 0.8755832314491272, 0.8750647902488708, 0.8745464086532593, 0.8693623542785645, 0.8672887682914734, 0.8621047139167786, 0.8569206595420837, 0.8750647902488708, 0.8698807954788208, 0.8750647902488708, 0.8506998419761658, -0.01, -0.01, -0.01, -0.01, 0.8735095858573914, 0.8703991770744324, 0.8558838963508606, 0.8408501744270325, 0.8527734279632568, 0.8621047139167786, -0.01, -0.01, -0.01, -0.01, 0.8740279674530029, 0.8750647902488708, 0.8745464086532593, 0.8719543814659119, 0.8745464086532593, 0.8729912042617798, 0.8719543814659119, 0.8683255314826965, 0.8714359998703003, 0.8719543814659119, 0.8755832314491272, 0.8750647902488708, 0.8740279674530029, 0.8740279674530029, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, -0.01, -0.01, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8755832314491272, 0.8750647902488708, 0.8750647902488708, -0.01, -0.01, -0.01, -0.01, 0.8605495095252991, 0.8512182235717773, -0.01, -0.01, 0.8496630191802979, 0.8595126867294312, -0.01, -0.01, -0.01, -0.01, 0.8724727630615234, 0.8703991770744324, 0.8579574823379517, 0.8470709919929504, 0.8595126867294312, 0.8579574823379517, -0.01, -0.01, -0.01, -0.01, 0.8740279674530029, 0.8698807954788208, 0.8703991770744324, 0.870917558670044, 0.8735095858573914, 0.8735095858573914, 0.8740279674530029, 0.8735095858573914, 0.8735095858573914, 0.8735095858573914, 0.8735095858573914, 0.8740279674530029, 0.8745464086532593, 0.8745464086532593], "n2s4t1f7": [0.807153965785381, 0.8517366511145671, -0.01, 0.7833074131674442, 0.8615863141524106, 0.8641783307413168, 0.8564022809745983, 0.8657335406946605, 0.8087091757387247, 0.6324520476931053, 0.8615863141524106, 0.8579574909279419, 0.8657335406946605, -0.01, -0.01, 0.6640746500777605, 0.4333851736651115, 0.8657335406946605, 0.8475894245723172, -0.01, -0.01, 0.7584240539139451, 0.7744945567651633, 0.8641783307413168, 0.864696734059098, 0.8589942975635044, 0.8548470710212546, 0.5152928978745464, 0.6692586832555728, 0.8538102643856921, 0.7656817003628823, 0.8584758942457231, -0.01, 0.16485225505443235, 0.8605495075168481, 0.8641783307413168, 0.831518921721099, 0.8460342146189735, 0.8045619491964748, -0.01, 0.8247796785899429, 0.8553654743390358, 0.8652151373768792, -0.01, -0.01, 0.14930015552099535, 0.23431829963711767, 0.8615863141524106, 0.8574390876101607, -0.01, -0.01, 0.19440124416796267, 0.7750129600829445, 0.8652151373768792, 0.8641783307413168, 0.8553654743390358, 0.8548470710212546, -0.01, 0.585277345775013, 0.8460342146189735, 0.7527216174183515, 0.855883877656817, -0.01, 0.22757905650596164, 0.8621047174701918, 0.8652151373768792, 0.8299637117677553, 0.8486262312078797, 0.7801969932607569, -0.01, 0.8289269051321928, 0.8252980819077242, 0.864696734059098, -0.01, -0.01, 0.16796267496111977, 0.257128045619492, 0.8657335406946605, 0.8595127008812856, -0.01, -0.01, 0.25090720580611714, 0.7817522032141005, 0.8610679108346293, 0.8652151373768792, 0.8553654743390358, 0.8527734577501296, -0.01, 0.6246759979263867, -0.01], "zw2x3j2g": [0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4726495742797851, 0.4683760702610016, 0.3905982971191406, 0.34786325693130493, 0.32307693362236023, 0.33675214648246765, 0.4726495742797851, 0.4726495742797851, 0.3829059898853302, 0.3905982971191406, 0.4042735099792481, 0.4068376123905182, 0.4598290622234345, 0.446153849363327, 0.3965812027454376, 0.3948718011379242, -0.01, 0.4213675260543823, 0.46666666865348816, 0.452136754989624, 0.4188034236431122, 0.37350428104400635, 0.4042735099792481, 0.3820512890815735, 0.4726495742797851, 0.4623931646347046, 0.4153846204280853, 0.38717949390411377, 0.38034188747406006, 0.3606837689876557, 0.488034188747406, 0.482051283121109, -0.01, 0.4000000059604645, 0.41111111640930176, 0.3572649657726288, 0.4188034236431122, 0.42393162846565247, 0.36666667461395264, 0.3641025722026825, 0.3957265019416809, 0.4076923131942749, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.46495726704597473, 0.42991453409194946, 0.3641025722026825, 0.40940171480178833, 0.4042735099792481, 0.4717948734760285, 0.46666666865348816, 0.4170940220355987, 0.34957265853881836, -0.01, 0.3102564215660095, 0.45897436141967773, 0.4632478654384613, 0.3700854778289795, 0.3811965882778168, 0.37948718667030334, 0.35555556416511536, 0.43504273891448975, 0.4017094075679779, 0.4000000059604645, 0.3965812027454376, 0.40940171480178833, 0.3752136826515198, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44273504614830017, 0.4367521405220032, 0.4162393212318421, 0.3769230842590332, 0.428205132484436, 0.38547009229660034, 0.45897436141967773, 0.45897436141967773, 0.4384615421295166, 0.36837607622146606, 0.40940171480178833, 0.3606837689876557, 0.4512820541858673, 0.45299145579338074, 0.3752136826515198, 0.4196581244468689, 0.41025641560554504, 0.38632479310035706, 0.4863247871398926, 0.4863247871398926, 0.4128205180168152, 0.3512820601463318, 0.4145299196243286, -0.01, 0.4863247871398926, 0.4863247871398926, 0.3965812027454376, 0.3452991545200348, 0.3931623995304108, 0.3811965882778168, 0.482051283121109, 0.4837606847286224, 0.4162393212318421, 0.3572649657726288, 0.39829060435295105, 0.38547009229660034, 0.4863247871398926, 0.4871794879436493, 0.44102564454078674, 0.3649572730064392, 0.4256410300731659, 0.428205132484436, 0.488034188747406, 0.488034188747406, 0.4153846204280853, 0.38034188747406006, 0.4555555582046509, 0.42222222685813904, 0.4863247871398926, 0.4863247871398926, 0.37863248586654663, 0.4008547067642212, 0.44017094373703, 0.4076923131942749, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.47863247990608215, 0.4717948734760285, 0.4017094075679779, 0.3717948794364929, 0.34273505210876465, 0.3017094135284424, 0.4572649598121643, 0.45897436141967773, 0.39743590354919434, 0.3700854778289795, 0.3769230842590332, 0.3760683834552765, 0.4683760702610016, 0.46666666865348816, 0.4170940220355987, 0.39145299792289734, 0.4008547067642212, 0.4025641083717346, 0.4572649598121643, 0.44786325097084045, 0.4085470139980316, 0.3777777850627899, 0.3905982971191406, 0.37863248586654663, 0.4606837630271912, 0.458119660615921, 0.4196581244468689, 0.3777777850627899, 0.3769230842590332, 0.3042735159397125, 0.4871794879436493, 0.4863247871398926, 0.39230769872665405, 0.3777777850627899, 0.36666667461395264, 0.36837607622146606, 0.26239317655563354, 0.24871794879436493, 0.3529914617538452, 0.37948718667030334, 0.3521367609500885, 0.3752136826515198, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4692307710647583, 0.4059829115867615, 0.3598290681838989, 0.41025641560554504, 0.41025641560554504, -0.01, 0.464102566242218, 0.4188034236431122, 0.35384616255760193, 0.36239317059516907, 0.3461538553237915, 0.3136752247810364, 0.31880342960357666, 0.33760684728622437, -0.01, 0.3769230842590332, 0.34786325693130493, 0.16410256922245026, 0.1666666716337204, 0.3290598392486572, 0.3880341947078705, 0.3461538553237915, 0.3324786424636841, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4452991485595703, 0.4384615421295166, 0.40940171480178833, 0.40341880917549133, 0.42307692766189575, -0.01, 0.4598290622234345, 0.45897436141967773, 0.3846153914928436, 0.38717949390411377, 0.4290598332881927, 0.3581196665763855, 0.23162393271923065, 0.18717949092388153, 0.31794872879981995, 0.4008547067642212, 0.37863248586654663, 0.3410256505012512, 0.4837606847286224, 0.4717948734760285, 0.3888888955116272, 0.3649572730064392, 0.4051282107830048, 0.3940171003341675, 0.4846153855323791, 0.4846153855323791, 0.34188035130500793, 0.3717948794364929, 0.4000000059604645, -0.01, 0.4811965823173523, 0.4829059839248657, 0.4162393212318421, -0.01, 0.3880341947078705, 0.3897435963153839, 0.4863247871398926, 0.4863247871398926, 0.42393162846565247, 0.38034188747406006, 0.4290598332881927, 0.4196581244468689, -0.01, 0.4863247871398926, 0.43418803811073303, 0.39829060435295105, 0.4632478654384613, 0.4307692348957062, 0.4863247871398926, 0.4863247871398926, 0.42393162846565247, 0.40341880917549133, 0.44188034534454346, 0.42222222685813904, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4863247871398926, 0.4692307710647583, 0.4683760702610016, 0.3700854778289795, 0.3589743673801422, 0.3384615480899811, 0.31880342960357666, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4555555582046509, 0.4435897469520569, 0.4042735099792481, 0.3692307770252228, 0.4008547067642212, 0.38632479310035706, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4871794879436493, 0.4863247871398926, -0.01, 0.38632479310035706, -0.01, -0.01, 0.4170940220355987, 0.4316239356994629, 0.40341880917549133, 0.3846153914928436, 0.4128205180168152, 0.3940171003341675, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4153846204280853, -0.01, -0.01, 0.3880341947078705, 0.46581196784973145, 0.46666666865348816, 0.3888888955116272, 0.34786325693130493, -0.01, 0.35555556416511536, 0.458119660615921, 0.4675213694572449, 0.4085470139980316, 0.3897435963153839, 0.41025641560554504, 0.37435898184776306, 0.4273504316806793, -0.01, 0.38632479310035706, -0.01, 0.41196581721305847, 0.3769230842590332, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43418803811073303, 0.4367521405220032, 0.4188034236431122, 0.38547009229660034, 0.43504273891448975, 0.4136752188205719, 0.4632478654384613, 0.4555555582046509, 0.43504273891448975, 0.36239317059516907, 0.42393162846565247, 0.3837606906890869, 0.4504273533821106, 0.4495726525783539, 0.4316239356994629, 0.3888888955116272, 0.40341880917549133, 0.36239317059516907, 0.4863247871398926, 0.4863247871398926, 0.4042735099792481, 0.3641025722026825, 0.4264957308769226, 0.4025641083717346, 0.4863247871398926, 0.4863247871398926, 0.3752136826515198, 0.34358975291252136, 0.4068376123905182, 0.3777777850627899, 0.4829059839248657, 0.4837606847286224, 0.3957265019416809, 0.37350428104400635, 0.40341880917549133, 0.3897435963153839, 0.4863247871398926, 0.4863247871398926, 0.4256410300731659, 0.36752137541770935, 0.4247863292694092, 0.4128205180168152, 0.488034188747406, 0.488034188747406, 0.4487179517745972, 0.3829059898853302, 0.44786325097084045, 0.4196581244468689, 0.4863247871398926, -0.01, 0.41025641560554504, 0.4008547067642212, 0.4213675260543823, 0.4068376123905182], "098iecnp": [0.4324786365032196, 0.4025641083717346, 0.3572649657726288, 0.4162393212318421, 0.3829059898853302, 0.38034188747406006, 0.39914530515670776, 0.4256410300731659, 0.3649572730064392, 0.41111111640930176, 0.39829060435295105, 0.39914530515670776, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4213675260543823, 0.4076923131942749, 0.37350428104400635, 0.4017094075679779, 0.39230769872665405, 0.4247863292694092, 0.3820512890815735, 0.3658119738101959, 0.35384616255760193, 0.4008547067642212, 0.39914530515670776, 0.40341880917549133, 0.4196581244468689, 0.38034188747406006, 0.2769230902194977, 0.4273504316806793, 0.39914530515670776, 0.3709401786327362, 0.3700854778289795, 0.3692307770252228, 0.3461538553237915, 0.4213675260543823, 0.3700854778289795, 0.3752136826515198, 0.34871795773506165, 0.36666667461395264, 0.36837607622146606, 0.34786325693130493, 0.33076924085617065, 0.3213675320148468, 0.4068376123905182, 0.4017094075679779, 0.37350428104400635, 0.44017094373703, 0.3752136826515198, 0.3641025722026825, 0.4136752188205719, 0.428205132484436, 0.3811965882778168, 0.4495726525783539, 0.4179487228393554, 0.37948718667030334, 0.3726495802402496, 0.3461538553237915, 0.2914530038833618, 0.45897436141967773, 0.38034188747406006, 0.3820512890815735, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3897435963153839, 0.3897435963153839, 0.3401709496974945, 0.4316239356994629, 0.35470086336135864, 0.3581196665763855, 0.3641025722026825, 0.41196581721305847, 0.3692307770252228, 0.4213675260543823, 0.27606838941574097, 0.24273504316806793, 0.2829059958457947, 0.28119659423828125, 0.43589743971824646, 0.4256410300731659, 0.3931623995304108, 0.4008547067642212, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3572649657726288, 0.34188035130500793, 0.4145299196243286, 0.4170940220355987, 0.3752136826515198, 0.3658119738101959, 0.3504273593425751, 0.35641026496887207, 0.34358975291252136, 0.4076923131942749, 0.3196581304073334, 0.2974359095096588, 0.3461538553237915, 0.4008547067642212, 0.3726495802402496, 0.4136752188205719, 0.38547009229660034, 0.4076923131942749, 0.38547009229660034, 0.37948718667030334, 0.3572649657726288, 0.4136752188205719, 0.4153846204280853, 0.3965812027454376, 0.32564103603363037, 0.33162394165992737, 0.36837607622146606, 0.4000000059604645, 0.3888888955116272, 0.3709401786327362, 0.3837606906890869, 0.3752136826515198, 0.3512820601463318, 0.42222222685813904, 0.34273505210876465, 0.36239317059516907, 0.37435898184776306, 0.36239317059516907, 0.3700854778289795, 0.39829060435295105, 0.3470085561275482, 0.3341880440711975, 0.4264957308769226, 0.41111111640930176, 0.3692307770252228, 0.42222222685813904, 0.3649572730064392, 0.4008547067642212, 0.37948718667030334, 0.3905982971191406, 0.34871795773506165, 0.39914530515670776, 0.39230769872665405, 0.4051282107830048, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4008547067642212, 0.38547009229660034, 0.35470086336135864, 0.4196581244468689, 0.36752137541770935, 0.41196581721305847, 0.38632479310035706, 0.3615384697914123, 0.3136752247810364, 0.4000000059604645, 0.3529914617538452, 0.3700854778289795, 0.4495726525783539, 0.4487179517745972, 0.3649572730064392, 0.44102564454078674, 0.38717949390411377, 0.4008547067642212, 0.3905982971191406, 0.3888888955116272, 0.3153846263885498, 0.42307692766189575, 0.33076924085617065, 0.31282052397727966, 0.39914530515670776, 0.4025641083717346, 0.34273505210876465, 0.33589744567871094, 0.3444444537162781, 0.3709401786327362, 0.42991453409194946, 0.4376068413257599, 0.3632478713989258, 0.4324786365032196, 0.3606837689876557, 0.3752136826515198, 0.4316239356994629, 0.43504273891448975, 0.3153846263885498, 0.4487179517745972, 0.4136752188205719, 0.4008547067642212, 0.3401709496974945, 0.34871795773506165, 0.4196581244468689, 0.4504273533821106, 0.3521367609500885, 0.34273505210876465, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3401709496974945, 0.3581196665763855, 0.33589744567871094, 0.42307692766189575, 0.29230770468711853, 0.3641025722026825, 0.3769230842590332, 0.3700854778289795, 0.30598291754722595, 0.42393162846565247, 0.28205129504203796, 0.25726497173309326, 0.36239317059516907, 0.35384616255760193, 0.4205128252506256, 0.428205132484436, 0.4068376123905182, 0.4076923131942749, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3606837689876557, 0.3529914617538452, 0.2777777910232544, 0.4213675260543823, 0.36239317059516907, 0.3965812027454376, 0.3572649657726288, 0.3350427448749542, 0.3213675320148468, 0.41196581721305847, 0.3632478713989258, 0.40341880917549133, 0.34871795773506165, 0.3222222328186035, 0.3410256505012512, 0.4153846204280853, 0.3905982971191406, 0.36239317059516907, 0.3264957368373871, 0.3264957368373871, 0.42393162846565247, 0.4196581244468689, 0.3957265019416809, 0.3649572730064392, 0.35470086336135864, 0.3205128312110901, 0.34188035130500793, 0.4076923131942749, 0.39230769872665405, 0.39145299792289734, 0.35641026496887207, 0.35555556416511536, 0.3658119738101959, 0.4068376123905182, 0.3948718011379242, 0.4008547067642212, 0.3717948794364929, 0.4000000059604645, 0.31111112236976624, 0.428205132484436, 0.3888888955116272, 0.38632479310035706, 0.4162393212318421, 0.4179487228393554, 0.30512821674346924, 0.4162393212318421, 0.3940171003341675, 0.4136752188205719, 0.3641025722026825, 0.4264957308769226, 0.36666667461395264, 0.41025641560554504, 0.3965812027454376, 0.3957265019416809, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42393162846565247, 0.41111111640930176, 0.3521367609500885, 0.4085470139980316, 0.37350428104400635, 0.3811965882778168, 0.39230769872665405, 0.38717949390411377, 0.3521367609500885, 0.4017094075679779, 0.3717948794364929, 0.3846153914928436, 0.39230769872665405, 0.38717949390411377, 0.3444444537162781, 0.4444444477558136, 0.3709401786327362, 0.37350428104400635, 0.428205132484436, 0.4008547067642212, 0.3393162488937378, 0.39829060435295105, 0.3529914617538452, 0.3393162488937378, 0.4076923131942749, 0.38632479310035706, 0.3760683834552765, 0.33760684728622437, 0.3333333432674408, 0.3264957368373871, 0.4162393212318421, 0.4076923131942749, 0.3641025722026825, 0.4435897469520569, 0.3700854778289795, 0.3888888955116272, 0.3880341947078705, 0.42393162846565247, 0.3777777850627899, 0.4452991485595703, 0.4188034236431122, 0.39145299792289734, 0.37435898184776306, 0.3102564215660095, 0.3717948794364929, 0.45299145579338074, 0.3717948794364929, 0.3948718011379242, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41196581721305847, 0.3888888955116272, 0.33589744567871094, 0.43418803811073303, 0.3290598392486572, 0.34273505210876465, 0.36752137541770935, 0.3529914617538452, 0.34786325693130493, 0.4290598332881927, 0.27008548378944397, 0.2290598303079605, 0.32478633522987366, 0.3572649657726288, 0.42991453409194946, 0.42991453409194946, 0.3940171003341675, 0.41025641560554504, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3632478713989258, 0.3410256505012512, 0.34871795773506165, 0.4025641083717346, 0.37350428104400635, 0.3880341947078705, 0.35641026496887207, 0.3606837689876557, 0.3213675320148468, 0.4008547067642212, 0.3034188151359558, 0.2829059958457947, 0.3470085561275482, 0.3760683834552765, 0.3777777850627899, 0.4153846204280853, 0.3957265019416809, 0.39829060435295105, 0.39230769872665405, 0.37948718667030334, 0.32478633522987366, 0.4076923131942749, 0.39914530515670776, 0.3837606906890869, 0.2829059958457947, 0.2897436022758484, 0.3264957368373871, 0.4188034236431122, 0.3658119738101959, 0.3769230842590332, 0.4136752188205719, 0.40341880917549133, 0.3752136826515198, 0.4213675260543823, 0.3589743673801422, 0.35641026496887207, 0.36666667461395264, 0.39145299792289734, 0.3589743673801422, 0.4188034236431122, 0.38034188747406006, 0.3888888955116272], "cgm5lh8e": [0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, -0.01, -0.01, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4982905983924866, 0.44188034534454346, 0.4991452991962433, 0.4632478654384613, 0.4991452991962433, 0.45299145579338074, 0.4991452991962433, 0.43589743971824646, 0.4991452991962433, 0.46495726704597473, 0.4923076927661896, 0.4871794879436493, -0.01, -0.01, -0.01, -0.01, 0.4888888895511627, 0.4606837630271912, 0.4837606847286224, 0.4692307710647583, 0.4846153855323791, 0.47863247990608215, -0.01, -0.01, -0.01, -0.01, 0.47863247990608215, 0.4376068413257599, 0.4495726525783539, 0.4555555582046509, 0.4837606847286224, 0.4982905983924866, 0.4982905983924866, 0.5, 0.49658119678497314, 0.49145299196243286, 0.4991452991962433, 0.4803418815135956, 0.4991452991962433, 0.4982905983924866, 0.5, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, -0.01, -0.01, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.5, 0.45299145579338074, 0.4991452991962433, 0.482051283121109, 0.4991452991962433, 0.4606837630271912, 0.4931623935699463, 0.4290598332881927, 0.4991452991962433, 0.4512820541858673, 0.4769230782985687, 0.48974359035491943, -0.01, -0.01, -0.01, -0.01, 0.470085471868515, 0.45384615659713745, 0.4837606847286224, 0.4615384638309479, 0.4957264959812164, 0.4931623935699463, -0.01, -0.01, -0.01, -0.01, 0.482051283121109, 0.4444444477558136, 0.452136754989624, 0.428205132484436, 0.4948717951774597, 0.4991452991962433, 0.4982905983924866, 0.4948717951774597, 0.4991452991962433, 0.4982905983924866, 0.5, 0.4923076927661896, 0.4982905983924866, 0.4948717951774597, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4991452991962433, 0.4726495742797851, 0.46495726704597473, 0.4487179517745972, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4991452991962433, 0.4991452991962433, 0.49743589758872986, 0.4692307710647583, 0.4991452991962433, 0.4863247871398926, 0.452136754989624, 0.4495726525783539, 0.44700855016708374, 0.48547008633613586, 0.47777777910232544, 0.4829059839248657, 0.4179487228393554, 0.4735042750835418, 0.4982905983924866, 0.4991452991962433, 0.4452991485595703, 0.4991452991962433, 0.4162393212318421, 0.4991452991962433, 0.4803418815135956, 0.4153846204280853, 0.4991452991962433, 0.4991452991962433, 0.48974359035491943, 0.4982905983924866, 0.5, 0.4991452991962433, 0.47863247990608215, 0.5, 0.4991452991962433], "ebnsel1o": [0.4829059829059829, 0.4752136752136752, -0.01, 0.48205128205128206, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.43846153846153846, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, -0.01, -0.01, 0.47264957264957264, 0.4717948717948718, 0.4871794871794872, 0.4871794871794872, -0.01, -0.01, 0.4752136752136752, 0.4641025641025641, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.476068376068376, 0.47863247863247865, 0.4871794871794872, 0.4717948717948718, 0.4735042735042735, -0.01, 0.4829059829059829, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.45555555555555555, 0.4863247863247863, 0.4871794871794872, 0.4871794871794872, -0.01, -0.01, 0.46495726495726497, 0.47094017094017093, 0.4871794871794872, 0.4871794871794872, -0.01, -0.01, 0.47692307692307695, 0.48205128205128206, 0.4863247863247863, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4777777777777778, 0.48376068376068376, 0.4871794871794872, 0.4829059829059829, 0.4803418803418803, -0.01, 0.4811965811965812, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.4435897435897436, 0.4871794871794872, 0.4871794871794872, 0.488034188034188, -0.01, -0.01, -0.01, 0.47435897435897434, 0.4871794871794872, 0.4863247863247863, -0.01, -0.01, 0.47435897435897434, 0.4794871794871795, 0.4863247863247863, 0.4871794871794872, 0.4871794871794872, 0.4871794871794872, 0.47264957264957264, 0.48376068376068376, -0.01], "75eb8mu2": [0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.3995000123977661, 0.3930000066757202, 0.351500004529953, 0.3154999911785126, 0.3434999883174896, 0.3639999926090241, 0.4045000076293946, 0.40299999713897705, 0.35249999165534973, 0.3095000088214874, 0.35350000858306885, 0.3544999957084656, 0.3659999966621399, 0.37299999594688416, 0.3639999926090241, 0.35899999737739563, 0.35600000619888306, 0.36550000309944153, 0.38999998569488525, 0.3964999914169311, 0.34200000762939453, 0.30000001192092896, 0.3569999933242798, 0.3610000014305115, 0.4124999940395355, 0.4104999899864197, 0.3569999933242798, 0.31200000643730164, 0.35749998688697815, 0.3580000102519989, 0.4189999997615814, 0.4180000126361847, 0.3334999978542328, 0.3089999854564667, 0.3499999940395355, 0.35600000619888306, 0.41350001096725464, 0.4099999964237213, 0.3765000104904175, 0.34549999237060547, 0.38449999690055847, 0.3910000026226044, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4180000126361847, 0.4169999957084656, 0.3970000147819519, 0.3334999978542328, 0.4129999876022339, 0.4104999899864197, 0.39800000190734863, 0.3919999897480011, 0.3919999897480011, 0.34150001406669617, 0.39399999380111694, 0.39250001311302185, 0.4194999933242798, 0.4194999933242798, 0.3499999940395355, 0.32749998569488525, 0.3734999895095825, 0.3840000033378601, 0.4074999988079071, 0.4045000076293946, 0.3700000047683716, 0.31949999928474426, 0.3804999887943268, 0.3790000081062317, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4194999933242798, 0.41749998927116394, 0.39399999380111694, 0.3240000009536743, -0.01, 0.4034999907016754, 0.3975000083446502, 0.40299999713897705, 0.3869999945163727, 0.34549999237060547, -0.01, 0.3849999904632568, 0.4205000102519989, 0.41850000619888306, 0.3634999990463257, 0.33500000834465027, 0.3630000054836273, 0.3695000112056732, 0.4255000054836273, 0.4259999990463257, 0.3799999952316284, 0.32499998807907104, 0.3975000083446502, 0.38999998569488525, 0.42500001192092896, 0.42500001192092896, 0.38100001215934753, 0.3255000114440918, 0.38850000500679016, 0.38850000500679016, 0.42250001430511475, 0.4230000078678131, 0.398499995470047, 0.3889999985694885, 0.40549999475479126, 0.4079999923706054, 0.4259999990463257, 0.4259999990463257, -0.01, 0.328000009059906, 0.4124999940395355, 0.414000004529953, 0.42500001192092896, 0.42500001192092896, 0.3889999985694885, 0.351500004529953, 0.4014999866485596, 0.4004999995231629, 0.4259999990463257, 0.4259999990463257, 0.38749998807907104, 0.32249999046325684, 0.37700000405311584, 0.375, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, -0.01, 0.4259999990463257, 0.3964999914169311, 0.3930000066757202, 0.34299999475479126, 0.32749998569488525, 0.3695000112056732, 0.37299999594688416, 0.4059999883174896, 0.4059999883174896, 0.3504999876022339, 0.31349998712539673, 0.3490000069141388, -0.01, 0.382999986410141, 0.37700000405311584, 0.3684999942779541, 0.36800000071525574, 0.3714999854564667, 0.3754999935626984, 0.3889999985694885, 0.3894999921321869, 0.35899999737739563, 0.3100000023841858, 0.35850000381469727, 0.36899998784065247, 0.4154999852180481, 0.4124999940395355, 0.351500004529953, 0.3070000112056732, 0.3630000054836273, 0.36250001192092896, 0.42250001430511475, 0.4189999997615814, 0.3434999883174896, 0.2854999899864197, 0.34850001335144043, 0.3555000126361847, 0.4099999964237213, 0.40299999713897705, 0.38850000500679016, 0.35850000381469727, 0.3754999935626984, 0.3684999942779541, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4180000126361847, 0.4189999997615814, 0.4124999940395355, 0.3610000014305115, 0.414000004529953, 0.4165000021457672, -0.01, 0.3975000083446502, 0.3975000083446502, 0.3619999885559082, 0.4020000100135803, 0.398499995470047, 0.42100000381469727, 0.42250001430511475, 0.35100001096725464, 0.3449999988079071, 0.35499998927116394, 0.3569999933242798, 0.4050000011920929, 0.4074999988079071, 0.3880000114440918, 0.32899999618530273, 0.3754999935626984, 0.3630000054836273, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41749998927116394, 0.42100000381469727, 0.40950000286102295, 0.35249999165534973, 0.4104999899864197, 0.414000004529953, 0.4090000092983246, 0.4074999988079071, 0.3995000123977661, 0.36149999499320984, 0.39250001311302185, 0.39899998903274536, 0.4205000102519989, 0.4194999933242798, 0.351500004529953, 0.3400000035762787, 0.3544999957084656, 0.3544999957084656, 0.4264999926090241, 0.4264999926090241, 0.3774999976158142, 0.335999995470047, 0.3790000081062317, 0.3865000009536743, 0.4264999926090241, 0.4264999926090241, 0.382999986410141, 0.3330000042915344, 0.3849999904632568, 0.39399999380111694, 0.42250001430511475, 0.4235000014305115, 0.3930000066757202, 0.37599998712539673, 0.3894999921321869, 0.3935000002384186, 0.4259999990463257, 0.4259999990463257, 0.4104999899864197, 0.35749998688697815, 0.4264999926090241, 0.4269999861717224, 0.42800000309944153, 0.4284999966621399, 0.390500009059906, 0.37400001287460327, 0.4120000004768371, 0.4079999923706054, 0.4259999990463257, 0.4259999990463257, 0.35899999737739563, 0.32350000739097595, 0.3650000095367432, 0.3714999854564667, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, -0.01, 0.4259999990463257, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.4259999990463257, 0.3855000138282776, 0.3849999904632568, 0.3774999976158142, 0.32350000739097595, 0.3634999990463257, 0.35749998688697815, 0.40400001406669617, 0.4034999907016754, 0.359499990940094, 0.3179999887943268, 0.35850000381469727, 0.36800000071525574, 0.3734999895095825, -0.01, 0.3709999918937683, 0.3650000095367432, 0.3630000054836273, 0.37299999594688416, 0.39149999618530273, 0.39800000190734863, 0.36250001192092896, 0.3050000071525574, 0.3659999966621399, 0.3659999966621399, 0.4115000069141388, 0.4045000076293946, 0.3544999957084656, 0.3154999911785126, 0.3564999997615814, 0.36000001430511475, 0.4214999973773956, 0.42250001430511475, 0.3465000092983246, 0.30300000309944153, -0.01, 0.3544999957084656, 0.4090000092983246, 0.4124999940395355, 0.3910000026226044, 0.3490000069141388, -0.01, 0.3889999985694885, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4205000102519989, 0.4149999916553498, -0.01, -0.01, 0.4160000085830689, -0.01, -0.01, 0.39500001072883606, 0.3970000147819519, -0.01, 0.3970000147819519, 0.3959999978542328, -0.01, 0.4194999933242798, 0.3639999926090241, 0.32749998569488525, 0.3639999926090241, 0.3714999854564667, -0.01, -0.01, 0.37700000405311584, 0.335999995470047, 0.38449999690055847, 0.38350000977516174, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4194999933242798, 0.4214999973773956, 0.40299999713897705, 0.3499999940395355, 0.41749998927116394, 0.41850000619888306, 0.3955000042915344, 0.38999998569488525, 0.3955000042915344, 0.3659999966621399, 0.3910000026226044, 0.3869999945163727, 0.4194999933242798, 0.4189999997615814, 0.3540000021457672, 0.3199999928474426, 0.36649999022483826, 0.3630000054836273, 0.4244999885559082, 0.42399999499320984, 0.3944999873638153, 0.33799999952316284, 0.3889999985694885, 0.3894999921321869, 0.4244999885559082, 0.42500001192092896, 0.3840000033378601, 0.3370000123977661, -0.01, 0.390500009059906, 0.42399999499320984, 0.42500001192092896, 0.3955000042915344, 0.3919999897480011, 0.3964999914169311, 0.4000000059604645, -0.01, 0.4259999990463257, 0.4050000011920929, 0.35749998688697815, 0.42399999499320984, 0.42399999499320984, 0.4255000054836273, 0.4255000054836273, 0.3894999921321869, 0.3720000088214874, 0.40400001406669617, 0.4045000076293946, 0.4259999990463257, 0.4259999990463257, 0.37299999594688416, 0.32100000977516174, 0.36800000071525574, 0.375], "sf8u6xh6": [0.35100001096725464, 0.35249999165534973, 0.30000001192092896, 0.3684999942779541, 0.32249999046325684, 0.30000001192092896, 0.3529999852180481, 0.34200000762939453, 0.2930000126361847, 0.35899999737739563, 0.28349998593330383, 0.31349998712539673, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34049999713897705, 0.36250001192092896, 0.2904999852180481, 0.3675000071525574, 0.3109999895095825, 0.29499998688697815, 0.34599998593330383, 0.34549999237060547, 0.30399999022483826, 0.36550000309944153, 0.2669999897480011, 0.26899999380111694, 0.3465000092983246, 0.34549999237060547, 0.2930000126361847, 0.3714999854564667, 0.3070000112056732, 0.32100000977516174, 0.3474999964237213, 0.3639999926090241, 0.28299999237060547, 0.3700000047683716, 0.30550000071525574, 0.31700000166893005, 0.29899999499320984, 0.29750001430511475, 0.29249998927116394, 0.29750001430511475, 0.3005000054836273, 0.28949999809265137, 0.3790000081062317, 0.3734999895095825, 0.30649998784065247, 0.3639999926090241, 0.2930000126361847, 0.28600001335144043, 0.3449999988079071, 0.34599998593330383, 0.32100000977516174, 0.35499998927116394, 0.30550000071525574, 0.3059999942779541, 0.3255000114440918, 0.33250001072883606, 0.30300000309944153, 0.3619999885559082, 0.3005000054836273, 0.29750001430511475, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3544999957084656, 0.34950000047683716, 0.3190000057220459, 0.34950000047683716, 0.30399999022483826, 0.3165000081062317, 0.3330000042915344, 0.3190000057220459, 0.2854999899864197, 0.3449999988079071, 0.3154999911785126, 0.3050000071525574, 0.3059999942779541, 0.3075000047683716, 0.3050000071525574, 0.3434999883174896, 0.31850001215934753, 0.28200000524520874, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33500000834465027, 0.35100001096725464, 0.29499998688697815, 0.36899998784065247, 0.29899999499320984, 0.3084999918937683, 0.3160000145435333, 0.29899999499320984, 0.31700000166893005, 0.37299999594688416, 0.30799999833106995, 0.3100000023841858, 0.31450000405311584, 0.3174999952316284, 0.3109999895095825, 0.34049999713897705, 0.2944999933242798, 0.2955000102519989, 0.33250001072883606, 0.33500000834465027, 0.30149999260902405, 0.3555000126361847, 0.304500013589859, 0.2874999940395355, 0.3019999861717224, 0.3075000047683716, 0.304500013589859, 0.28299999237060547, 0.296999990940094, 0.30300000309944153, 0.3540000021457672, 0.3479999899864197, 0.2994999885559082, 0.36550000309944153, 0.31349998712539673, 0.3019999861717224, 0.3215000033378601, 0.32749998569488525, 0.30550000071525574, 0.3700000047683716, 0.29899999499320984, 0.304500013589859, 0.35249999165534973, 0.35749998688697815, 0.29249998927116394, 0.3644999861717224, 0.30149999260902405, 0.304500013589859, 0.3619999885559082, 0.3720000088214874, 0.2865000069141388, 0.3675000071525574, 0.289000004529953, 0.29649999737739563, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3409999907016754, 0.35499998927116394, 0.3005000054836273, 0.36550000309944153, 0.29249998927116394, 0.3009999990463257, 0.3305000066757202, 0.3240000009536743, 0.2770000100135803, 0.3555000126361847, 0.3095000088214874, 0.2980000078678131, 0.3449999988079071, 0.3449999988079071, 0.31450000405311584, 0.3634999990463257, 0.30250000953674316, 0.30250000953674316, 0.3695000112056732, 0.36149999499320984, 0.320499986410141, 0.3644999861717224, 0.28600001335144043, 0.29100000858306885, 0.30799999833106995, 0.30649998784065247, 0.2915000021457672, 0.289000004529953, 0.29350000619888306, 0.29649999737739563, 0.3725000023841858, 0.3700000047683716, 0.3050000071525574, 0.351500004529953, 0.304500013589859, 0.2955000102519989, 0.3605000078678131, 0.36000001430511475, 0.27900001406669617, 0.35199999809265137, 0.3149999976158142, 0.31200000643730164, 0.31150001287460327, 0.3215000033378601, 0.2565000057220459, 0.34200000762939453, 0.3075000047683716, 0.3070000112056732, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.35100001096725464, 0.3375000059604645, 0.3100000023841858, 0.3474999964237213, 0.31850001215934753, 0.2939999997615814, 0.32249999046325684, 0.3174999952316284, 0.28200000524520874, 0.3605000078678131, 0.32350000739097595, 0.3255000114440918, 0.30799999833106995, 0.3009999990463257, 0.2919999957084656, 0.3544999957084656, 0.3084999918937683, 0.30250000953674316, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3474999964237213, 0.34450000524520874, 0.2720000147819519, 0.3650000095367432, 0.31200000643730164, 0.29249998927116394, 0.3230000138282776, 0.3230000138282776, 0.3009999990463257, 0.3630000054836273, 0.2955000102519989, 0.31349998712539673, 0.3059999942779541, 0.30149999260902405, 0.296999990940094, 0.3499999940395355, 0.3034999966621399, 0.30799999833106995, 0.32100000977516174, 0.3395000100135803, 0.3165000081062317, 0.35749998688697815, 0.31049999594688416, 0.3230000138282776, 0.3019999861717224, 0.31700000166893005, 0.3050000071525574, 0.2815000116825104, 0.3140000104904175, 0.31450000405311584, 0.34700000286102295, 0.34850001335144043, 0.3084999918937683, 0.3675000071525574, 0.2919999957084656, 0.296999990940094, 0.304500013589859, 0.31049999594688416, 0.2939999997615814, 0.3639999926090241, 0.29499998688697815, 0.29750001430511475, 0.34150001406669617, 0.3370000123977661, 0.3095000088214874, 0.36250001192092896, 0.2775000035762787, 0.29649999737739563, 0.3434999883174896, 0.33149999380111694, 0.289000004529953, 0.36149999499320984, 0.3154999911785126, 0.3089999854564667, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3409999907016754, 0.3125, 0.30399999022483826, 0.3639999926090241, 0.3005000054836273, 0.29649999737739563, 0.3400000035762787, 0.3409999907016754, 0.3070000112056732, 0.359499990940094, 0.3100000023841858, 0.30300000309944153, 0.36000001430511475, 0.35600000619888306, 0.31349998712539673, 0.3684999942779541, 0.3075000047683716, 0.30250000953674316, 0.3610000014305115, 0.3384999930858612, 0.30300000309944153, 0.3700000047683716, 0.3109999895095825, 0.28200000524520874, 0.2915000021457672, 0.3034999966621399, 0.31200000643730164, 0.3125, 0.3109999895095825, 0.320499986410141, 0.36649999022483826, 0.367000013589859, 0.289000004529953, 0.35899999737739563, 0.30399999022483826, 0.30149999260902405, 0.3564999997615814, 0.35499998927116394, 0.289000004529953, 0.35350000858306885, 0.30799999833106995, 0.30000001192092896, 0.30799999833106995, 0.320499986410141, 0.27649998664855957, 0.3384999930858612, 0.28999999165534973, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.35100001096725464, 0.3605000078678131, 0.3070000112056732, 0.3474999964237213, 0.3179999887943268, 0.3109999895095825, 0.3005000054836273, 0.31450000405311584, 0.1784999966621399, 0.3529999852180481, 0.30000001192092896, 0.29899999499320984, 0.3160000145435333, 0.31049999594688416, 0.26249998807907104, 0.35350000858306885, 0.31700000166893005, 0.3125, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3440000116825104, 0.3425000011920929, 0.3165000081062317, 0.35350000858306885, 0.31049999594688416, 0.29100000858306885, 0.2919999957084656, 0.2879999876022339, 0.2854999899864197, 0.35749998688697815, 0.31850001215934753, 0.3154999911785126, 0.3140000104904175, 0.3434999883174896, 0.32850000262260437, 0.3474999964237213, 0.29249998927116394, 0.3075000047683716, 0.31450000405311584, 0.31200000643730164, 0.3100000023841858, 0.35850000381469727, 0.29499998688697815, 0.3154999911785126, 0.31349998712539673, 0.32100000977516174, 0.3050000071525574, 0.29649999737739563, 0.28999999165534973, 0.29350000619888306, 0.3504999876022339, 0.3619999885559082, 0.30550000071525574, 0.36149999499320984, 0.2865000069141388, 0.2955000102519989, 0.3089999854564667, 0.32600000500679016, 0.31049999594688416, 0.351500004529953, 0.3125, 0.2994999885559082], "02te0za8": [0.4370000064373016, 0.4370000064373016, 0.4370000064373016, 0.4370000064373016, -0.01, -0.01, 0.4370000064373016, 0.4370000064373016, 0.4375, 0.4375, 0.4124999940395355, 0.40299999713897705, 0.421999990940094, 0.4149999916553498, 0.40299999713897705, 0.3865000009536743, 0.40700000524520874, 0.3869999945163727, 0.4214999973773956, 0.4120000004768371, 0.41449999809265137, 0.41749998927116394, -0.01, -0.01, -0.01, -0.01, 0.4320000112056732, 0.4205000102519989, 0.4034999907016754, 0.4020000100135803, 0.40849998593330383, 0.4099999964237213, -0.01, -0.01, -0.01, -0.01, 0.4284999966621399, 0.4300000071525574, 0.39899998903274536, 0.3959999978542328, 0.4325000047683716, 0.42800000309944153, 0.4345000088214874, 0.4350000023841858, 0.43299999833106995, 0.4300000071525574, 0.43650001287460327, 0.4370000064373016, 0.4350000023841858, 0.43149998784065247, 0.4370000064373016, 0.4370000064373016, 0.4370000064373016, 0.4370000064373016, -0.01, -0.01, 0.4370000064373016, 0.4370000064373016, 0.4375, 0.4375, 0.3970000147819519, 0.3824999928474426, 0.4230000078678131, 0.4129999876022339, 0.40549999475479126, 0.3799999952316284, 0.3799999952316284, 0.36149999499320984, 0.42800000309944153, 0.4045000076293946, 0.3774999976158142, 0.3894999921321869, -0.01, -0.01, -0.01, -0.01, 0.4230000078678131, 0.42399999499320984, 0.3869999945163727, 0.3860000073909759, 0.37049999833106995, 0.37700000405311584, -0.01, -0.01, -0.01, -0.01, 0.4300000071525574, 0.42800000309944153, 0.3880000114440918, 0.3765000104904175, 0.43650001287460327, 0.4334999918937683, 0.4359999895095825, 0.43299999833106995, 0.429500013589859, 0.4255000054836273, 0.4370000064373016, 0.4350000023841858, 0.4339999854564667, 0.4300000071525574, 0.4375, 0.4375, 0.4375, 0.4375, -0.01, -0.01, 0.4375, 0.4375, 0.4375, 0.4375, 0.39800000190734863, 0.3869999945163727, 0.4325000047683716, 0.4205000102519989, 0.40950000286102295, 0.3824999928474426, 0.3765000104904175, 0.3785000145435333, 0.4235000014305115, 0.4214999973773956, 0.4205000102519989, 0.4205000102519989, -0.01, -0.01, -0.01, -0.01, 0.42899999022483826, 0.42500001192092896, 0.40700000524520874, 0.4090000092983246, 0.4120000004768371, 0.3995000123977661, -0.01, -0.01, -0.01, -0.01, 0.4284999966621399, 0.4244999885559082, 0.38999998569488525, 0.3855000138282776, 0.4350000023841858, 0.43299999833106995, 0.4339999854564667, 0.4350000023841858, 0.43299999833106995, 0.4269999861717224, 0.4359999895095825, 0.4350000023841858, 0.4359999895095825, 0.4375], "2xlnu6s7": [-0.01, 0.035, -0.01, -0.01, 0.4125, 0.412, 0.412, 0.412, 0.412, 0.2465, 0.412, 0.412, 0.412, -0.01, -0.01, 0.0305, 0.41, 0.412, 0.412, -0.01, -0.01, 0.064, 0.401, 0.412, 0.412, 0.412, 0.411, -0.01, 0.406, 0.412, 0.0005, -0.01, -0.01, -0.01, 0.4125, 0.412, 0.41, 0.412, 0.412, 0.196, 0.4115, 0.412, 0.412, -0.01, -0.01, 0.021, 0.393, 0.412, 0.412, -0.01, -0.01, 0.0255, 0.343, 0.412, 0.412, 0.412, 0.4115, -0.01, 0.391, 0.412, 0.002, 0.002, -0.01, 0.002, 0.412, 0.412, 0.4055, 0.412, 0.412, 0.15, 0.4115, 0.411, 0.4115, -0.01, -0.01, 0.0215, 0.4105, 0.412, 0.412, -0.01, -0.01, 0.0375, 0.4015, 0.4125, 0.412, 0.412, 0.411, -0.01, 0.404, 0.412], "l6gb8igg": [0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.2574999928474426, 0.2540000081062317, 0.23999999463558197, 0.2199999988079071, 0.22499999403953552, 0.22599999606609344, 0.2630000114440918, 0.26899999380111694, 0.23999999463558197, 0.22550000250339508, 0.22300000488758087, 0.23100000619888303, 0.27149999141693115, 0.27000001072883606, 0.25049999356269836, 0.23600000143051147, 0.24250000715255737, 0.24300000071525577, 0.2485000044107437, 0.2565000057220459, 0.22550000250339508, 0.2214999943971634, 0.23149999976158145, 0.2329999953508377, 0.2639999985694885, 0.26350000500679016, 0.2345000058412552, 0.22849999368190765, 0.22300000488758087, 0.22499999403953552, 0.2605000138282776, 0.265500009059906, 0.23250000178813937, 0.23749999701976776, 0.2294999957084656, 0.22200000286102295, 0.25, 0.24050000309944153, 0.21699999272823337, 0.2240000069141388, 0.2240000069141388, 0.21199999749660492, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26350000500679016, 0.26649999618530273, 0.2524999976158142, 0.22200000286102295, 0.23999999463558197, 0.2395000010728836, 0.244499996304512, 0.2450000047683716, 0.2335000038146973, 0.23100000619888303, 0.2409999966621399, 0.2319999933242798, 0.2574999928474426, 0.2619999945163727, 0.22050000727176663, 0.22849999368190765, 0.20900000631809235, 0.2070000022649765, 0.2434999942779541, 0.2475000023841858, 0.23849999904632568, 0.23100000619888303, 0.2300000041723251, 0.2240000069141388, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25099998712539673, 0.2460000067949295, 0.2554999887943268, 0.2419999986886978, 0.23649999499320984, 0.24150000512599945, 0.2419999986886978, 0.24899999797344208, 0.25200000405311584, 0.2460000067949295, 0.23849999904632568, 0.24050000309944153, 0.25949999690055847, 0.2590000033378601, 0.22349999845027924, 0.24050000309944153, 0.22499999403953552, 0.22349999845027924, 0.2759999930858612, 0.2705000042915344, 0.2419999986886978, 0.23999999463558197, 0.2475000023841858, 0.2515000104904175, 0.2770000100135803, 0.2745000123977661, 0.2460000067949295, 0.23600000143051147, 0.23800000548362732, 0.2419999986886978, 0.27549999952316284, 0.273499995470047, 0.2565000057220459, 0.2319999933242798, 0.2460000067949295, 0.24950000643730164, 0.2745000123977661, 0.273499995470047, 0.2434999942779541, 0.23549999296665192, 0.25099998712539673, 0.2590000033378601, 0.2639999985694885, 0.2685000002384186, 0.25850000977516174, 0.25049999356269836, 0.25450000166893005, 0.2540000081062317, 0.25699999928474426, 0.2630000114440918, 0.2370000034570694, 0.22750000655651093, 0.24549999833106995, 0.2440000027418137, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, -0.01, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26350000500679016, -0.01, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, -0.01, 0.26350000500679016, -0.01, 0.2554999887943268, 0.2370000034570694, 0.22050000727176663, 0.2370000034570694, 0.23250000178813937, -0.01, 0.2554999887943268, 0.24549999833106995, 0.2319999933242798, 0.24250000715255737, 0.24250000715255737, 0.2615000009536743, 0.2630000114440918, 0.2549999952316284, 0.244499996304512, 0.23100000619888303, 0.2329999953508377, 0.2524999976158142, 0.25450000166893005, 0.23149999976158145, 0.21699999272823337, 0.23999999463558197, 0.2290000021457672, 0.2639999985694885, 0.2574999928474426, 0.2214999943971634, 0.22699999809265137, 0.22200000286102295, 0.2160000056028366, 0.25600001215934753, 0.265500009059906, 0.22849999368190765, 0.2440000027418137, 0.2345000058412552, 0.22499999403953552, 0.1815000027418137, 0.1835000067949295, 0.21150000393390656, 0.21649999916553497, 0.2150000035762787, 0.2189999967813492, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25699999928474426, 0.2605000138282776, 0.2554999887943268, 0.2345000058412552, 0.2395000010728836, 0.2450000047683716, 0.24549999833106995, 0.2515000104904175, 0.25200000405311584, 0.23149999976158145, 0.2419999986886978, 0.25200000405311584, 0.2574999928474426, 0.2554999887943268, 0.20250000059604645, 0.2345000058412552, 0.2179999947547913, 0.2189999967813492, 0.2460000067949295, 0.18850000202655792, 0.2280000001192093, 0.21649999916553497, 0.2185000032186508, 0.2335000038146973, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2549999952316284, -0.01, 0.24699999392032623, 0.2329999953508377, 0.24699999392032623, 0.2574999928474426, 0.24150000512599945, 0.2440000027418137, 0.2370000034570694, 0.23549999296665192, 0.23899999260902405, -0.01, -0.01, 0.1965000033378601, 0.19850000739097595, 0.24300000071525577, 0.21299999952316284, -0.01, 0.26100000739097595, 0.2630000114440918, 0.2450000047683716, 0.23800000548362732, 0.24899999797344208, 0.25099998712539673, 0.2619999945163727, 0.2615000009536743, 0.25850000977516174, 0.24699999392032623, 0.2485000044107437, 0.2574999928474426, 0.26350000500679016, 0.2619999945163727, 0.25850000977516174, 0.2440000027418137, 0.23849999904632568, 0.24799999594688416, 0.2630000114440918, 0.26350000500679016, 0.2565000057220459, 0.2345000058412552, 0.25850000977516174, 0.2619999945163727, 0.265500009059906, 0.27000001072883606, 0.26249998807907104, 0.26499998569488525, 0.25850000977516174, 0.2590000033378601, 0.2605000138282776, 0.25850000977516174, 0.2335000038146973, 0.23250000178813937, 0.24699999392032623, 0.24699999392032623, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, -0.01, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, 0.26350000500679016, -0.01, 0.26350000500679016, 0.26350000500679016, -0.01, -0.01, 0.26350000500679016, 0.2535000145435333, 0.2515000104904175, 0.2290000021457672, 0.22499999403953552, 0.22349999845027924, 0.2304999977350235, 0.2639999985694885, 0.2694999873638153, -0.01, 0.22300000488758087, 0.2319999933242798, 0.23549999296665192, 0.2745000123977661, 0.2709999978542328, 0.2370000034570694, 0.22450000047683716, 0.2419999986886978, 0.2475000023841858, 0.25699999928474426, 0.2565000057220459, 0.22849999368190765, 0.22450000047683716, 0.22349999845027924, 0.23749999701976776, 0.2644999921321869, 0.257999986410141, 0.23849999904632568, 0.23800000548362732, 0.2290000021457672, 0.2440000027418137, 0.25999999046325684, 0.2669999897480011, 0.2160000056028366, 0.23600000143051147, 0.22599999606609344, 0.2214999943971634, 0.24650000035762787, 0.2440000027418137, 0.22100000083446503, 0.226500004529953, 0.23250000178813937, 0.2280000001192093, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26649999618530273, -0.01, 0.25099998712539673, -0.01, 0.2450000047683716, 0.24699999392032623, 0.24799999594688416, -0.01, -0.01, 0.22550000250339508, 0.23999999463558197, 0.24300000071525577, -0.01, 0.2605000138282776, 0.2240000069141388, 0.2300000041723251, 0.210999995470047, 0.20250000059604645, -0.01, 0.2529999911785126, 0.22450000047683716, 0.2290000021457672, 0.23250000178813937, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25450000166893005, 0.25450000166893005, 0.25049999356269836, 0.23149999976158145, 0.24250000715255737, 0.2524999976158142, -0.01, 0.2395000010728836, 0.23250000178813937, 0.2475000023841858, 0.24650000035762787, 0.2440000027418137, 0.26649999618530273, 0.26249998807907104, 0.2335000038146973, 0.23600000143051147, 0.2319999933242798, 0.23800000548362732, 0.27549999952316284, 0.2685000002384186, 0.2370000034570694, 0.23600000143051147, 0.2515000104904175, 0.23899999260902405, 0.2694999873638153, 0.2745000123977661, 0.24250000715255737, 0.23399999737739563, 0.2409999966621399, 0.24250000715255737, 0.2745000123977661, 0.28049999475479126, 0.25600001215934753, 0.23649999499320984, 0.25, 0.24799999594688416, 0.27300000190734863, 0.26249998807907104, -0.01, 0.22750000655651093, 0.25999999046325684, 0.26249998807907104, 0.26649999618530273, 0.2694999873638153, 0.25999999046325684, 0.2540000081062317, 0.26249998807907104, 0.2565000057220459, 0.25850000977516174, 0.2605000138282776, 0.24250000715255737, 0.22699999809265137, 0.2450000047683716, 0.244499996304512], "58296xo1": [0.20900000631809235, 0.20600000023841855, 0.19099999964237213, 0.2524999976158142, 0.2080000042915344, 0.20250000059604645, 0.2224999964237213, 0.23499999940395355, 0.1940000057220459, 0.24650000035762787, 0.1955000013113022, 0.18549999594688416, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23250000178813937, 0.2160000056028366, 0.2074999958276749, 0.24899999797344208, 0.193000003695488, 0.18449999392032623, 0.21449999511241913, 0.2300000041723251, 0.18549999594688416, 0.24799999594688416, 0.20149999856948853, 0.2074999958276749, 0.21549999713897705, 0.22300000488758087, 0.1965000033378601, 0.2565000057220459, 0.19599999487400055, 0.193000003695488, 0.22699999809265137, 0.23749999701976776, 0.19599999487400055, 0.2409999966621399, 0.2039999961853027, 0.19200000166893005, 0.21150000393390656, 0.20350000262260437, 0.19599999487400055, 0.2074999958276749, 0.1875, 0.20000000298023224, 0.2185000032186508, 0.2195000052452087, 0.2029999941587448, 0.25, 0.2080000042915344, 0.19099999964237213, 0.1965000033378601, 0.2189999967813492, 0.19850000739097595, 0.2574999928474426, 0.19699999690055847, 0.19750000536441803, 0.20499999821186063, 0.19599999487400055, 0.16899999976158142, 0.2450000047683716, 0.21199999749660492, 0.21449999511241913, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.21400000154972076, 0.19949999451637268, 0.15850000083446503, 0.2335000038146973, 0.2039999961853027, 0.2280000001192093, 0.1979999989271164, 0.20350000262260437, 0.1815000027418137, 0.25099998712539673, 0.19900000095367432, 0.21199999749660492, 0.1825000047683716, 0.2004999965429306, 0.17649999260902405, 0.2280000001192093, 0.2045000046491623, 0.19949999451637268, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1924999952316284, 0.20149999856948853, 0.2300000041723251, 0.2434999942779541, 0.22349999845027924, 0.20499999821186063, 0.1979999989271164, 0.19050000607967377, 0.2134999930858612, 0.23899999260902405, 0.1979999989271164, 0.19449999928474423, 0.21449999511241913, 0.21699999272823337, 0.1794999986886978, 0.24799999594688416, 0.1924999952316284, 0.18850000202655792, 0.20999999344348907, 0.22100000083446503, 0.210999995470047, 0.2549999952316284, 0.1940000057220459, 0.1979999989271164, 0.2080000042915344, 0.2029999941587448, 0.18449999392032623, 0.2529999911785126, 0.19499999284744263, 0.20250000059604645, 0.21699999272823337, 0.2094999998807907, 0.18649999797344208, 0.2450000047683716, 0.20100000500679016, 0.2045000046491623, 0.19449999928474423, 0.2004999965429306, 0.1794999986886978, 0.2590000033378601, 0.19050000607967377, 0.2039999961853027, 0.20999999344348907, 0.2195000052452087, 0.19699999690055847, 0.24950000643730164, 0.1914999932050705, 0.20250000059604645, 0.2185000032186508, 0.22300000488758087, 0.19599999487400055, 0.25600001215934753, 0.19949999451637268, 0.21449999511241913, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2029999941587448, 0.21150000393390656, 0.21699999272823337, 0.25099998712539673, 0.20000000298023224, 0.1809999942779541, 0.21250000596046448, 0.1940000057220459, 0.1875, 0.25099998712539673, 0.20649999380111697, 0.19599999487400055, 0.2214999943971634, 0.2214999943971634, 0.2074999958276749, 0.2450000047683716, 0.20100000500679016, 0.20350000262260437, 0.2535000145435333, 0.22849999368190765, 0.1955000013113022, 0.2630000114440918, 0.20600000023841855, 0.20600000023841855, 0.22300000488758087, 0.23399999737739563, 0.2084999978542328, 0.2055000066757202, 0.20000000298023224, 0.19599999487400055, 0.19050000607967377, 0.2004999965429306, 0.1979999989271164, 0.25600001215934753, 0.18850000202655792, 0.20200000703334808, 0.21699999272823337, 0.21299999952316284, 0.18449999392032623, 0.2590000033378601, 0.1965000033378601, 0.2045000046491623, 0.2004999965429306, 0.1860000044107437, 0.2150000035762787, 0.2524999976158142, 0.20100000500679016, 0.19750000536441803, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22550000250339508, 0.19850000739097595, 0.1665000021457672, 0.244499996304512, 0.19499999284744263, 0.21150000393390656, 0.20149999856948853, 0.1934999972581863, 0.21299999952316284, 0.2460000067949295, 0.2039999961853027, -0.01, 0.2094999998807907, 0.20149999856948853, 0.1794999986886978, 0.24150000512599945, 0.22200000286102295, 0.19750000536441803, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2070000022649765, 0.2045000046491623, 0.20900000631809235, 0.2529999911785126, 0.19900000095367432, 0.2195000052452087, 0.1875, 0.17749999463558197, 0.2094999998807907, 0.24549999833106995, 0.2080000042915344, 0.2134999930858612, 0.20149999856948853, 0.1979999989271164, 0.2185000032186508, 0.2630000114440918, 0.19499999284744263, 0.2004999965429306, 0.2074999958276749, 0.2080000042915344, 0.193000003695488, 0.2540000081062317, 0.1899999976158142, 0.19599999487400055, 0.21199999749660492, 0.20600000023841855, 0.19200000166893005, 0.25049999356269836, 0.2004999965429306, 0.19200000166893005, 0.22499999403953552, 0.22200000286102295, 0.1979999989271164, 0.2535000145435333, 0.2134999930858612, 0.2055000066757202, 0.19750000536441803, 0.2029999941587448, 0.18549999594688416, 0.2535000145435333, 0.20999999344348907, 0.19900000095367432, 0.21050000190734863, 0.2029999941587448, 0.1955000013113022, 0.24699999392032623, 0.1875, 0.210999995470047, 0.2150000035762787, 0.2304999977350235, 0.2004999965429306, 0.2515000104904175, 0.21449999511241913, 0.20600000023841855, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.21299999952316284, 0.22200000286102295, 0.2029999941587448, 0.25699999928474426, 0.18449999392032623, 0.20350000262260437, 0.22450000047683716, 0.22750000655651093, 0.19949999451637268, 0.2515000104904175, 0.2055000066757202, 0.20350000262260437, 0.2150000035762787, 0.24250000715255737, 0.2080000042915344, 0.2524999976158142, 0.2055000066757202, 0.2214999943971634, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23899999260902405, 0.2345000058412552, 0.2074999958276749, 0.25850000977516174, 0.21449999511241913, 0.20600000023841855, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1965000033378601, 0.2039999961853027, 0.19750000536441803, 0.25049999356269836, 0.20649999380111697, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.226500004529953, 0.21449999511241913, 0.19750000536441803, 0.2434999942779541, 0.2070000022649765, 0.19599999487400055, 0.2029999941587448, 0.21299999952316284, 0.20900000631809235, 0.2529999911785126, 0.2195000052452087, 0.21400000154972076, 0.193000003695488, 0.20000000298023224, 0.2094999998807907, 0.23399999737739563, 0.19949999451637268, 0.2045000046491623, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2084999978542328, 0.210999995470047, 0.24699999392032623, 0.2524999976158142, 0.1815000027418137, 0.2055000066757202, 0.19449999928474423, 0.1899999976158142, 0.19699999690055847, 0.25850000977516174, 0.1875, 0.19200000166893005, 0.2175000011920929, 0.22050000727176663, 0.19449999928474423, 0.2554999887943268, 0.1875, 0.20649999380111697, 0.2074999958276749, 0.21050000190734863, 0.1809999942779541, 0.2554999887943268, 0.19699999690055847, 0.20100000500679016, 0.21199999749660492, 0.20350000262260437, 0.19949999451637268, 0.2515000104904175, 0.18700000643730164, 0.1979999989271164, 0.22200000286102295, 0.2084999978542328, 0.1899999976158142, 0.25999999046325684, 0.20250000059604645, 0.20600000023841855, 0.1965000033378601, 0.1860000044107437, 0.2004999965429306, 0.24549999833106995, 0.18700000643730164, 0.1875], "fv5txyhd": [0.25450000166893005, 0.2615000009536743, 0.2605000138282776, 0.2590000033378601, -0.01, -0.01, 0.2685000002384186, 0.26499998569488525, 0.2680000066757202, 0.2709999978542328, 0.25450000166893005, 0.24650000035762787, 0.2639999985694885, 0.2680000066757202, 0.2720000147819519, 0.2720000147819519, 0.23499999940395355, 0.24150000512599945, 0.24300000071525577, 0.2529999911785126, 0.2280000001192093, 0.2280000001192093, -0.01, -0.01, -0.01, -0.01, 0.2549999952316284, 0.2304999977350235, 0.23849999904632568, 0.24549999833106995, 0.2294999957084656, 0.2280000001192093, -0.01, -0.01, -0.01, -0.01, 0.22849999368190765, 0.226500004529953, 0.23499999940395355, 0.23250000178813937, 0.2615000009536743, 0.25999999046325684, 0.2644999921321869, 0.2605000138282776, 0.2644999921321869, 0.25200000405311584, 0.27250000834465027, 0.2705000042915344, 0.2540000081062317, 0.2759999930858612, 0.26100000739097595, 0.2685000002384186, 0.26100000739097595, 0.2590000033378601, -0.01, -0.01, 0.2615000009536743, 0.2644999921321869, 0.2685000002384186, 0.2685000002384186, 0.23849999904632568, 0.23849999904632568, 0.2745000123977661, 0.26249998807907104, 0.25049999356269836, 0.24950000643730164, 0.2524999976158142, 0.23250000178813937, 0.2434999942779541, 0.2590000033378601, 0.2605000138282776, 0.2619999945163727, -0.01, -0.01, -0.01, -0.01, 0.2475000023841858, 0.2460000067949295, 0.2319999933242798, 0.2070000022649765, 0.2535000145435333, 0.26499998569488525, -0.01, -0.01, -0.01, -0.01, 0.2304999977350235, 0.2345000058412552, 0.20350000262260437, 0.210999995470047, 0.2685000002384186, 0.2590000033378601, 0.25850000977516174, 0.25850000977516174, 0.2574999928474426, 0.25999999046325684, 0.2554999887943268, 0.25999999046325684, 0.26249998807907104, 0.25, 0.26750001311302185, 0.2709999978542328, 0.26249998807907104, 0.257999986410141, -0.01, -0.01, 0.26249998807907104, 0.2669999897480011, 0.26600000262260437, 0.2685000002384186, 0.24699999392032623, 0.2450000047683716, -0.01, -0.01, -0.01, -0.01, 0.2630000114440918, 0.22300000488758087, -0.01, -0.01, 0.22300000488758087, 0.2240000069141388, -0.01, -0.01, -0.01, -0.01, 0.2434999942779541, 0.24799999594688416, 0.24950000643730164, 0.22849999368190765, 0.2434999942779541, 0.2175000011920929, -0.01, -0.01, -0.01, -0.01, 0.22050000727176663, 0.24300000071525577, 0.2300000041723251, 0.2240000069141388, 0.2685000002384186, 0.2685000002384186, 0.2590000033378601, 0.26499998569488525, 0.25999999046325684, 0.2590000033378601, 0.2644999921321869, 0.27000001072883606, 0.2574999928474426, -0.01], "rfy7muvr": [0.218, 0.238, -0.01, 0.2175, 0.281, 0.265, 0.272, 0.279, 0.2635, 0.2255, 0.267, 0.263, 0.275, -0.01, -0.01, 0.182, 0.2675, 0.2585, 0.2755, -0.01, -0.01, 0.228, 0.2605, 0.2625, 0.2695, 0.259, 0.27, 0.0035, 0.267, 0.2655, 0.1855, 0.183, -0.01, 0.1875, 0.281, 0.288, 0.282, 0.2815, 0.274, 0.218, 0.267, 0.27, 0.28, -0.01, -0.01, 0.1415, 0.2525, 0.275, 0.2695, -0.01, -0.01, 0.205, 0.25, 0.268, 0.272, 0.2685, 0.261, 0.0015, 0.2655, 0.266, 0.1765, 0.1925, -0.01, 0.1885, 0.275, 0.278, 0.271, 0.285, 0.2845, 0.198, 0.28, 0.27, 0.2695, -0.01, -0.01, 0.1485, 0.262, 0.2765, 0.2715, -0.01, -0.01, 0.211, 0.2665, 0.2705, 0.264, 0.2625, 0.2915, 0.0015, 0.2735, 0.276], "qb638tpt": [0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.1860000044107437, 0.18850000202655792, 0.18549999594688416, 0.17599999904632568, 0.16699999570846558, 0.17550000548362732, 0.19099999964237213, 0.19599999487400055, 0.18950000405311584, 0.17599999904632568, 0.17749999463558197, 0.1860000044107437, 0.18050000071525577, 0.18400000035762787, 0.17249999940395355, 0.17249999940395355, 0.17499999701976776, 0.17399999499320984, 0.18449999392032623, 0.17599999904632568, 0.19449999928474423, 0.181999996304512, 0.17399999499320984, 0.16899999976158142, 0.18400000035762787, 0.18950000405311584, 0.18050000071525577, 0.16850000619888306, 0.1665000021457672, 0.16899999976158142, 0.20600000023841855, 0.19599999487400055, 0.17800000309944153, 0.1710000038146973, 0.16599999368190765, 0.164000004529953, 0.1889999955892563, 0.193000003695488, 0.19699999690055847, 0.1770000010728836, 0.18050000071525577, 0.17800000309944153, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20149999856948853, 0.2045000046491623, 0.181999996304512, 0.1850000023841858, 0.17299999296665192, 0.1745000034570694, 0.1899999976158142, 0.18700000643730164, 0.18549999594688416, 0.1815000027418137, 0.18649999797344208, 0.18449999392032623, 0.19099999964237213, 0.19099999964237213, 0.17649999260902405, 0.16699999570846558, 0.17649999260902405, 0.17000000178813934, 0.20000000298023224, 0.19949999451637268, 0.17800000309944153, 0.1784999966621399, 0.1850000023841858, 0.18950000405311584, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2074999958276749, 0.20200000703334808, 0.19050000607967377, 0.17249999940395355, 0.18400000035762787, 0.19200000166893005, 0.18799999356269836, 0.18950000405311584, 0.1850000023841858, 0.17149999737739563, 0.17399999499320984, 0.18050000071525577, 0.19449999928474423, 0.1965000033378601, 0.1745000034570694, 0.1665000021457672, 0.1835000067949295, 0.17299999296665192, 0.21449999511241913, 0.21050000190734863, 0.19699999690055847, 0.18050000071525577, 0.1924999952316284, 0.1979999989271164, 0.2070000022649765, 0.21150000393390656, 0.2045000046491623, 0.18449999392032623, 0.19099999964237213, 0.193000003695488, 0.19750000536441803, 0.20000000298023224, 0.1899999976158142, 0.1794999986886978, 0.19050000607967377, 0.1934999972581863, 0.210999995470047, 0.21250000596046448, 0.1889999955892563, 0.18549999594688416, 0.18549999594688416, 0.19850000739097595, 0.19099999964237213, 0.19200000166893005, 0.1899999976158142, 0.1809999942779541, 0.1899999976158142, 0.18950000405311584, 0.19900000095367432, 0.19949999451637268, 0.18549999594688416, 0.1675000041723251, 0.20200000703334808, 0.19699999690055847, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.17749999463558197, 0.17000000178813934, 0.1835000067949295, 0.1889999955892563, 0.1809999942779541, 0.1694999933242798, 0.20350000262260437, 0.1940000057220459, 0.19499999284744263, 0.17649999260902405, 0.1835000067949295, 0.1835000067949295, 0.193000003695488, 0.19050000607967377, 0.19050000607967377, 0.18400000035762787, 0.18649999797344208, 0.1875, 0.20600000023841855, 0.19050000607967377, 0.1850000023841858, 0.1899999976158142, 0.17399999499320984, 0.17800000309944153, 0.1934999972581863, 0.18649999797344208, 0.17649999260902405, 0.17000000178813934, 0.1655000001192093, 0.16449999809265137, 0.20250000059604645, 0.19949999451637268, 0.18050000071525577, 0.17499999701976776, 0.181999996304512, 0.1665000021457672, 0.1784999966621399, 0.18449999392032623, 0.18050000071525577, 0.17800000309944153, 0.19050000607967377, 0.1815000027418137, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.19900000095367432, 0.19949999451637268, 0.2074999958276749, 0.18549999594688416, 0.1914999932050705, 0.18850000202655792, 0.18850000202655792, 0.18449999392032623, 0.17599999904632568, 0.19750000536441803, 0.18850000202655792, 0.18700000643730164, 0.18649999797344208, 0.18400000035762787, 0.1710000038146973, 0.1704999953508377, 0.17649999260902405, 0.1784999966621399, 0.1979999989271164, 0.19499999284744263, 0.19599999487400055, 0.1875, 0.1955000013113022, 0.19050000607967377, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18850000202655792, 0.18649999797344208, 0.18299999833106995, 0.1899999976158142, 0.19750000536441803, 0.18850000202655792, 0.1794999986886978, 0.18299999833106995, 0.1860000044107437, 0.17900000512599945, 0.1914999932050705, 0.1794999986886978, 0.1679999977350235, 0.16449999809265137, 0.16300000250339508, 0.1770000010728836, 0.17149999737739563, 0.17800000309944153, 0.2074999958276749, 0.2080000042915344, 0.18000000715255737, 0.1815000027418137, 0.2039999961853027, 0.20000000298023224, 0.20200000703334808, 0.20649999380111697, 0.1850000023841858, 0.1784999966621399, 0.19850000739097595, 0.19499999284744263, 0.20499999821186063, 0.20350000262260437, 0.1835000067949295, 0.1794999986886978, 0.17299999296665192, 0.17649999260902405, 0.21199999749660492, 0.21400000154972076, 0.20999999344348907, 0.1965000033378601, 0.20000000298023224, 0.1940000057220459, 0.2029999941587448, 0.20200000703334808, 0.18799999356269836, 0.18449999392032623, 0.19050000607967377, 0.19499999284744263, 0.20149999856948853, 0.19900000095367432, 0.1794999986886978, 0.16349999606609344, 0.18549999594688416, 0.1794999986886978, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.226500004529953, 0.1770000010728836, 0.1825000047683716, 0.18000000715255737, 0.18850000202655792, 0.1679999977350235, 0.18000000715255737, 0.19499999284744263, 0.19850000739097595, 0.19900000095367432, 0.18299999833106995, 0.18549999594688416, 0.1924999952316284, 0.17550000548362732, 0.17550000548362732, 0.1815000027418137, 0.17550000548362732, 0.18000000715255737, 0.1850000023841858, 0.19599999487400055, 0.18649999797344208, 0.17149999737739563, 0.1835000067949295, 0.17399999499320984, 0.18000000715255737, 0.1934999972581863, 0.19200000166893005, 0.1825000047683716, 0.181999996304512, 0.17649999260902405, 0.1745000034570694, 0.19599999487400055, 0.19099999964237213, 0.1745000034570694, 0.17599999904632568, 0.17000000178813934, 0.17550000548362732, 0.19599999487400055, 0.19599999487400055, 0.17749999463558197, 0.18050000071525577, 0.18299999833106995, 0.17800000309944153, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2029999941587448, 0.20149999856948853, 0.19099999964237213, 0.1809999942779541, 0.18700000643730164, 0.18549999594688416, 0.19099999964237213, 0.19499999284744263, 0.18850000202655792, 0.1914999932050705, 0.1825000047683716, 0.1794999986886978, 0.2004999965429306, 0.20000000298023224, 0.18000000715255737, 0.17149999737739563, 0.1825000047683716, 0.1784999966621399, 0.20149999856948853, 0.20600000023841855, 0.20200000703334808, 0.18950000405311584, 0.19750000536441803, 0.18400000035762787, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20149999856948853, 0.2029999941587448, 0.1889999955892563, 0.18050000071525577, 0.19850000739097595, 0.193000003695488, 0.1875, 0.19200000166893005, 0.19449999928474423, 0.18299999833106995, 0.1809999942779541, 0.1784999966621399, 0.20000000298023224, 0.20149999856948853, 0.1704999953508377, 0.1675000041723251, 0.17749999463558197, 0.1745000034570694, 0.2039999961853027, 0.2080000042915344, 0.1979999989271164, 0.1815000027418137, 0.20200000703334808, 0.20250000059604645, 0.19750000536441803, 0.20000000298023224, 0.17350000143051147, 0.1889999955892563, 0.19200000166893005, 0.18950000405311584, 0.1979999989271164, 0.19699999690055847, 0.18549999594688416, 0.18850000202655792, 0.181999996304512, 0.18549999594688416, 0.2029999941587448, 0.2029999941587448, 0.2070000022649765, 0.19750000536441803, -0.01, -0.01, 0.1940000057220459, -0.01, 0.17800000309944153, 0.1965000033378601, -0.01, 0.1835000067949295, 0.20350000262260437, 0.20149999856948853, -0.01, -0.01, -0.01, 0.18799999356269836], "ggmt3lbe": [0.17499999701976776, 0.18649999797344208, 0.1675000041723251, 0.19599999487400055, 0.16699999570846558, 0.17399999499320984, 0.19099999964237213, 0.1815000027418137, 0.16500000655651093, 0.2029999941587448, 0.1675000041723251, 0.16099999845027924, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1694999933242798, 0.19449999928474423, 0.1665000021457672, 0.20100000500679016, 0.16050000488758087, 0.16200000047683716, 0.1665000021457672, 0.1784999966621399, 0.17000000178813934, 0.2045000046491623, 0.16449999809265137, 0.16349999606609344, 0.1860000044107437, 0.1745000034570694, 0.16249999403953552, 0.2084999978542328, 0.16899999976158142, 0.1720000058412552, 0.1955000013113022, 0.1940000057220459, 0.1655000001192093, 0.1934999972581863, 0.1469999998807907, 0.1589999943971634, 0.15549999475479126, 0.14900000393390656, 0.1574999988079071, 0.1574999988079071, 0.14800000190734863, 0.15399999916553497, 0.17800000309944153, 0.17299999296665192, 0.18950000405311584, 0.1955000013113022, 0.15549999475479126, 0.15950000286102295, 0.1720000058412552, 0.18400000035762787, 0.1679999977350235, 0.2094999998807907, 0.16249999403953552, 0.1509999930858612, 0.1694999933242798, 0.18850000202655792, 0.19200000166893005, 0.20100000500679016, 0.17000000178813934, 0.17299999296665192, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16899999976158142, 0.1665000021457672, 0.13950000703334808, 0.1955000013113022, 0.15600000321865082, 0.15199999511241913, 0.1710000038146973, 0.16899999976158142, 0.16300000250339508, 0.18649999797344208, 0.17499999701976776, 0.164000004529953, 0.1665000021457672, 0.1665000021457672, 0.16449999809265137, 0.20999999344348907, 0.14949999749660492, 0.1599999964237213, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1745000034570694, 0.17249999940395355, 0.17149999737739563, 0.20499999821186063, 0.15649999678134918, 0.1574999988079071, 0.1720000058412552, 0.17749999463558197, 0.14749999344348907, 0.2045000046491623, 0.16249999403953552, 0.1420000046491623, 0.1899999976158142, 0.1850000023841858, 0.15649999678134918, 0.20999999344348907, 0.1535000056028366, 0.15000000596046448, 0.17550000548362732, 0.17399999499320984, 0.1525000035762787, 0.20499999821186063, 0.15600000321865082, 0.15850000083446503, 0.17550000548362732, 0.1675000041723251, 0.16699999570846558, 0.1655000001192093, 0.1655000001192093, 0.1599999964237213, 0.17649999260902405, 0.1825000047683716, 0.14949999749660492, 0.19449999928474423, 0.1720000058412552, 0.16300000250339508, 0.16699999570846558, 0.15649999678134918, 0.1525000035762787, 0.18950000405311584, 0.1665000021457672, 0.17550000548362732, 0.17900000512599945, 0.181999996304512, 0.16300000250339508, 0.1934999972581863, 0.16850000619888306, 0.17399999499320984, 0.1889999955892563, 0.1850000023841858, 0.16050000488758087, 0.19499999284744263, 0.17399999499320984, 0.1665000021457672, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18549999594688416, 0.17499999701976776, 0.16699999570846558, 0.19050000607967377, 0.16249999403953552, 0.17249999940395355, 0.18050000071525577, 0.1850000023841858, 0.16599999368190765, 0.2055000066757202, 0.16200000047683716, 0.16850000619888306, 0.19200000166893005, 0.18799999356269836, 0.15850000083446503, 0.20100000500679016, 0.1599999964237213, 0.1550000011920929, 0.1770000010728836, 0.18050000071525577, 0.16300000250339508, 0.1934999972581863, 0.16449999809265137, 0.14949999749660492, 0.14399999380111694, 0.1430000066757202, 0.1679999977350235, 0.16300000250339508, 0.16300000250339508, 0.16599999368190765, 0.17800000309944153, 0.18400000035762787, 0.148499995470047, 0.19949999451637268, 0.16850000619888306, 0.1704999953508377, 0.17499999701976776, 0.17399999499320984, 0.15850000083446503, 0.21649999916553497, 0.15449999272823334, 0.14900000393390656, 0.1665000021457672, 0.17149999737739563, 0.15049999952316284, 0.21250000596046448, 0.16449999809265137, 0.16200000047683716, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1875, 0.17550000548362732, 0.1720000058412552, 0.1979999989271164, 0.16099999845027924, 0.1665000021457672, 0.1860000044107437, 0.181999996304512, 0.1720000058412552, 0.19200000166893005, 0.1550000011920929, 0.1469999998807907, 0.164000004529953, 0.15800000727176666, 0.1615000069141388, 0.19750000536441803, 0.1574999988079071, 0.15600000321865082, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16449999809265137, 0.17649999260902405, 0.16300000250339508, 0.19099999964237213, 0.164000004529953, 0.16249999403953552, 0.1675000041723251, 0.17900000512599945, 0.16699999570846558, 0.181999996304512, 0.16500000655651093, 0.16200000047683716, 0.15950000286102295, 0.15850000083446503, 0.1720000058412552, 0.18850000202655792, 0.16500000655651093, 0.17399999499320984, 0.1770000010728836, 0.17649999260902405, 0.15850000083446503, 0.2080000042915344, 0.14399999380111694, 0.14749999344348907, 0.1679999977350235, 0.16699999570846558, 0.17649999260902405, 0.16050000488758087, 0.14749999344348907, 0.1404999941587448, 0.18950000405311584, 0.1815000027418137, 0.16300000250339508, 0.19850000739097595, 0.164000004529953, 0.17149999737739563, 0.18400000035762787, 0.1710000038146973, 0.16449999809265137, 0.18449999392032623, 0.17399999499320984, 0.15800000727176666, 0.17900000512599945, 0.1899999976158142, 0.16099999845027924, 0.1875, 0.17149999737739563, 0.16850000619888306, 0.16500000655651093, 0.16200000047683716, 0.16599999368190765, 0.2004999965429306, 0.16249999403953552, 0.16349999606609344, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17900000512599945, 0.18649999797344208, 0.1694999933242798, 0.1965000033378601, 0.1599999964237213, 0.16099999845027924, 0.18549999594688416, 0.18449999392032623, 0.16099999845027924, 0.2074999958276749, 0.16449999809265137, 0.15299999713897705, 0.18299999833106995, 0.18050000071525577, 0.16599999368190765, 0.19499999284744263, 0.1599999964237213, 0.15950000286102295, 0.20350000262260437, 0.193000003695488, 0.1704999953508377, 0.2004999965429306, 0.15199999511241913, 0.15399999916553497, 0.15049999952316284, 0.1665000021457672, 0.16099999845027924, 0.15199999511241913, 0.15150000154972076, 0.1694999933242798, 0.17800000309944153, 0.18299999833106995, 0.1379999965429306, 0.19499999284744263, 0.1599999964237213, 0.1574999988079071, 0.181999996304512, 0.1794999986886978, 0.16449999809265137, 0.21150000393390656, 0.17900000512599945, 0.1675000041723251, 0.1679999977350235, 0.1794999986886978, 0.16349999606609344, 0.21250000596046448, 0.15850000083446503, 0.16050000488758087, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1809999942779541, 0.17499999701976776, 0.1679999977350235, 0.18449999392032623, 0.1694999933242798, 0.16599999368190765, 0.1679999977350235, 0.16249999403953552, 0.1550000011920929, 0.18950000405311584, 0.1665000021457672, 0.16099999845027924, 0.16300000250339508, 0.1745000034570694, 0.1535000056028366, 0.19499999284744263, 0.17000000178813934, 0.16300000250339508, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18700000643730164, 0.1794999986886978, 0.17149999737739563, 0.19699999690055847, 0.1589999943971634, 0.14949999749660492, 0.18449999392032623, 0.17000000178813934, 0.17550000548362732, 0.19050000607967377, 0.16699999570846558, 0.1550000011920929, 0.1875, 0.1850000023841858, 0.15299999713897705, 0.2084999978542328, 0.16249999403953552, 0.16300000250339508, 0.1704999953508377, 0.1655000001192093, 0.16699999570846558, 0.2074999958276749, 0.16249999403953552, 0.15150000154972076, 0.16449999809265137, 0.15950000286102295, 0.18000000715255737, 0.1615000069141388, -0.01, -0.01, -0.01, 0.18850000202655792, -0.01, -0.01, -0.01, -0.01, 0.17550000548362732, -0.01, -0.01, -0.01, -0.01, -0.01], "x7ca9zjk": [0.2150000035762787, 0.2195000052452087, 0.22050000727176663, -0.01, -0.01, -0.01, 0.2214999943971634, 0.2214999943971634, 0.22100000083446503, 0.22100000083446503, -0.01, -0.01, -0.01, 0.18449999392032623, 0.19099999964237213, 0.1784999966621399, 0.1535000056028366, 0.1924999952316284, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.19200000166893005, 0.210999995470047, 0.20499999821186063, 0.21250000596046448, 0.19599999487400055, 0.20999999344348907, 0.18649999797344208, 0.19949999451637268, 0.19699999690055847, 0.1940000057220459, 0.19699999690055847, 0.20200000703334808, 0.1899999976158142, 0.18950000405311584, 0.1770000010728836, 0.21449999511241913, 0.21250000596046448, 0.21299999952316284, 0.20999999344348907, 0.18050000071525577, 0.1809999942779541, 0.19900000095367432, 0.18850000202655792, 0.18649999797344208, 0.1979999989271164, 0.22050000727176663, 0.22050000727176663, 0.22050000727176663, 0.21250000596046448, 0.21250000596046448, 0.22100000083446503, 0.22100000083446503, 0.22100000083446503, 0.19099999964237213, 0.2004999965429306, 0.2080000042915344, 0.18950000405311584, 0.18950000405311584, 0.19099999964237213, 0.1940000057220459, 0.1965000033378601, 0.18799999356269836, 0.19900000095367432, 0.19050000607967377, 0.18799999356269836, 0.18000000715255737, 0.1770000010728836, 0.18700000643730164, 0.1704999953508377, 0.18449999392032623, 0.1770000010728836, 0.20900000631809235, 0.20100000500679016, 0.20000000298023224, 0.19699999690055847, 0.21150000393390656, 0.20900000631809235, 0.19850000739097595, 0.20999999344348907, 0.1979999989271164, 0.20000000298023224, 0.2045000046491623, 0.20200000703334808, 0.2070000022649765, 0.21299999952316284, 0.21699999272823337, 0.21549999713897705, 0.21299999952316284, 0.2150000035762787, 0.2199999988079071, 0.2189999967813492, 0.22100000083446503, 0.22100000083446503, 0.18449999392032623, 0.1835000067949295, 0.20100000500679016, 0.1809999942779541, 0.1794999986886978, 0.1815000027418137, 0.1979999989271164, 0.1875, 0.18050000071525577, 0.20350000262260437, 0.20200000703334808, 0.20149999856948853, 0.2074999958276749, 0.1965000033378601, 0.20499999821186063, 0.19750000536441803, 0.19599999487400055, 0.18649999797344208, 0.19200000166893005, 0.19949999451637268, 0.20149999856948853, 0.18050000071525577, 0.21199999749660492, 0.20149999856948853, 0.22100000083446503, 0.21250000596046448, 0.1955000013113022, 0.1979999989271164, 0.2094999998807907, 0.20499999821186063, 0.1955000013113022], "8wu00rrs": [-0.01, -0.01, -0.01, -0.01, 0.2115, 0.2235, 0.201, 0.218, 0.2255, 0.1505, 0.2135, 0.219, 0.2135, -0.01, -0.01, 0.025, 0.211, 0.223, 0.223, -0.01, -0.01, 0.0365, 0.206, 0.231, 0.2285, 0.2265, 0.202, -0.01, 0.1985, 0.227, -0.01, -0.01, -0.01, -0.01, 0.23, 0.224, 0.205, 0.215, 0.2165, 0.1095, 0.2195, 0.21, 0.2225, -0.01, -0.01, 0.029, 0.212, 0.2185, 0.221, -0.01, -0.01, 0.045, 0.154, 0.225, 0.223, 0.2195, 0.204, -0.01, 0.1925, 0.232, 0.0005, -0.01, -0.01, -0.01, 0.235, 0.2335, 0.2045, 0.202, 0.221, 0.0995, 0.214, 0.2295, 0.221, -0.01, -0.01, 0.0225, 0.217, 0.2255, 0.2265, -0.01, -0.01, 0.035, 0.1985, 0.2275, 0.223, 0.2185, 0.2095, -0.01, 0.2005, 0.2355], "w6h9lrkf": [0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.6615384817123413, 0.6236263513565063, 0.6197802424430847, 0.6302197575569153, 0.6142857074737549, 0.660988986492157, 0.660988986492157, 0.6390109658241272, 0.6093406677246094, 0.6483516693115234, 0.6472527384757996, 0.660988986492157, 0.660988986492157, 0.6302197575569153, 0.6016483306884766, 0.6428571343421936, 0.6494505405426025, 0.6604395508766174, 0.6582417488098145, 0.6362637281417847, 0.5923076868057251, 0.6417582631111145, 0.6307692527770996, 0.6604395508766174, 0.6598901152610779, 0.6225274801254272, 0.6181318759918213, 0.6346153616905212, 0.6340659260749817, 0.660988986492157, 0.660988986492157, 0.6137362718582153, 0.6225274801254272, 0.6269230842590332, 0.6241758465766907, 0.6483516693115234, 0.6478021740913391, 0.6285714507102966, 0.6197802424430847, 0.6153846383094788, 0.6104395389556885, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6412087678909302, 0.6406593322753906, 0.644505500793457, 0.5906593203544617, 0.6461538672447205, 0.6384615302085876, 0.6560439467430115, 0.651098906993866, 0.6379120945930481, 0.60329669713974, 0.6434065699577332, 0.6417582631111145, 0.6560439467430115, 0.656593382358551, 0.6203296780586243, 0.6192307472229004, 0.601098895072937, 0.5906593203544617, 0.6483516693115234, 0.6527472734451294, 0.6241758465766907, 0.6115384697914124, 0.5994505286216736, 0.5571428537368774, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6318681240081787, 0.6357142925262451, 0.6439560651779175, 0.6225274801254272, 0.6478021740913391, 0.6456043720245361, 0.6560439467430115, 0.653296709060669, 0.6439560651779175, 0.6043956279754639, 0.6521977782249451, 0.6483516693115234, 0.6593406796455383, 0.6593406796455383, 0.607692301273346, 0.6521977782249451, 0.547802209854126, 0.5362637639045715, 0.660988986492157, 0.660988986492157, 0.6329670548439026, 0.5818681120872498, 0.6148351430892944, 0.6093406677246094, 0.660988986492157, 0.660988986492157, 0.6456043720245361, 0.5730769038200378, 0.6098901033401489, 0.6049450635910034, 0.660988986492157, 0.660988986492157, 0.6406593322753906, 0.6214285492897034, 0.6236263513565063, 0.6142857074737549, 0.660988986492157, 0.660988986492157, 0.6346153616905212, 0.5686812996864319, 0.6461538672447205, 0.6505494713783264, 0.660988986492157, 0.660988986492157, 0.6362637281417847, 0.605494499206543, 0.656593382358551, 0.656593382358551, 0.660988986492157, 0.660988986492157, 0.6384615302085876, 0.6170329451560974, 0.6203296780586243, 0.6082417368888855, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.6214285492897034, 0.5923076868057251, 0.6164835095405579, 0.6087912321090698, 0.660988986492157, 0.660988986492157, 0.6357142925262451, 0.5884615182876587, 0.6368131637573242, 0.644505500793457, 0.660988986492157, 0.6604395508766174, 0.6285714507102966, 0.5752747058868408, 0.6296703219413757, 0.6362637281417847, 0.6593406796455383, 0.6604395508766174, 0.6324175596237183, 0.5824176073074341, 0.6417582631111145, 0.6412087678909302, 0.6604395508766174, 0.6604395508766174, 0.6247252821922302, 0.6126373410224915, 0.6302197575569153, 0.6346153616905212, 0.660988986492157, 0.660988986492157, 0.6214285492897034, 0.6170329451560974, 0.6175824403762817, 0.6126373410224915, 0.6472527384757996, 0.601098895072937, 0.5664834976196289, 0.5895604491233826, 0.5978022217750549, 0.5664834976196289, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6335164904594421, 0.6412087678909302, 0.6274725198745728, 0.5747252702713013, 0.6346153616905212, 0.6214285492897034, 0.6521977782249451, 0.6538461446762085, 0.6357142925262451, 0.5939560532569885, 0.6318681240081787, 0.6329670548439026, 0.6478021740913391, 0.6417582631111145, 0.48571428656578064, 0.598901093006134, 0.46373626589775085, 0.4769230782985687, 0.504395604133606, 0.5901098847389221, 0.5950549244880676, 0.5560439825057983, 0.5461538434028625, 0.5615384578704834, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6252747178077698, 0.6291208863258362, 0.6340659260749817, 0.6247252821922302, 0.642307698726654, 0.6329670548439026, 0.6527472734451294, 0.654395580291748, 0.6461538672447205, 0.6049450635910034, 0.644505500793457, 0.644505500793457, 0.648901104927063, 0.6208791136741638, 0.5406593680381775, 0.5884615182876587, 0.4285714328289032, 0.3521977961063385, 0.660988986492157, 0.660988986492157, 0.6208791136741638, 0.591208815574646, 0.6203296780586243, 0.6071428656578064, 0.660988986492157, 0.660988986492157, 0.6417582631111145, 0.5851648449897766, 0.6214285492897034, 0.6043956279754639, 0.660988986492157, 0.660988986492157, 0.6505494713783264, 0.6285714507102966, 0.6291208863258362, 0.6214285492897034, 0.660988986492157, 0.660988986492157, 0.6434065699577332, 0.5725274682044983, 0.648901104927063, 0.6516483426094055, 0.660988986492157, 0.660988986492157, 0.6450549364089966, 0.6065934300422668, 0.6593406796455383, 0.6582417488098145, 0.660988986492157, 0.660988986492157, 0.6340659260749817, 0.6181318759918213, 0.6186813116073608, 0.6109890341758728, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.660988986492157, 0.6170329451560974, 0.6104395389556885, 0.6346153616905212, 0.6197802424430847, 0.660988986492157, 0.660988986492157, 0.6230769157409668, 0.6016483306884766, 0.6450549364089966, 0.64670330286026, 0.660988986492157, 0.660988986492157, 0.6285714507102966, 0.5928571224212646, 0.6461538672447205, 0.6505494713783264, 0.6604395508766174, 0.6593406796455383, 0.6296703219413757, 0.5961538553237915, 0.6368131637573242, 0.6274725198745728, 0.6604395508766174, 0.6598901152610779, 0.6373626589775085, 0.6203296780586243, 0.6329670548439026, 0.6203296780586243, 0.660988986492157, 0.660988986492157, 0.6115384697914124, 0.6038461327552795, 0.6291208863258362, 0.6258241534233093, 0.6499999761581421, 0.6483516693115234, 0.6263736486434937, 0.6142857074737549, 0.6236263513565063, 0.5972527265548706, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6439560651779175, 0.6362637281417847, 0.64670330286026, 0.5928571224212646, 0.6439560651779175, 0.6406593322753906, 0.6538461446762085, 0.6538461446762085, 0.6412087678909302, 0.607692301273346, 0.6384615302085876, 0.6384615302085876, 0.6549450755119324, 0.6554945111274719, 0.5752747058868408, 0.6082417368888855, 0.601098895072937, 0.5884615182876587, 0.653296709060669, 0.64670330286026, 0.6373626589775085, 0.6060439348220825, 0.6005494594573975, 0.5505494475364685, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6340659260749817, 0.6313186883926392, 0.6379120945930481, 0.6159340739250183, 0.648901104927063, 0.6499999761581421, 0.6560439467430115, 0.653296709060669, 0.6472527384757996, 0.6109890341758728, 0.6450549364089966, 0.64670330286026, 0.6604395508766174, 0.6593406796455383, 0.5642856955528259, 0.6456043720245361, 0.5467032790184021, 0.5126373767852783, 0.660988986492157, 0.660988986492157, 0.6499999761581421, 0.6087912321090698, 0.605494499206543, 0.60329669713974, 0.660988986492157, 0.660988986492157, 0.6527472734451294, 0.5884615182876587, 0.6087912321090698, 0.601098895072937, 0.660988986492157, 0.660988986492157, 0.648901104927063, -0.01, -0.01, -0.01, 0.660988986492157, 0.660988986492157, 0.642307698726654, 0.5758242011070251, 0.648901104927063, -0.01, 0.660988986492157, 0.660988986492157, 0.6406593322753906, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6082417368888855, 0.6208791136741638, 0.607692301273346], "7u7qawi2": [0.5697802305221558, 0.5857142806053162, 0.4175824224948883, 0.5939560532569885, 0.4335164725780487, 0.45109888911247253, 0.5637362599372864, 0.5681318640708923, 0.4846153855323791, 0.596703290939331, 0.45384615659713745, 0.4560439586639404, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5791208744049072, 0.5862637162208557, 0.4774725139141083, 0.595604419708252, 0.41428571939468384, 0.4307692348957062, 0.5516483783721924, 0.5390110015869141, 0.4631868004798889, 0.5664834976196289, 0.4582417607307434, 0.4439560472965241, 0.5923076868057251, 0.6181318759918213, 0.48351648449897766, 0.6087912321090698, 0.4780219793319702, 0.4813186824321747, 0.6005494594573975, 0.6142857074737549, 0.49670329689979553, 0.6148351430892944, 0.5016483664512634, 0.5032967329025269, 0.6049450635910034, 0.6159340739250183, 0.4802197813987732, 0.5901098847389221, 0.49945053458213806, 0.4923076927661896, 0.5862637162208557, 0.5862637162208557, 0.4939560294151306, 0.6016483306884766, 0.43901097774505615, 0.4692307710647583, 0.5796703100204468, 0.5483516454696655, 0.4873626232147217, 0.5945054888725281, 0.452747255563736, 0.45879119634628296, 0.5170329809188843, 0.5395604372024536, 0.5027472376823425, 0.5642856955528259, 0.4829670190811157, 0.4917582273483277, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5796703100204468, 0.5571428537368774, 0.5005494356155396, 0.5945054888725281, 0.4873626232147217, 0.4829670190811157, 0.4714285731315613, 0.5329670310020447, 0.5351648330688477, 0.591208815574646, 0.4719780087471008, 0.4692307710647583, 0.4620878994464874, 0.4752747118473053, 0.5291208624839783, 0.5730769038200378, 0.4175824224948883, 0.4153846204280853, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5324175953865051, 0.5340659618377686, 0.4989010989665985, 0.596703290939331, 0.43901097774505615, 0.4439560472965241, 0.5395604372024536, 0.5296703577041626, 0.5016483664512634, 0.596703290939331, 0.4494505524635315, 0.44835165143013, 0.5615384578704834, 0.5489010810852051, 0.5197802186012268, 0.5901098847389221, 0.45494505763053894, 0.452197790145874, 0.5390110015869141, 0.5873626470565796, 0.4615384638309479, 0.58681321144104, 0.46978020668029785, 0.4571428596973419, 0.5054945349693298, 0.5115384459495544, 0.5153846144676208, 0.4983516335487366, 0.4401098787784576, 0.44999998807907104, 0.5719780325889587, 0.5681318640708923, 0.42802196741104126, 0.6049450635910034, 0.46263736486434937, 0.4670329689979553, 0.5445054769515991, 0.5560439825057983, 0.4148351550102234, 0.6021978259086609, 0.4593406617641449, 0.4456043839454651, 0.5664834976196289, 0.5505494475364685, 0.4719780087471008, 0.596703290939331, 0.40714284777641296, 0.4170329570770264, 0.5527472496032715, 0.5725274682044983, 0.4236263632774353, 0.591208815574646, 0.4384615421295166, 0.450549453496933, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.553296685218811, 0.5543956160545349, 0.4763736128807068, 0.5906593203544617, 0.4153846204280853, 0.43901097774505615, 0.5263736248016357, 0.5346153974533081, 0.48186811804771423, 0.5697802305221558, 0.4620878994464874, 0.45659339427948, 0.5879120826721191, 0.5895604491233826, 0.49340659379959106, 0.60329669713974, 0.4604395627975464, 0.4401098787784576, 0.5939560532569885, 0.5939560532569885, 0.4686813056468963, 0.6104395389556885, 0.4917582273483277, 0.4868131875991822, 0.6120879054069519, 0.6093406677246094, 0.5010989308357239, 0.5851648449897766, 0.5, 0.4840659201145172, 0.5972527265548706, 0.595604419708252, 0.4912087917327881, 0.5928571224212646, 0.41923075914382935, 0.4620878994464874, 0.5719780325889587, 0.5802198052406311, 0.5373626351356506, 0.6021978259086609, 0.44505494832992554, 0.4384615421295166, 0.4395604431629181, 0.5060439705848694, 0.5510988831520081, 0.5505494475364685, 0.41043955087661743, 0.4686813056468963, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5758242011070251, 0.553296685218811, 0.5648351907730103, 0.58681321144104, 0.4972527325153351, 0.48351648449897766, 0.5489010810852051, 0.5461538434028625, 0.5197802186012268, 0.5873626470565796, 0.4829670190811157, 0.49670329689979553, 0.4631868004798889, 0.4296703338623047, 0.4829670190811157, 0.5785714387893677, 0.4115384519100189, 0.44835165143013, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.550000011920929, 0.5626373887062073, 0.5626373887062073, 0.5906593203544617, 0.4532966911792755, 0.4961538314819336, 0.5324175953865051, 0.5472527742385864, 0.41043955087661743, 0.5873626470565796, 0.45109888911247253, 0.4571428596973419, 0.5873626470565796, 0.5901098847389221, 0.4582417607307434, 0.5840659141540527, 0.4653846025466919, 0.47087910771369934, 0.5521978139877319, 0.553296685218811, 0.47857141494750977, 0.5796703100204468, 0.4774725139141083, 0.4791208803653717, 0.49945053458213806, 0.4972527325153351, 0.4571428596973419, 0.4692307710647583, 0.4582417607307434, 0.4670329689979553, 0.5703296661376953, 0.5769230723381042, 0.4912087917327881, 0.6027472615242004, 0.47087910771369934, 0.4445054829120636, 0.5565934181213379, 0.5302197933197021, 0.4384615421295166, 0.5939560532569885, 0.46483516693115234, 0.4631868004798889, 0.5461538434028625, 0.541208803653717, 0.4813186824321747, 0.5901098847389221, 0.3906593322753906, 0.43901097774505615, 0.5686812996864319, 0.5648351907730103, 0.4714285731315613, 0.595604419708252, 0.4285714328289032, 0.43021976947784424, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5659340620040894, 0.5780220031738281, 0.4516483545303345, 0.593406617641449, 0.4043956100940704, 0.4241758286952973, 0.5467032790184021, 0.5494505763053894, 0.48241758346557617, 0.5703296661376953, 0.4148351550102234, 0.4291208684444427, 0.6065934300422668, 0.6021978259086609, 0.4582417607307434, 0.6137362718582153, 0.4763736128807068, 0.4917582273483277, 0.6027472615242004, 0.6142857074737549, 0.5060439705848694, 0.6098901033401489, 0.4703296720981598, 0.4631868004798889, 0.598901093006134, 0.6186813116073608, 0.4846153855323791, 0.5835164785385132, 0.4714285731315613, 0.47472527623176575, 0.596703290939331, 0.6016483306884766, 0.4703296720981598, 0.601098895072937, 0.4642857015132904, 0.44120877981185913, 0.5736263990402222, 0.5604395866394043, 0.47857141494750977, 0.5939560532569885, 0.4467032849788666, 0.44120877981185913, 0.4961538314819336, 0.5252747535705566, 0.35384616255760193, 0.5587912201881409, 0.4681318700313568, 0.5038461685180664, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5538461804389954, 0.5670329928398132, 0.5763736367225647, 0.5961538553237915, 0.4752747118473053, 0.4873626232147217, 0.5417582392692566, 0.541208803653717, 0.4516483545303345, 0.5928571224212646, 0.4862637221813202, 0.49065932631492615, 0.46373626589775085, 0.4851648211479187, 0.4983516335487366, 0.5681318640708923, 0.39340659976005554, 0.4285714328289032, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.555494487285614, 0.5373626351356506, 0.5010989308357239, 0.5939560532569885, 0.4329670369625091, 0.44505494832992554, 0.5148351788520813, 0.5510988831520081, 0.5197802186012268, 0.5950549244880676, 0.4362637400627136, 0.4362637400627136, 0.5769230723381042, 0.5692307949066162, 0.5137362480163574, 0.5780220031738281, 0.46593406796455383, 0.4829670190811157, 0.5450549721717834, 0.5648351907730103, 0.446153849363327, 0.5780220031738281, 0.452747255563736, 0.4582417607307434, 0.4928571283817291, 0.4802197813987732, 0.4576922953128814, 0.4890109896659851, 0.4324175715446472, 0.4214285612106323, 0.5269230604171753, 0.5664834976196289, 0.46483516693115234, 0.5994505286216736, 0.441758245229721, 0.43186813592910767, 0.5340659618377686, 0.5428571701049805, 0.47087910771369934, 0.6021978259086609, 0.4236263632774353, -0.01], "hv9b5aer": [0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, -0.01, -0.01, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6379120945930481, 0.6478021740913391, 0.64670330286026, 0.6478021740913391, 0.6456043720245361, 0.6478021740913391, 0.6296703219413757, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6472527384757996, -0.01, -0.01, 0.6247252821922302, 0.6203296780586243, -0.01, -0.01, -0.01, -0.01, 0.5824176073074341, 0.598901093006134, 0.6351648569107056, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.598901093006134, 0.6329670548439026, 0.6461538672447205, 0.6252747178077698, 0.6346153616905212, 0.6384615302085876, 0.6170329451560974, 0.6313186883926392, 0.6181318759918213, 0.6186813116073608, 0.6450549364089966, 0.605494499206543, 0.6148351430892944, 0.6434065699577332, 0.6390109658241272, 0.6478021740913391, 0.6472527384757996, 0.6478021740913391, 0.6461538672447205, 0.6478021740913391, 0.6478021740913391, 0.6472527384757996, 0.6450549364089966, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6450549364089966, 0.6373626589775085, 0.6478021740913391, 0.6472527384757996, 0.6478021740913391, 0.644505500793457, 0.6478021740913391, 0.6324175596237183, 0.6478021740913391, 0.6082417368888855, 0.6329670548439026, 0.6450549364089966, 0.6192307472229004, 0.6159340739250183, 0.6098901033401489, 0.6368131637573242, 0.6346153616905212, 0.64670330286026, 0.6483516693115234, 0.6472527384757996, 0.644505500793457, 0.6478021740913391, 0.6478021740913391, 0.6472527384757996, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6478021740913391, 0.6439560651779175, 0.6478021740913391, 0.6461538672447205, 0.6478021740913391, 0.642307698726654, 0.6478021740913391, 0.6340659260749817, 0.6478021740913391, 0.6263736486434937, 0.6324175596237183, 0.6285714507102966, 0.6346153616905212, 0.6247252821922302, 0.6340659260749817, 0.6269230842590332, 0.6208791136741638, 0.644505500793457, 0.6252747178077698, 0.6412087678909302, 0.6401098966598511, 0.6478021740913391, 0.6483516693115234, 0.6478021740913391, 0.6461538672447205, 0.6478021740913391, 0.6472527384757996, 0.6478021740913391, 0.6472527384757996, 0.6472527384757996, 0.6483516693115234], "s1tkaoyx": [0.6164835164835165, 0.6038461538461538, -0.01, 0.5873626373626374, 0.6489010989010989, 0.6478021978021978, 0.6478021978021978, 0.6494505494505495, 0.6494505494505495, 0.5478021978021979, 0.65, 0.6494505494505495, 0.6494505494505495, -0.01, -0.01, 0.6032967032967033, 0.6, 0.6494505494505495, 0.6478021978021978, -0.01, -0.01, 0.5857142857142857, 0.6005494505494505, 0.6450549450549451, 0.6494505494505495, 0.6489010989010989, 0.6494505494505495, 0.5763736263736263, 0.6049450549450549, 0.6494505494505495, 0.6065934065934065, 0.6010989010989011, -0.01, 0.5917582417582418, 0.6494505494505495, 0.6478021978021978, 0.6489010989010989, 0.6494505494505495, 0.6489010989010989, 0.5456043956043956, 0.6478021978021978, 0.6489010989010989, 0.6494505494505495, -0.01, -0.01, 0.6230769230769231, 0.5961538461538461, 0.6489010989010989, 0.6483516483516484, -0.01, -0.01, 0.5774725274725274, 0.5802197802197803, 0.6450549450549451, 0.6489010989010989, 0.6494505494505495, 0.6494505494505495, 0.5653846153846154, 0.5945054945054945, 0.6494505494505495, 0.5917582417582418, 0.5840659340659341, -0.01, 0.5846153846153846, 0.6494505494505495, 0.6483516483516484, 0.6494505494505495, 0.6494505494505495, 0.6494505494505495, 0.5516483516483517, 0.6461538461538462, 0.6494505494505495, 0.6494505494505495, -0.01, -0.01, 0.6126373626373627, 0.5906593406593407, 0.6494505494505495, 0.6467032967032967, -0.01, -0.01, 0.5846153846153846, 0.5967032967032967, 0.6489010989010989, 0.6494505494505495, 0.6489010989010989, 0.6494505494505495, 0.5835164835164836, 0.6, 0.6478021978021978], "4zpkroz8": [0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.3484848439693451, 0.3181818127632141, 0.3787878751754761, 0.3333333432674408, 0.3636363744735718, 0.42424243688583374, 0.3484848439693451, 0.3181818127632141, 0.3787878751754761, 0.3333333432674408, 0.3636363744735718, 0.42424243688583374, 0.3636363744735718, 0.3939394056797027, 0.40909090638160706, 0.3939394056797027, 0.4393939375877381, 0.42424243688583374, 0.3484848439693451, 0.3939394056797027, 0.40909090638160706, 0.3333333432674408, 0.3636363744735718, 0.42424243688583374, 0.3484848439693451, 0.3181818127632141, 0.3787878751754761, 0.3333333432674408, 0.3636363744735718, 0.42424243688583374, 0.3484848439693451, 0.3181818127632141, 0.3787878751754761, 0.3333333432674408, 0.3636363744735718, 0.3636363744735718, 0.3787878751754761, 0.22727273404598236, 0.3484848439693451, 0.3181818127632141, 0.3484848439693451, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, 0.3787878751754761, 0.3333333432674408, 0.3636363744735718, 0.3181818127632141, 0.3484848439693451, 0.3636363744735718, 0.3787878751754761, 0.21212121844291687, 0.3181818127632141, 0.3181818127632141, 0.3484848439693451, 0.3636363744735718, 0.3787878751754761, 0.22727273404598236, 0.3484848439693451, 0.3181818127632141, 0.3484848439693451, 0.3181818127632141, 0.3484848439693451, 0.27272728085517883, 0.3484848439693451, 0.3030303120613098, 0.3181818127632141, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3181818127632141, 0.3484848439693451, 0.3181818127632141, 0.40909090638160706, 0.3030303120613098, 0.3181818127632141, 0.3181818127632141, 0.3484848439693451, 0.25757575035095215, 0.3484848439693451, 0.3030303120613098, 0.3333333432674408, 0.3181818127632141, 0.3484848439693451, 0.27272728085517883, 0.3484848439693451, 0.3030303120613098, 0.3181818127632141, 0.42424243688583374, 0.42424243688583374, 0.3484848439693451, 0.40909090638160706, 0.3181818127632141, 0.3787878751754761, 0.42424243688583374, 0.42424243688583374, 0.3484848439693451, 0.40909090638160706, 0.3181818127632141, 0.3787878751754761, 0.40909090638160706, 0.42424243688583374, 0.3484848439693451, 0.3636363744735718, 0.3636363744735718, 0.40909090638160706, 0.42424243688583374, 0.42424243688583374, 0.40909090638160706, 0.3787878751754761, 0.3181818127632141, 0.3787878751754761, 0.42424243688583374, 0.42424243688583374, 0.3030303120613098, 0.3939394056797027, 0.3181818127632141, 0.3787878751754761, 0.42424243688583374, 0.42424243688583374, 0.3484848439693451, 0.40909090638160706, 0.3181818127632141, 0.3787878751754761, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.3636363744735718, 0.3787878751754761, 0.3787878751754761, 0.4848484992980957, 0.4848484992980957, 0.42424243688583374, 0.3636363744735718, 0.3787878751754761, 0.3787878751754761, 0.4848484992980957, 0.4848484992980957, 0.3939394056797027, 0.3636363744735718, 0.3636363744735718, 0.3333333432674408, 0.40909090638160706, 0.3484848439693451, 0.42424243688583374, 0.3636363744735718, 0.3333333432674408, 0.3939394056797027, 0.4848484992980957, 0.4848484992980957, 0.42424243688583374, 0.3636363744735718, 0.3787878751754761, 0.3939394056797027, 0.4848484992980957, 0.4848484992980957, 0.42424243688583374, 0.3636363744735718, 0.3787878751754761, 0.3787878751754761, 0.4848484992980957, 0.4848484992980957, 0.3636363744735718, 0.3333333432674408, 0.3181818127632141, 0.24242424964904785, 0.3181818127632141, 0.3484848439693451, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, 0.3333333432674408, 0.21212121844291687, 0.3939394056797027, 0.3181818127632141, 0.3484848439693451, 0.3636363744735718, 0.3333333432674408, 0.3030303120613098, 0.27272728085517883, 0.3181818127632141, 0.3484848439693451, 0.3636363744735718, 0.3333333432674408, 0.3181818127632141, 0.24242424964904785, 0.3181818127632141, 0.3484848439693451, 0.3333333432674408, 0.40909090638160706, 0.3181818127632141, 0.27272728085517883, 0.3030303120613098, 0.3484848439693451, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3181818127632141, 0.3636363744735718, 0.21212121844291687, 0.3939394056797027, 0.3030303120613098, 0.3484848439693451, 0.3636363744735718, 0.3939394056797027, 0.3333333432674408, 0.25757575035095215, 0.3030303120613098, 0.3484848439693451, 0.3333333432674408, 0.40909090638160706, 0.3181818127632141, 0.27272728085517883, 0.3030303120613098, 0.3484848439693451, 0.42424243688583374, 0.42424243688583374, 0.3636363744735718, 0.3636363744735718, 0.4545454680919647, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.3636363744735718, 0.3636363744735718, 0.4545454680919647, 0.42424243688583374, 0.3787878751754761, 0.3939394056797027, 0.3181818127632141, 0.3484848439693451, 0.3787878751754761, 0.40909090638160706, 0.42424243688583374, 0.42424243688583374, 0.3636363744735718, 0.3636363744735718, 0.4545454680919647, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.3787878751754761, 0.3787878751754761, 0.4545454680919647, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.3636363744735718, 0.3636363744735718, 0.4545454680919647, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.42424243688583374, 0.4393939375877381, 0.3333333432674408, 0.3333333432674408, 0.3939394056797027, 0.42424243688583374, 0.3787878751754761, 0.4393939375877381, 0.3333333432674408, 0.3333333432674408, 0.3939394056797027, 0.42424243688583374, 0.3787878751754761, 0.3939394056797027, 0.3484848439693451, 0.40909090638160706, 0.3636363744735718, 0.3787878751754761, 0.3484848439693451, 0.4393939375877381, 0.3333333432674408, 0.3333333432674408, 0.3939394056797027, 0.42424243688583374, 0.3787878751754761, 0.4393939375877381, 0.3333333432674408, 0.3333333432674408, 0.3939394056797027, 0.42424243688583374, 0.3787878751754761, 0.4393939375877381, 0.3333333432674408, 0.3333333432674408, 0.3939394056797027, 0.42424243688583374, 0.3787878751754761, 0.3636363744735718, 0.3787878751754761, 0.3939394056797027, 0.27272728085517883, 0.3181818127632141, 0.27272728085517883, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, 0.3787878751754761, 0.3939394056797027, 0.27272728085517883, 0.3181818127632141, 0.27272728085517883, 0.3636363744735718, 0.3787878751754761, 0.3484848439693451, 0.28787878155708313, 0.3181818127632141, 0.27272728085517883, 0.3636363744735718, 0.3787878751754761, 0.3939394056797027, 0.27272728085517883, 0.3181818127632141, 0.27272728085517883, 0.3333333432674408, 0.3333333432674408, 0.42424243688583374, 0.3030303120613098, 0.3030303120613098, 0.3030303120613098, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3333333432674408, 0.3333333432674408, 0.42424243688583374, 0.3030303120613098, 0.3030303120613098, 0.3030303120613098, 0.3333333432674408, 0.3333333432674408, 0.3939394056797027, 0.27272728085517883, 0.3030303120613098, 0.3030303120613098, 0.3333333432674408, 0.3333333432674408, 0.42424243688583374, 0.3030303120613098, 0.3030303120613098, 0.3030303120613098, 0.42424243688583374, 0.42424243688583374, 0.3939394056797027, 0.3787878751754761, 0.42424243688583374, 0.4393939375877381, 0.42424243688583374, 0.42424243688583374, 0.3939394056797027, 0.3787878751754761, 0.42424243688583374, 0.4393939375877381, 0.40909090638160706, 0.40909090638160706, -0.01, -0.01, -0.01, 0.3787878751754761, -0.01, -0.01, -0.01, 0.3787878751754761, -0.01, 0.4393939375877381, -0.01, -0.01, -0.01, -0.01, 0.42424243688583374, -0.01, 0.42424243688583374, -0.01, -0.01, -0.01, 0.42424243688583374, 0.4393939375877381], "l2wuxpnd": [0.560606062412262, 0.5151515007019043, 0.469696968793869, 0.3484848439693451, 0.469696968793869, 0.5303030014038086, 0.560606062412262, 0.5151515007019043, 0.469696968793869, 0.3484848439693451, 0.469696968793869, 0.5303030014038086, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5757575631141663, 0.5151515007019043, 0.3939394056797027, 0.3484848439693451, 0.5, 0.5303030014038086, 0.5909090638160706, 0.5, 0.4848484992980957, 0.3484848439693451, 0.5, 0.5303030014038086, 0.469696968793869, 0.3939394056797027, 0.40909090638160706, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.469696968793869, 0.3939394056797027, 0.40909090638160706, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.3787878751754761, 0.27272728085517883, 0.40909090638160706, 0.4393939375877381, 0.5303030014038086, 0.5151515007019043, 0.469696968793869, 0.3939394056797027, 0.3939394056797027, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.469696968793869, 0.3939394056797027, 0.42424243688583374, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.3181818127632141, 0.3030303120613098, 0.4545454680919647, 0.4848484992980957, 0.5151515007019043, 0.5151515007019043, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3030303120613098, 0.3030303120613098, 0.4848484992980957, 0.4848484992980957, 0.5151515007019043, 0.5, 0.3181818127632141, 0.3030303120613098, 0.40909090638160706, 0.4848484992980957, 0.5151515007019043, 0.5, 0.4545454680919647, 0.4393939375877381, 0.40909090638160706, 0.3030303120613098, 0.469696968793869, 0.5303030014038086, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4545454680919647, 0.4393939375877381, 0.4545454680919647, 0.3030303120613098, 0.469696968793869, 0.5303030014038086, 0.469696968793869, 0.4393939375877381, 0.4393939375877381, 0.3030303120613098, 0.469696968793869, 0.5151515007019043, 0.5757575631141663, 0.5303030014038086, 0.4545454680919647, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.5757575631141663, 0.5303030014038086, 0.4545454680919647, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.4848484992980957, 0.469696968793869, 0.3484848439693451, 0.4393939375877381, 0.5303030014038086, 0.5151515007019043, 0.5757575631141663, 0.5303030014038086, 0.40909090638160706, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.5757575631141663, 0.5303030014038086, 0.3787878751754761, 0.4545454680919647, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.4393939375877381, 0.3484848439693451, 0.469696968793869, 0.5, 0.5, 0.5303030014038086, 0.4393939375877381, 0.3484848439693451, 0.469696968793869, 0.5, 0.5, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5303030014038086, 0.4393939375877381, 0.42424243688583374, 0.469696968793869, 0.5, 0.4848484992980957, 0.5303030014038086, 0.4393939375877381, 0.3939394056797027, 0.469696968793869, 0.5, 0.5, 0.4848484992980957, 0.469696968793869, 0.3333333432674408, 0.4848484992980957, 0.5303030014038086, 0.5303030014038086, 0.4848484992980957, 0.469696968793869, 0.3333333432674408, 0.4848484992980957, 0.5303030014038086, 0.5303030014038086, 0.3939394056797027, 0.4545454680919647, 0.3787878751754761, 0.3939394056797027, 0.5303030014038086, 0.5303030014038086, 0.4848484992980957, 0.4545454680919647, 0.5151515007019043, 0.4848484992980957, 0.5303030014038086, 0.5303030014038086, 0.4848484992980957, 0.4545454680919647, 0.42424243688583374, 0.4848484992980957, 0.5303030014038086, 0.5303030014038086, 0.3181818127632141, 0.3484848439693451, 0.3484848439693451, 0.5, 0.5151515007019043, 0.5, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3484848439693451, 0.3333333432674408, 0.3484848439693451, 0.5, 0.5151515007019043, 0.5, 0.28787878155708313, 0.3484848439693451, 0.3939394056797027, 0.5, 0.5151515007019043, 0.4848484992980957, 0.42424243688583374, 0.469696968793869, 0.469696968793869, 0.4545454680919647, 0.5454545617103577, 0.5454545617103577, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4848484992980957, 0.469696968793869, 0.19696970283985135, 0.4545454680919647, 0.5454545617103577, 0.5303030014038086, 0.469696968793869, 0.4545454680919647, 0.22727273404598236, 0.4545454680919647, 0.5454545617103577, 0.5454545617103577, 0.5454545617103577, 0.5303030014038086, 0.3484848439693451, 0.5151515007019043, 0.5303030014038086, 0.5303030014038086, 0.5454545617103577, 0.5303030014038086, 0.3484848439693451, 0.5151515007019043, 0.5303030014038086, 0.5303030014038086, 0.3636363744735718, 0.3333333432674408, 0.3939394056797027, 0.3787878751754761, 0.5151515007019043, 0.5303030014038086, 0.5454545617103577, 0.5151515007019043, 0.42424243688583374, 0.5151515007019043, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5151515007019043, 0.40909090638160706, 0.5151515007019043, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5151515007019043, 0.4393939375877381, 0.3636363744735718, 0.469696968793869, 0.5303030014038086, 0.5303030014038086, 0.5151515007019043, 0.4393939375877381, 0.3636363744735718, 0.469696968793869, 0.5303030014038086, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5303030014038086, 0.5151515007019043, 0.4393939375877381, 0.3636363744735718, 0.469696968793869, 0.5303030014038086, 0.5303030014038086, 0.5, 0.3636363744735718, 0.3636363744735718, 0.469696968793869, 0.5303030014038086, 0.4545454680919647, 0.4545454680919647, 0.3484848439693451, 0.40909090638160706, 0.5303030014038086, 0.5303030014038086, 0.4545454680919647, 0.4545454680919647, 0.3484848439693451, 0.40909090638160706, 0.5303030014038086, 0.5303030014038086, 0.42424243688583374, 0.3484848439693451, 0.3030303120613098, 0.3939394056797027, 0.5303030014038086, 0.5303030014038086, 0.4545454680919647, 0.4545454680919647, 0.3484848439693451, 0.40909090638160706, 0.5303030014038086, 0.5303030014038086, 0.4545454680919647, 0.4545454680919647, 0.40909090638160706, 0.40909090638160706, 0.5303030014038086, 0.5303030014038086, 0.3333333432674408, 0.3181818127632141, 0.42424243688583374, 0.5, 0.469696968793869, 0.5, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3333333432674408, 0.3181818127632141, 0.42424243688583374, 0.5, 0.469696968793869, 0.5, 0.3181818127632141, 0.3181818127632141, 0.3181818127632141, 0.5, 0.469696968793869, 0.4848484992980957, 0.469696968793869, 0.4545454680919647, 0.4393939375877381, 0.3636363744735718, 0.5303030014038086, 0.5151515007019043, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.469696968793869, 0.4545454680919647, 0.4393939375877381, 0.3636363744735718, 0.5303030014038086, 0.5151515007019043, 0.4545454680919647, 0.4393939375877381, 0.40909090638160706, 0.3636363744735718, 0.5303030014038086, 0.5, 0.5303030014038086, 0.5303030014038086, 0.469696968793869, 0.4393939375877381, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.469696968793869, 0.4393939375877381, 0.5303030014038086, 0.5303030014038086, 0.4545454680919647, 0.42424243688583374, 0.3787878751754761, 0.4545454680919647, 0.5303030014038086, 0.5151515007019043, 0.5303030014038086, 0.5303030014038086, 0.469696968793869, 0.4393939375877381, 0.5303030014038086, 0.5303030014038086, 0.560606062412262, 0.5303030014038086, 0.4393939375877381, -0.01, -0.01, -0.01], "v5hbb1ob": [0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, -0.01, -0.01, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5151515007019043, 0.5151515007019043, 0.5151515007019043, 0.5151515007019043, 0.5303030014038086, 0.4393939375877381, 0.5151515007019043, 0.5151515007019043, 0.5151515007019043, 0.5151515007019043, 0.4545454680919647, 0.469696968793869, -0.01, -0.01, -0.01, -0.01, 0.4545454680919647, 0.469696968793869, 0.4545454680919647, 0.469696968793869, 0.4848484992980957, 0.3939394056797027, -0.01, -0.01, -0.01, -0.01, 0.4848484992980957, 0.3939394056797027, 0.4848484992980957, 0.3939394056797027, 0.5151515007019043, 0.5303030014038086, 0.5151515007019043, 0.5303030014038086, 0.5303030014038086, 0.5151515007019043, 0.5151515007019043, 0.5303030014038086, 0.5151515007019043, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, -0.01, -0.01, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5454545617103577, 0.5151515007019043, 0.5454545617103577, 0.5151515007019043, 0.5151515007019043, 0.42424243688583374, 0.5454545617103577, 0.5151515007019043, 0.5454545617103577, 0.5151515007019043, 0.3636363744735718, 0.5151515007019043, -0.01, -0.01, -0.01, -0.01, 0.3636363744735718, 0.5151515007019043, 0.3636363744735718, 0.5151515007019043, 0.4848484992980957, 0.3484848439693451, -0.01, -0.01, -0.01, -0.01, 0.4848484992980957, 0.3939394056797027, 0.4848484992980957, 0.40909090638160706, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.4848484992980957, 0.5, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, -0.01, -0.01, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.4848484992980957, 0.5303030014038086, 0.4848484992980957, 0.469696968793869, 0.4848484992980957, 0.5303030014038086, 0.4848484992980957, 0.5303030014038086, 0.4848484992980957, 0.5303030014038086, 0.5303030014038086, -0.01, -0.01, -0.01, -0.01, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.5303030014038086, 0.04545454680919647, 0.4393939375877381, -0.01, -0.01, -0.01, -0.01, 0.04545454680919647, 0.4393939375877381, 0.04545454680919647, 0.4393939375877381, 0.5303030014038086, 0.5151515007019043, 0.5303030014038086, 0.5151515007019043, 0.5303030014038086, 0.5151515007019043, 0.5303030014038086, -0.01, 0.5303030014038086, 0.5151515007019043], "tmb6nbhs": [0.3181818181818182, 0.3181818181818182, -0.01, 0.3181818181818182, 0.3181818181818182, 0.3181818181818182, 0.2878787878787879, 0.2878787878787879, 0.24242424242424243, 0.3333333333333333, 0.2878787878787879, 0.2878787878787879, 0.42424242424242425, -0.01, -0.01, 0.42424242424242425, 0.42424242424242425, 0.42424242424242425, 0.3484848484848485, -0.01, -0.01, 0.3787878787878788, 0.3484848484848485, 0.3484848484848485, 0.3787878787878788, 0.3787878787878788, 0.3939393939393939, 0.3787878787878788, 0.3787878787878788, 0.3787878787878788, 0.3484848484848485, 0.3484848484848485, -0.01, 0.3181818181818182, 0.3484848484848485, 0.3484848484848485, 0.2727272727272727, 0.2727272727272727, 0.30303030303030304, 0.30303030303030304, 0.2727272727272727, 0.2727272727272727, 0.42424242424242425, -0.01, -0.01, 0.4090909090909091, 0.42424242424242425, 0.42424242424242425, 0.3484848484848485, -0.01, -0.01, 0.42424242424242425, 0.3484848484848485, 0.3484848484848485, 0.3636363636363637, 0.3636363636363637, 0.3787878787878788, 0.3939393939393939, 0.3636363636363637, 0.3636363636363637, 0.3636363636363637, 0.3636363636363637, -0.01, 0.3636363636363637, 0.3636363636363637, 0.3636363636363637, 0.2727272727272727, 0.2727272727272727, 0.24242424242424243, 0.2727272727272727, 0.2727272727272727, 0.2727272727272727, 0.42424242424242425, -0.01, -0.01, 0.42424242424242425, 0.42424242424242425, 0.42424242424242425, 0.3484848484848485, -0.01, -0.01, 0.3484848484848485, 0.3484848484848485, 0.3484848484848485, 0.3787878787878788, 0.3787878787878788, 0.30303030303030304, 0.3787878787878788, 0.3787878787878788, 0.3787878787878788], "6pmayeh5": [0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.2150000035762787, 0.2185000032186508, 0.1574999988079071, 0.1679999977350235, 0.17000000178813934, 0.16599999368190765, 0.2300000041723251, 0.23399999737739563, 0.15800000727176666, 0.16099999845027924, 0.15549999475479126, 0.164000004529953, 0.22699999809265137, 0.21449999511241913, 0.16050000488758087, 0.15150000154972076, 0.16050000488758087, 0.16050000488758087, 0.210999995470047, 0.2029999941587448, 0.1599999964237213, 0.16099999845027924, 0.1720000058412552, 0.1784999966621399, 0.2185000032186508, 0.22499999403953552, 0.15850000083446503, 0.17299999296665192, 0.15649999678134918, 0.16249999403953552, 0.23600000143051147, 0.23549999296665192, 0.1445000022649765, 0.17149999737739563, 0.16449999809265137, 0.15150000154972076, 0.17350000143051147, 0.1889999955892563, 0.1665000021457672, 0.16300000250339508, 0.1665000021457672, 0.15800000727176666, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2179999947547913, 0.2150000035762787, 0.22100000083446503, 0.1860000044107437, 0.2160000056028366, 0.21649999916553497, 0.1940000057220459, 0.19200000166893005, 0.1745000034570694, 0.16699999570846558, 0.17649999260902405, 0.17000000178813934, 0.21449999511241913, 0.21449999511241913, 0.13950000703334808, 0.16899999976158142, 0.15950000286102295, 0.1469999998807907, 0.15549999475479126, 0.16899999976158142, 0.1615000069141388, 0.15800000727176666, 0.15150000154972076, 0.15299999713897705, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1850000023841858, 0.1815000027418137, 0.2189999967813492, 0.18850000202655792, 0.21449999511241913, 0.210999995470047, 0.1924999952316284, 0.193000003695488, 0.2070000022649765, 0.1850000023841858, 0.2029999941587448, 0.2004999965429306, 0.20499999821186063, 0.2039999961853027, 0.1449999958276749, 0.17149999737739563, 0.1469999998807907, 0.1420000046491623, 0.24050000309944153, 0.24050000309944153, 0.18299999833106995, 0.16050000488758087, 0.20100000500679016, 0.18950000405311584, 0.23899999260902405, 0.23749999701976776, 0.1835000067949295, 0.15549999475479126, 0.1934999972581863, 0.181999996304512, 0.23749999701976776, 0.23549999296665192, 0.19699999690055847, 0.17800000309944153, 0.19850000739097595, 0.1914999932050705, 0.2409999966621399, 0.2419999986886978, 0.20000000298023224, 0.1924999952316284, 0.22499999403953552, 0.22550000250339508, 0.2335000038146973, 0.2345000058412552, 0.21199999749660492, 0.18649999797344208, 0.21199999749660492, 0.21250000596046448, 0.24150000512599945, 0.24150000512599945, 0.17249999940395355, 0.18299999833106995, 0.18649999797344208, 0.17149999737739563, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.21199999749660492, 0.21400000154972076, 0.17000000178813934, 0.17800000309944153, 0.1745000034570694, 0.17749999463558197, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.19900000095367432, 0.2039999961853027, 0.16200000047683716, 0.16200000047683716, 0.17749999463558197, 0.1835000067949295, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23549999296665192, 0.23749999701976776, -0.01, 0.1860000044107437, -0.01, -0.01, 0.15549999475479126, 0.1264999955892563, 0.12999999523162842, 0.15049999952316284, 0.14100000262260437, 0.14650000631809235, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.21150000393390656, 0.21199999749660492, 0.23100000619888303, 0.20649999380111697, 0.2189999967813492, 0.22100000083446503, 0.19050000607967377, 0.1835000067949295, 0.1889999955892563, 0.17649999260902405, 0.17649999260902405, 0.17800000309944153, 0.14550000429153442, 0.1315000057220459, 0.17399999499320984, 0.16349999606609344, 0.14749999344348907, 0.12200000137090684, 0.08950000256299973, 0.1169999986886978, 0.16500000655651093, 0.16599999368190765, 0.16599999368190765, 0.1445000022649765, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.09149999916553496, 0.08699999749660492, 0.22750000655651093, 0.2199999988079071, 0.22499999403953552, 0.21699999272823337, 0.17249999940395355, 0.1704999953508377, 0.2070000022649765, 0.20000000298023224, 0.20000000298023224, 0.20350000262260437, 0.12700000405311584, 0.10999999940395357, 0.13699999451637268, 0.16300000250339508, 0.1449999958276749, 0.14000000059604645, 0.24050000309944153, 0.23999999463558197, 0.1720000058412552, 0.16200000047683716, 0.19200000166893005, 0.18050000071525577, 0.23999999463558197, 0.24050000309944153, 0.17800000309944153, 0.15700000524520874, 0.2004999965429306, 0.19200000166893005, 0.2395000010728836, 0.2370000034570694, 0.1955000013113022, 0.16899999976158142, 0.20000000298023224, 0.18950000405311584, 0.24050000309944153, 0.2395000010728836, 0.2189999967813492, 0.20350000262260437, 0.23749999701976776, 0.23499999940395355, 0.23549999296665192, 0.23600000143051147, 0.22100000083446503, 0.21050000190734863, 0.21549999713897705, 0.2150000035762787, 0.2419999986886978, 0.2419999986886978, 0.15800000727176666, 0.1720000058412552, 0.17800000309944153, 0.17499999701976776, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.24150000512599945, 0.2179999947547913, 0.21549999713897705, 0.15549999475479126, 0.16899999976158142, 0.1679999977350235, 0.16899999976158142, 0.2304999977350235, 0.2300000041723251, 0.15700000524520874, 0.14650000631809235, 0.1694999933242798, 0.16699999570846558, 0.2345000058412552, 0.2214999943971634, 0.16850000619888306, 0.15449999272823334, 0.164000004529953, 0.16850000619888306, 0.21449999511241913, 0.21199999749660492, 0.17550000548362732, 0.1679999977350235, 0.1815000027418137, 0.17550000548362732, 0.21400000154972076, 0.21299999952316284, 0.16050000488758087, 0.16300000250339508, 0.1710000038146973, 0.15649999678134918, 0.23549999296665192, 0.2335000038146973, 0.13600000739097595, 0.1694999933242798, 0.1655000001192093, 0.15299999713897705, 0.1860000044107437, 0.18050000071525577, 0.1615000069141388, 0.1599999964237213, 0.1589999943971634, 0.15649999678134918, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.21400000154972076, 0.210999995470047, 0.23149999976158145, 0.2055000066757202, 0.21549999713897705, 0.2214999943971634, 0.18950000405311584, 0.1934999972581863, 0.1889999955892563, 0.17299999296665192, 0.16449999809265137, 0.1704999953508377, 0.2185000032186508, 0.21199999749660492, 0.16449999809265137, 0.17649999260902405, 0.14800000190734863, 0.15299999713897705, 0.1574999988079071, 0.1615000069141388, 0.1770000010728836, 0.17000000178813934, 0.1599999964237213, 0.16200000047683716, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17350000143051147, 0.17399999499320984, 0.23100000619888303, 0.2080000042915344, 0.22050000727176663, 0.2189999967813492, 0.181999996304512, 0.18549999594688416, 0.2055000066757202, 0.20000000298023224, 0.20649999380111697, 0.2039999961853027, 0.2029999941587448, 0.19949999451637268, 0.15449999272823334, 0.16500000655651093, 0.15000000596046448, 0.15299999713897705, 0.23999999463558197, 0.24050000309944153, 0.18299999833106995, 0.15700000524520874, 0.193000003695488, 0.1899999976158142, 0.23999999463558197, 0.23899999260902405, 0.19499999284744263, 0.15649999678134918, 0.19699999690055847, 0.19099999964237213, 0.23899999260902405, 0.23649999499320984, 0.20499999821186063, 0.18050000071525577, 0.19900000095367432, 0.19599999487400055, 0.2419999986886978, 0.23999999463558197, 0.2039999961853027, 0.20250000059604645, 0.23600000143051147, 0.23549999296665192, 0.2319999933242798, 0.2319999933242798, 0.23100000619888303, 0.20649999380111697, 0.2150000035762787, 0.210999995470047, 0.24150000512599945, 0.24150000512599945, 0.17599999904632568, 0.1720000058412552, 0.1850000023841858, 0.181999996304512], "mwjlq7a2": [0.12800000607967377, 0.21050000190734863, 0.13050000369548798, 0.13600000739097595, 0.1315000057220459, 0.13650000095367432, 0.21250000596046448, 0.13099999725818634, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.12950000166893005, 0.10599999874830246, 0.19949999451637268, 0.12700000405311584, 0.13099999725818634, 0.14000000059604645, 0.20499999821186063, 0.16699999570846558, 0.12849999964237213, 0.15049999952316284, 0.12449999898672104, 0.13349999487400055, 0.1340000033378601, 0.14100000262260437, 0.1449999958276749, 0.20649999380111697, 0.1420000046491623, 0.13349999487400055, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15600000321865082, 0.1330000013113022, 0.15399999916553497, 0.12399999797344208, 0.20149999856948853, 0.13950000703334808, 0.1354999989271164, 0.1445000022649765, 0.148499995470047, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.14000000059604645, 0.12449999898672104, 0.125, 0.12849999964237213, 0.2080000042915344, 0.1264999955892563, 0.1404999941587448, 0.119999997317791, 0.1340000033378601, 0.13899999856948853, 0.22300000488758087, 0.1289999932050705, 0.1420000046491623, 0.20999999344348907, 0.1274999976158142, 0.12800000607967377, 0.14749999344348907, 0.14399999380111694, 0.15600000321865082, 0.14800000190734863, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.14000000059604645, 0.1414999961853027, 0.14000000059604645, 0.1889999955892563, 0.1414999961853027, 0.14350000023841858, 0.1414999961853027, 0.1340000033378601, 0.1934999972581863, 0.12300000339746477, 0.13199999928474426, 0.12150000035762788, 0.16249999403953552, 0.12700000405311584, 0.1379999965429306, 0.1289999932050705, 0.1120000034570694, 0.1225000023841858, 0.1354999989271164, 0.2045000046491623, 0.1404999941587448, 0.13899999856948853, 0.2084999978542328, 0.12349999696016312, 0.07999999821186066, 0.20149999856948853, 0.1315000057220459, 0.1264999955892563, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15199999511241913, 0.14249999821186066, 0.1469999998807907, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.13899999856948853, 0.19200000166893005, 0.1414999961853027, 0.148499995470047, 0.15049999952316284, 0.1315000057220459, 0.12399999797344208, 0.14650000631809235, 0.1420000046491623, 0.1924999952316284, 0.13600000739097595, 0.1809999942779541, 0.14900000393390656, 0.19850000739097595, 0.12150000035762788, 0.1940000057220459, 0.13349999487400055, 0.11400000005960464, 0.19499999284744263, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.14800000190734863, 0.14800000190734863, 0.1414999961853027, 0.12600000202655792, 0.12300000339746477, 0.13099999725818634, 0.15800000727176666, 0.164000004529953, 0.1525000035762787, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15649999678134918, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.13249999284744263, 0.13750000298023224, 0.13950000703334808, 0.12449999898672104, 0.12700000405311584, 0.13650000095367432, 0.13099999725818634, 0.1080000028014183, 0.2084999978542328, 0.13249999284744263, 0.1330000013113022, 0.15000000596046448, 0.1589999943971634, 0.17249999940395355, 0.16599999368190765, 0.13199999928474426, 0.12349999696016312, 0.1694999933242798, 0.10750000178813934, 0.21699999272823337, 0.13099999725818634, 0.14650000631809235, 0.1354999989271164, 0.119999997317791, 0.15549999475479126, 0.1080000028014183, 0.11500000208616255, 0.1655000001192093, 0.13850000500679016, 0.21649999916553497, 0.13050000369548798, 0.1589999943971634, 0.1574999988079071, 0.19900000095367432, 0.1354999989271164, 0.08500000089406967, 0.15000000596046448, 0.21549999713897705, 0.15950000286102295, 0.14000000059604645, 0.1469999998807907, 0.1615000069141388, 0.1809999942779541, 0.1330000013113022, 0.13349999487400055, 0.13950000703334808, 0.15049999952316284, 0.1574999988079071, 0.210999995470047, 0.1525000035762787, 0.21150000393390656, 0.13650000095367432, 0.13099999725818634, 0.15049999952316284, 0.15449999272823334, 0.1404999941587448, 0.12549999356269836, 0.1469999998807907, 0.13199999928474426, 0.1965000033378601, 0.1185000017285347, 0.13750000298023224, 0.13199999928474426, 0.18549999594688416, 0.13050000369548798, 0.15199999511241913, 0.1459999978542328, 0.1169999986886978, 0.12349999696016312, 0.12800000607967377, 0.15299999713897705, 0.12600000202655792, 0.14749999344348907, 0.14800000190734863, 0.19599999487400055, 0.14000000059604645, 0.1914999932050705, 0.1379999965429306, 0.13199999928474426, 0.1379999965429306, 0.1274999976158142, 0.1589999943971634, 0.15600000321865082, 0.13050000369548798, 0.1979999989271164, 0.17149999737739563, 0.12300000339746477, 0.21199999749660492, 0.13349999487400055, 0.125, 0.164000004529953, 0.16349999606609344, 0.13850000500679016, 0.12349999696016312, 0.13750000298023224, 0.12150000035762788, 0.13249999284744263, 0.125, 0.12999999523162842, 0.1655000001192093, 0.15049999952316284, 0.19499999284744263, 0.16099999845027924, 0.1509999930858612, 0.13699999451637268, 0.14249999821186066, 0.12950000166893005, 0.18950000405311584, 0.13850000500679016, 0.12800000607967377, 0.1264999955892563, 0.20250000059604645, 0.1860000044107437, 0.12800000607967377, 0.14100000262260437, 0.125, 0.14949999749660492, 0.14350000023841858, 0.13349999487400055, 0.19750000536441803, 0.1469999998807907, 0.13249999284744263, 0.13699999451637268, 0.18850000202655792, 0.12549999356269836, 0.10999999940395357, 0.13650000095367432, 0.13349999487400055, 0.13850000500679016, 0.15000000596046448, 0.1414999961853027, 0.12950000166893005, 0.13500000536441803, 0.1225000023841858, 0.11900000274181366, 0.14350000023841858, 0.14350000023841858, 0.11599999666213988, 0.12200000137090684, 0.14650000631809235, 0.16300000250339508, 0.1404999941587448, 0.1955000013113022, 0.13249999284744263, 0.15150000154972076, 0.15150000154972076, 0.1469999998807907, 0.1379999965429306, 0.1354999989271164, 0.13699999451637268, 0.1889999955892563, 0.1509999930858612, 0.12549999356269836, 0.12600000202655792, 0.1934999972581863, 0.13099999725818634, 0.15950000286102295, 0.15950000286102295, 0.125, 0.2080000042915344, 0.119999997317791, 0.12300000339746477, 0.2185000032186508, 0.12099999934434892, 0.12049999833106996, 0.15399999916553497, 0.125, 0.15600000321865082, 0.12399999797344208, 0.12399999797344208, 0.15549999475479126, 0.15150000154972076, 0.1354999989271164, 0.2029999941587448, 0.13750000298023224, 0.13349999487400055, 0.1615000069141388, 0.14949999749660492, 0.1225000023841858, 0.20649999380111697, 0.12600000202655792, 0.1289999932050705, 0.13650000095367432, 0.13750000298023224, 0.1379999965429306, 0.2004999965429306, 0.12800000607967377, 0.13600000739097595, 0.14550000429153442, 0.13950000703334808, 0.1965000033378601, 0.14949999749660492, 0.1459999978542328, 0.13099999725818634, 0.1404999941587448, 0.1430000066757202, 0.20200000703334808, 0.13950000703334808, 0.1340000033378601, 0.1330000013113022, 0.12950000166893005, 0.11900000274181366, 0.18649999797344208, 0.13600000739097595, 0.13950000703334808, 0.1420000046491623, 0.16099999845027924, 0.1899999976158142, 0.19200000166893005, 0.13950000703334808, 0.1449999958276749, 0.1340000033378601, 0.13199999928474426, 0.10700000077486038, 0.1924999952316284, 0.13349999487400055, 0.1330000013113022, 0.12950000166893005, 0.12399999797344208, 0.11800000071525574, 0.19200000166893005, 0.12399999797344208, 0.13349999487400055, 0.13449999690055847, 0.1379999965429306, 0.09799999743700027, 0.19599999487400055, 0.12349999696016312, 0.11550000309944151, 0.13249999284744263, 0.1289999932050705, 0.11550000309944151, 0.17800000309944153, 0.12449999898672104, 0.1330000013113022, 0.14000000059604645, 0.1469999998807907, 0.1274999976158142, 0.20649999380111697, 0.1225000023841858, 0.12700000405311584, 0.13699999451637268, 0.13449999690055847, 0.20149999856948853, 0.13650000095367432], "77gxykh3": [0.25, 0.25, 0.25, 0.25, -0.01, -0.01, 0.25, 0.25, 0.25, 0.25, 0.2004999965429306, 0.2039999961853027, 0.20900000631809235, 0.22100000083446503, 0.24899999797344208, 0.22550000250339508, 0.19949999451637268, 0.18649999797344208, 0.19099999964237213, 0.20600000023841855, 0.1850000023841858, 0.1655000001192093, -0.01, -0.01, -0.01, -0.01, 0.2345000058412552, 0.20200000703334808, 0.18700000643730164, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1875, 0.16349999606609344, 0.18050000071525577, 0.15649999678134918, 0.14650000631809235, 0.1550000011920929, 0.1509999930858612, 0.23849999904632568, 0.2440000027418137, 0.244499996304512, 0.2475000023841858, 0.23800000548362732, 0.23649999499320984, 0.25049999356269836, 0.24950000643730164, 0.23399999737739563, 0.23849999904632568, 0.2515000104904175, 0.25049999356269836, 0.25, 0.25, 0.25, 0.24899999797344208, 0.25, 0.25, 0.20600000023841855, 0.1924999952316284, 0.22750000655651093, 0.2185000032186508, 0.24549999833106995, 0.22050000727176663, 0.16099999845027924, 0.1704999953508377, 0.19949999451637268, 0.1965000033378601, 0.17800000309944153, 0.16699999570846558, 0.226500004529953, 0.2195000052452087, 0.1665000021457672, 0.15800000727176666, 0.2185000032186508, 0.2094999998807907, 0.19449999928474423, 0.19750000536441803, 0.1655000001192093, 0.16899999976158142, 0.2440000027418137, 0.24799999594688416, 0.2409999966621399, 0.2395000010728836, 0.244499996304512, 0.24250000715255737, 0.24699999392032623, 0.24150000512599945, 0.23549999296665192, 0.2240000069141388, 0.24950000643730164, 0.24950000643730164, 0.2485000044107437, 0.25, 0.25, 0.24899999797344208, 0.25, 0.25, 0.19200000166893005, 0.20250000059604645, 0.2319999933242798, 0.22349999845027924, 0.2475000023841858, 0.21649999916553497, 0.1745000034570694, 0.16850000619888306, 0.1955000013113022, 0.20999999344348907, 0.15549999475479126, 0.1469999998807907, 0.2045000046491623, 0.2175000011920929, 0.1745000034570694, 0.1770000010728836, 0.16349999606609344, 0.15649999678134918, 0.1665000021457672, 0.18050000071525577, 0.1469999998807907, 0.1459999978542328, 0.2419999986886978, 0.244499996304512, 0.2419999986886978, 0.23749999701976776, 0.23649999499320984, 0.23849999904632568, 0.2440000027418137, 0.23849999904632568, 0.2329999953508377, 0.23749999701976776], "bvhvfd0e": [0.166, 0.1605, -0.01, 0.157, 0.264, 0.264, 0.265, 0.264, 0.264, 0.1975, 0.264, 0.264, 0.264, -0.01, -0.01, 0.0745, 0.2625, 0.264, 0.2625, -0.01, -0.01, 0.1625, 0.2535, 0.2635, 0.264, 0.264, 0.2645, 0.0055, 0.2615, 0.264, 0.0695, 0.065, -0.01, 0.0585, 0.264, 0.264, 0.264, 0.264, 0.264, 0.0755, 0.264, 0.264, 0.264, -0.01, -0.01, 0.0375, 0.2505, 0.2635, 0.2625, -0.01, -0.01, 0.103, 0.1925, 0.264, 0.2645, 0.264, 0.264, -0.01, 0.2485, 0.264, 0.0475, 0.0515, -0.01, 0.0515, 0.264, 0.264, 0.2605, 0.264, 0.264, 0.09, 0.264, 0.264, 0.264, -0.01, -0.01, 0.042, 0.261, 0.264, 0.263, -0.01, -0.01, 0.0845, 0.2405, 0.2635, 0.264, 0.2645, 0.264, -0.01, 0.2595, 0.264], "1lf1dmfq": [0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, -0.01, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.1459999978542328, 0.14800000190734863, 0.10100000351667404, -0.01, 0.125, 0.12700000405311584, 0.14800000190734863, 0.15449999272823334, 0.1264999955892563, 0.12399999797344208, 0.1120000034570694, 0.1145000010728836, 0.12700000405311584, 0.13249999284744263, 0.12349999696016312, 0.1120000034570694, 0.10999999940395357, 0.1080000028014183, 0.14350000023841858, 0.1354999989271164, 0.12200000137090684, 0.11249999701976776, 0.1080000028014183, 0.1145000010728836, 0.14800000190734863, 0.13950000703334808, 0.1014999970793724, 0.1185000017285347, 0.11249999701976776, 0.1120000034570694, 0.15549999475479126, 0.1535000056028366, 0.096500001847744, 0.1120000034570694, 0.11150000244379044, 0.10750000178813934, 0.14949999749660492, 0.15199999511241913, 0.1315000057220459, 0.11550000309944151, 0.13199999928474426, 0.12849999964237213, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16449999809265137, 0.1655000001192093, 0.15150000154972076, 0.1264999955892563, 0.15399999916553497, 0.1535000056028366, 0.14399999380111694, 0.1430000066757202, 0.12600000202655792, 0.11949999630451202, 0.13099999725818634, 0.12449999898672104, 0.1694999933242798, 0.164000004529953, 0.10750000178813934, 0.10350000113248824, 0.11400000005960464, 0.11400000005960464, 0.13750000298023224, 0.14350000023841858, 0.13349999487400055, 0.11749999970197678, 0.12849999964237213, 0.1340000033378601, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15800000727176666, 0.15449999272823334, 0.15399999916553497, 0.13349999487400055, 0.15549999475479126, 0.15649999678134918, 0.14000000059604645, 0.1340000033378601, 0.12349999696016312, 0.11249999701976776, 0.12849999964237213, 0.13449999690055847, 0.164000004529953, 0.16050000488758087, 0.11150000244379044, 0.10899999737739564, 0.12950000166893005, 0.12700000405311584, 0.16300000250339508, 0.1599999964237213, 0.12049999833106996, 0.1169999986886978, 0.1274999976158142, 0.13199999928474426, 0.15649999678134918, 0.1574999988079071, 0.125, 0.11599999666213988, 0.14249999821186066, 0.13600000739097595, 0.1589999943971634, 0.15850000083446503, 0.1430000066757202, 0.11649999767541884, 0.1340000033378601, 0.13750000298023224, 0.1655000001192093, 0.16500000655651093, 0.14949999749660492, 0.13850000500679016, 0.16249999403953552, 0.1599999964237213, 0.1599999964237213, 0.1589999943971634, 0.1469999998807907, 0.11500000208616255, 0.13249999284744263, 0.1330000013113022, 0.1694999933242798, 0.1694999933242798, 0.10700000077486038, 0.11749999970197678, 0.12800000607967377, 0.1274999976158142, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.13449999690055847, 0.1340000033378601, 0.11050000041723251, 0.125, 0.11900000274181366, 0.1274999976158142, 0.1430000066757202, 0.14000000059604645, 0.11349999904632568, 0.1145000010728836, 0.11100000143051147, 0.11100000143051147, 0.13699999451637268, 0.1315000057220459, 0.10649999976158142, 0.11349999904632568, 0.11249999701976776, 0.11299999803304672, 0.1289999932050705, 0.12600000202655792, 0.1225000023841858, 0.11349999904632568, 0.12150000035762788, 0.125, 0.1445000022649765, 0.13650000095367432, 0.11150000244379044, 0.11900000274181366, 0.11599999666213988, 0.10999999940395357, 0.1535000056028366, 0.14800000190734863, 0.10000000149011612, 0.11299999803304672, 0.10899999737739564, 0.11150000244379044, 0.13349999487400055, 0.13650000095367432, 0.12399999797344208, 0.10499999672174454, 0.10700000077486038, 0.11649999767541884, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1675000041723251, 0.1694999933242798, 0.1550000011920929, 0.15199999511241913, 0.17000000178813934, 0.1710000038146973, 0.13500000536441803, 0.13500000536441803, 0.11599999666213988, 0.1185000017285347, 0.12099999934434892, 0.12200000137090684, 0.13449999690055847, 0.13349999487400055, 0.10499999672174454, 0.1080000028014183, 0.10350000113248824, 0.1145000010728836, 0.1274999976158142, 0.1225000023841858, 0.1289999932050705, 0.119999997317791, 0.12349999696016312, 0.12150000035762788, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1599999964237213, 0.16200000047683716, 0.15199999511241913, 0.148499995470047, 0.16449999809265137, 0.16850000619888306, 0.11599999666213988, 0.11500000208616255, 0.1354999989271164, 0.12099999934434892, 0.11749999970197678, 0.12200000137090684, 0.15549999475479126, 0.15399999916553497, 0.10499999672174454, 0.11500000208616255, 0.11749999970197678, 0.12049999833106996, 0.15549999475479126, 0.15449999272823334, 0.1379999965429306, 0.11249999701976776, 0.12549999356269836, 0.12800000607967377, 0.16500000655651093, 0.1665000021457672, 0.13650000095367432, 0.125, 0.13199999928474426, 0.13850000500679016, 0.164000004529953, 0.16200000047683716, 0.1469999998807907, 0.12300000339746477, 0.13750000298023224, 0.13750000298023224, 0.1710000038146973, 0.1710000038146973, 0.15049999952316284, 0.148499995470047, 0.16899999976158142, 0.16850000619888306, 0.1574999988079071, 0.15700000524520874, 0.13199999928474426, 0.119999997317791, 0.12849999964237213, 0.1315000057220459, 0.1694999933242798, 0.1679999977350235, 0.11100000143051147, 0.12150000035762788, 0.12300000339746477, 0.12049999833106996, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.17249999940395355, 0.14399999380111694, 0.13850000500679016, 0.1080000028014183, 0.1169999986886978, 0.11800000071525574, 0.12200000137090684, 0.1430000066757202, 0.14000000059604645, 0.10350000113248824, 0.10999999940395357, 0.10300000011920928, 0.11550000309944151, 0.12950000166893005, 0.13199999928474426, 0.12099999934434892, 0.10649999976158142, 0.12150000035762788, 0.119999997317791, 0.11900000274181366, 0.11550000309944151, 0.1054999977350235, 0.11500000208616255, 0.1264999955892563, 0.1120000034570694, 0.1525000035762787, 0.1550000011920929, 0.12449999898672104, 0.11949999630451202, 0.12200000137090684, 0.11550000309944151, 0.15700000524520874, 0.15449999272823334, 0.10000000149011612, 0.1080000028014183, 0.11349999904632568, 0.10750000178813934, 0.15049999952316284, 0.14900000393390656, 0.1169999986886978, 0.12600000202655792, 0.1289999932050705, 0.13249999284744263, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1720000058412552, 0.17149999737739563, 0.1574999988079071, 0.14650000631809235, 0.1710000038146973, 0.1694999933242798, 0.1420000046491623, 0.1404999941587448, 0.12399999797344208, 0.11949999630451202, 0.11500000208616255, 0.12399999797344208, 0.1655000001192093, 0.1615000069141388, 0.10350000113248824, 0.10050000250339508, 0.1315000057220459, 0.12950000166893005, 0.13699999451637268, 0.13349999487400055, 0.12600000202655792, 0.11749999970197678, 0.13600000739097595, 0.13500000536441803, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.15649999678134918, 0.1550000011920929, 0.16699999570846558, 0.15150000154972076, 0.16599999368190765, 0.1655000001192093, 0.1354999989271164, 0.14000000059604645, 0.13449999690055847, 0.11100000143051147, 0.1274999976158142, 0.1289999932050705, 0.16099999845027924, 0.16099999845027924, 0.10350000113248824, 0.11100000143051147, 0.1185000017285347, 0.12099999934434892, 0.164000004529953, 0.1615000069141388, 0.1340000033378601, 0.12399999797344208, 0.13050000369548798, 0.13199999928474426, 0.1655000001192093, 0.1615000069141388, 0.13600000739097595, 0.119999997317791, 0.14749999344348907, 0.1379999965429306, 0.15800000727176666, 0.15449999272823334, 0.14249999821186066, 0.12349999696016312, 0.13349999487400055, -0.01, -0.01, 0.1710000038146973, -0.01, -0.01, -0.01, 0.1665000021457672, 0.16500000655651093, 0.16050000488758087, -0.01, -0.01, 0.13500000536441803, -0.01, 0.1694999933242798, 0.1704999953508377, 0.10999999940395357, -0.01, -0.01, -0.01], "xbubo8oq": [0.09749999642372131, 0.10599999874830246, 0.10700000077486038, 0.12950000166893005, 0.0949999988079071, 0.10450000315904616, 0.0989999994635582, 0.10750000178813934, 0.09700000286102296, 0.1330000013113022, 0.10249999910593031, 0.10050000250339508, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11400000005960464, 0.12150000035762788, 0.10450000315904616, 0.1315000057220459, 0.1040000021457672, 0.1054999977350235, 0.11550000309944151, 0.1185000017285347, 0.10000000149011612, 0.13249999284744263, 0.1054999977350235, 0.10100000351667404, 0.1080000028014183, 0.12300000339746477, 0.08799999952316284, 0.15049999952316284, 0.12300000339746477, 0.12300000339746477, 0.12200000137090684, 0.1274999976158142, 0.09950000047683716, 0.15199999511241913, 0.1040000021457672, 0.10499999672174454, 0.10599999874830246, 0.10350000113248824, 0.10100000351667404, 0.1040000021457672, 0.1014999970793724, 0.10999999940395357, 0.1120000034570694, 0.11249999701976776, 0.10199999809265135, 0.1315000057220459, 0.10300000011920928, 0.1040000021457672, 0.1289999932050705, 0.1264999955892563, 0.09549999982118608, 0.1414999961853027, 0.1094999983906746, 0.1014999970793724, 0.11400000005960464, 0.1120000034570694, 0.08900000154972076, 0.15299999713897705, 0.11100000143051147, 0.10899999737739564, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.10750000178813934, 0.11599999666213988, 0.09399999678134918, 0.12349999696016312, 0.10899999737739564, 0.1120000034570694, 0.10700000077486038, 0.10350000113248824, 0.08550000190734863, 0.13050000369548798, 0.11349999904632568, 0.1054999977350235, 0.10750000178813934, 0.10450000315904616, 0.08500000089406967, 0.13750000298023224, 0.11400000005960464, 0.11349999904632568, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11599999666213988, 0.10450000315904616, 0.0794999971985817, 0.13349999487400055, 0.1054999977350235, 0.1054999977350235, 0.10300000011920928, 0.10750000178813934, 0.10050000250339508, 0.13600000739097595, 0.10199999809265135, 0.10249999910593031, 0.1120000034570694, 0.11050000041723251, 0.09350000321865082, 0.14350000023841858, 0.1014999970793724, 0.10899999737739564, 0.11400000005960464, 0.11550000309944151, 0.10499999672174454, 0.14900000393390656, 0.10499999672174454, 0.09799999743700027, 0.11299999803304672, 0.11550000309944151, 0.10050000250339508, 0.1404999941587448, 0.08950000256299973, 0.09950000047683716, 0.11349999904632568, 0.11050000041723251, 0.10249999910593031, 0.12700000405311584, 0.1094999983906746, 0.096500001847744, 0.09799999743700027, 0.10199999809265135, 0.07850000262260437, 0.14000000059604645, 0.11150000244379044, 0.10750000178813934, 0.11400000005960464, 0.11400000005960464, 0.1145000010728836, 0.12399999797344208, 0.10100000351667404, 0.11649999767541884, 0.1014999970793724, 0.11299999803304672, 0.11749999970197678, 0.13750000298023224, 0.10499999672174454, 0.10700000077486038, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.10350000113248824, 0.11900000274181366, 0.1185000017285347, 0.12200000137090684, 0.11749999970197678, 0.10750000178813934, 0.11400000005960464, 0.11749999970197678, 0.10300000011920928, 0.12800000607967377, 0.09399999678134918, 0.090999998152256, 0.1080000028014183, 0.10849999636411668, 0.10499999672174454, 0.1469999998807907, 0.10849999636411668, 0.10350000113248824, 0.12099999934434892, 0.12549999356269836, 0.090999998152256, 0.1430000066757202, 0.09449999779462814, 0.09549999982118608, 0.09549999982118608, 0.1054999977350235, 0.11550000309944151, 0.09149999916553496, 0.10000000149011612, 0.09950000047683716, 0.12150000035762788, 0.12099999934434892, 0.10649999976158142, 0.12700000405311584, 0.096500001847744, 0.10649999976158142, 0.12399999797344208, 0.12150000035762788, 0.09049999713897704, 0.15199999511241913, 0.1054999977350235, 0.1185000017285347, 0.10849999636411668, 0.1054999977350235, 0.11050000041723251, 0.14350000023841858, 0.0989999994635582, 0.10199999809265135, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11900000274181366, 0.12849999964237213, 0.13650000095367432, 0.11949999630451202, 0.1185000017285347, 0.12049999833106996, 0.10050000250339508, 0.09950000047683716, 0.1040000021457672, 0.13650000095367432, 0.1120000034570694, 0.11599999666213988, 0.1014999970793724, 0.09700000286102296, 0.09449999779462814, 0.13600000739097595, 0.1120000034570694, 0.11150000244379044, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11649999767541884, 0.11550000309944151, 0.11349999904632568, 0.12049999833106996, 0.11100000143051147, 0.11150000244379044, 0.10649999976158142, 0.11249999701976776, 0.08799999952316284, 0.13199999928474426, 0.10849999636411668, 0.11150000244379044, 0.10700000077486038, 0.12099999934434892, 0.10100000351667404, 0.14949999749660492, 0.09600000083446504, 0.0989999994635582, 0.09749999642372131, 0.0925000011920929, 0.09549999982118608, 0.1430000066757202, 0.10599999874830246, 0.10000000149011612, 0.1145000010728836, 0.09849999845027924, 0.10000000149011612, 0.13249999284744263, 0.10750000178813934, 0.11100000143051147, 0.12349999696016312, 0.10999999940395357, 0.1080000028014183, 0.1289999932050705, 0.0949999988079071, 0.1094999983906746, 0.09449999779462814, 0.1094999983906746, 0.09799999743700027, 0.1315000057220459, 0.10700000077486038, 0.11900000274181366, 0.12849999964237213, 0.11900000274181366, 0.10999999940395357, 0.12399999797344208, 0.10000000149011612, 0.1054999977350235, 0.12349999696016312, 0.1040000021457672, 0.12150000035762788, 0.13899999856948853, 0.10849999636411668, 0.1120000034570694, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1080000028014183, 0.13349999487400055, 0.11900000274181366, 0.12449999898672104, 0.11249999701976776, 0.10450000315904616, 0.12300000339746477, 0.12150000035762788, 0.10100000351667404, 0.12600000202655792, 0.096500001847744, 0.0989999994635582, 0.125, 0.12549999356269836, 0.090999998152256, 0.1420000046491623, 0.12049999833106996, 0.1094999983906746, 0.12049999833106996, 0.13099999725818634, 0.10849999636411668, 0.1404999941587448, 0.10199999809265135, 0.10199999809265135, 0.09300000220537186, 0.0949999988079071, 0.09300000220537186, 0.09849999845027924, 0.09149999916553496, 0.09200000017881392, 0.11649999767541884, 0.12049999833106996, 0.11900000274181366, 0.12849999964237213, 0.09600000083446504, 0.1014999970793724, 0.1264999955892563, 0.11949999630451202, 0.0860000029206276, 0.14399999380111694, 0.12099999934434892, 0.11150000244379044, 0.10300000011920928, 0.10750000178813934, 0.10700000077486038, 0.13699999451637268, 0.11299999803304672, 0.10599999874830246, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11550000309944151, 0.11800000071525574, 0.11550000309944151, 0.1315000057220459, 0.10499999672174454, 0.11349999904632568, 0.11500000208616255, 0.11050000041723251, 0.07750000059604645, 0.1379999965429306, 0.10249999910593031, 0.11500000208616255, 0.1054999977350235, 0.10750000178813934, 0.10700000077486038, 0.1420000046491623, 0.1264999955892563, 0.1120000034570694, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.11349999904632568, 0.11349999904632568, 0.15800000727176666, 0.12200000137090684, 0.1040000021457672, 0.1014999970793724, 0.1080000028014183, 0.09600000083446504, 0.1054999977350235, 0.13699999451637268, 0.1080000028014183, 0.11299999803304672, 0.11400000005960464, 0.10999999940395357, 0.0989999994635582, 0.1404999941587448, 0.09600000083446504, 0.10300000011920928, 0.10999999940395357, 0.11249999701976776, 0.09950000047683716, 0.15000000596046448, 0.11249999701976776, 0.10700000077486038, 0.10249999910593031, 0.1014999970793724, 0.1040000021457672, 0.1459999978542328, 0.10199999809265135, 0.11150000244379044, 0.12049999833106996, 0.119999997317791, 0.09549999982118608, 0.11800000071525574, 0.10700000077486038, 0.10249999910593031, 0.10450000315904616, 0.10599999874830246, 0.0989999994635582, -0.01, 0.09000000357627869, 0.10050000250339508], "7n25es77": [0.18050000071525577, 0.18050000071525577, 0.18050000071525577, 0.18050000071525577, -0.01, -0.01, 0.18050000071525577, 0.1809999942779541, 0.18050000071525577, 0.1815000027418137, 0.1509999930858612, 0.1274999976158142, 0.14949999749660492, 0.1574999988079071, 0.12849999964237213, 0.12800000607967377, -0.01, 0.12049999833106996, 0.1414999961853027, 0.14749999344348907, 0.14100000262260437, 0.14350000023841858, -0.01, -0.01, -0.01, -0.01, 0.16500000655651093, 0.15299999713897705, 0.14000000059604645, -0.01, -0.01, -0.01, -0.01, 0.1574999988079071, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1379999965429306, 0.14749999344348907, 0.1445000022649765, 0.15600000321865082, 0.11249999701976776, 0.13750000298023224, 0.1340000033378601, 0.16099999845027924, 0.15800000727176666, 0.1794999986886978, 0.16300000250339508, 0.1675000041723251, 0.164000004529953, 0.17350000143051147, 0.16599999368190765, 0.1550000011920929, 0.1599999964237213, 0.1770000010728836, 0.18050000071525577, 0.17399999499320984, 0.1615000069141388, 0.164000004529953, 0.18050000071525577, 0.18050000071525577, 0.13650000095367432, 0.12200000137090684, 0.1615000069141388, 0.15549999475479126, 0.13249999284744263, 0.14249999821186066, 0.12150000035762788, 0.1225000023841858, 0.14650000631809235, 0.1330000013113022, 0.11749999970197678, 0.12300000339746477, 0.164000004529953, 0.1525000035762787, 0.1120000034570694, 0.1120000034570694, 0.125, 0.14749999344348907, 0.13349999487400055, 0.12399999797344208, 0.13050000369548798, 0.1574999988079071, 0.15800000727176666, 0.1704999953508377, 0.17000000178813934, 0.164000004529953, 0.16050000488758087, 0.17299999296665192, 0.17550000548362732, 0.16449999809265137, 0.1589999943971634, 0.18000000715255737, 0.17900000512599945, 0.1815000027418137, 0.1809999942779541, 0.16850000619888306, 0.17900000512599945, 0.18050000071525577, 0.1809999942779541, 0.14650000631809235, 0.12999999523162842, 0.1420000046491623, 0.14949999749660492, 0.1469999998807907, 0.12950000166893005, 0.12700000405311584, 0.11749999970197678, 0.14000000059604645, 0.13099999725818634, 0.1340000033378601, 0.14000000059604645, 0.16050000488758087, 0.15000000596046448, 0.14249999821186066, 0.13199999928474426, 0.12999999523162842, 0.13899999856948853, 0.15399999916553497, 0.148499995470047, 0.14550000429153442, 0.14800000190734863, 0.15549999475479126, 0.16449999809265137, 0.15549999475479126, 0.16099999845027924, 0.15549999475479126, 0.15700000524520874, 0.1710000038146973, 0.1550000011920929, 0.17399999499320984, 0.16500000655651093], "qpyso58s": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.021, 0.1095, 0.018, 0.164, 0.169, 0.1485, 0.157, 0.167, 0.0645, 0.1655, 0.1615, 0.1625, 0.014, 0.155, 0.168, 0.1445, 0.067, 0.151, 0.1615, 0.1515, 0.1495, 0.148, 0.1485, 0.16, 0.16, 0.164, 0.161, 0.16, 0.1705, 0.153, 0.158, 0.156, 0.0105, 0.155, 0.163, 0.148, 0.0205, 0.125, 0.1635, 0.146, 0.154, 0.1555, 0.155, 0.17, 0.163, 0.168, 0.1455, 0.153, 0.1705, 0.054, 0.1405, 0.1475, 0.1545, 0.0105, 0.156, 0.164, 0.1445, 0.02, 0.1375, 0.1635, 0.1465, 0.147, 0.145, 0.1395, 0.168], "vqaxcou0": [0.23100000619888303, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.23100000619888303, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.2240000069141388, 0.1815000027418137, 0.17399999499320984, 0.17649999260902405, 0.19099999964237213, 0.23800000548362732, 0.2294999957084656, 0.19750000536441803, 0.19750000536441803, 0.19050000607967377, 0.19599999487400055, 0.20149999856948853, 0.20900000631809235, 0.19949999451637268, 0.19750000536441803, 0.1965000033378601, 0.19750000536441803, 0.20900000631809235, 0.21199999749660492, 0.19499999284744263, 0.17399999499320984, 0.19200000166893005, 0.181999996304512, 0.22499999403953552, 0.2280000001192093, 0.18449999392032623, 0.1875, 0.19599999487400055, 0.20250000059604645, 0.25099998712539673, 0.24549999833106995, 0.17350000143051147, 0.181999996304512, 0.1979999989271164, 0.20100000500679016, 0.23549999296665192, 0.2319999933242798, 0.2074999958276749, 0.1889999955892563, 0.21400000154972076, 0.22499999403953552, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24899999797344208, 0.2515000104904175, 0.20649999380111697, 0.17900000512599945, 0.22300000488758087, 0.22599999606609344, 0.23800000548362732, 0.2329999953508377, 0.20999999344348907, 0.193000003695488, 0.2240000069141388, 0.21649999916553497, 0.23849999904632568, 0.2335000038146973, 0.1825000047683716, 0.18050000071525577, 0.18950000405311584, 0.1979999989271164, 0.22499999403953552, 0.2214999943971634, 0.21150000393390656, 0.1875, 0.20999999344348907, 0.20999999344348907, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25049999356269836, 0.25099998712539673, 0.2199999988079071, 0.181999996304512, 0.22849999368190765, 0.2304999977350235, 0.2280000001192093, 0.2224999964237213, 0.21250000596046448, 0.193000003695488, 0.22849999368190765, 0.22200000286102295, -0.01, 0.23800000548362732, 0.1850000023841858, 0.17649999260902405, 0.1955000013113022, 0.1965000033378601, 0.2419999986886978, 0.24150000512599945, 0.2094999998807907, 0.19949999451637268, 0.2224999964237213, 0.2179999947547913, 0.23749999701976776, 0.2370000034570694, 0.21449999511241913, 0.19099999964237213, 0.22200000286102295, 0.22200000286102295, 0.2450000047683716, 0.2440000027418137, 0.2440000027418137, 0.2434999942779541, 0.23899999260902405, 0.2300000041723251, 0.2565000057220459, 0.25699999928474426, 0.22050000727176663, 0.18449999392032623, 0.2370000034570694, 0.2370000034570694, 0.2440000027418137, 0.2485000044107437, 0.2199999988079071, 0.20900000631809235, 0.24549999833106995, 0.244499996304512, 0.24650000035762787, 0.2475000023841858, 0.19699999690055847, 0.1850000023841858, 0.20250000059604645, 0.2045000046491623, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.22300000488758087, 0.21649999916553497, 0.17800000309944153, 0.17599999904632568, 0.1965000033378601, 0.19200000166893005, 0.21050000190734863, 0.20649999380111697, 0.2094999998807907, 0.1809999942779541, 0.19499999284744263, 0.19099999964237213, 0.19699999690055847, 0.2134999930858612, 0.2134999930858612, 0.20149999856948853, 0.2070000022649765, 0.193000003695488, 0.2084999978542328, 0.20000000298023224, 0.2080000042915344, 0.17499999701976776, 0.21250000596046448, 0.21150000393390656, 0.2294999957084656, 0.2199999988079071, 0.18299999833106995, 0.193000003695488, 0.17900000512599945, 0.1835000067949295, 0.23549999296665192, 0.23149999976158145, 0.18000000715255737, 0.1745000034570694, 0.1889999955892563, 0.1934999972581863, 0.19949999451637268, 0.2074999958276749, 0.22499999403953552, 0.210999995470047, 0.22050000727176663, 0.22300000488758087, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2565000057220459, 0.2565000057220459, 0.2574999928474426, 0.25850000977516174, 0.25850000977516174, 0.25850000977516174, 0.22699999809265137, 0.2160000056028366, 0.23600000143051147, 0.23800000548362732, 0.23250000178813937, 0.23499999940395355, 0.2055000066757202, 0.20649999380111697, 0.18449999392032623, 0.18050000071525577, 0.1934999972581863, 0.19599999487400055, 0.20499999821186063, 0.2045000046491623, 0.2179999947547913, 0.1955000013113022, 0.20350000262260437, 0.2080000042915344, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25600001215934753, 0.2554999887943268, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.20000000298023224, 0.20350000262260437, 0.23849999904632568, 0.2300000041723251, 0.23100000619888303, 0.23499999940395355, 0.2004999965429306, 0.20250000059604645, 0.19499999284744263, 0.17599999904632568, 0.1899999976158142, 0.1955000013113022, 0.2440000027418137, 0.24699999392032623, 0.2094999998807907, 0.20649999380111697, 0.22599999606609344, 0.22849999368190765, 0.23549999296665192, 0.23849999904632568, 0.2055000066757202, 0.210999995470047, 0.2335000038146973, 0.23250000178813937, 0.2370000034570694, 0.23649999499320984, 0.21199999749660492, 0.2179999947547913, 0.23499999940395355, 0.23649999499320984, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.2195000052452087, 0.2189999967813492, 0.2345000058412552, 0.2440000027418137, 0.24150000512599945, 0.24150000512599945, 0.2515000104904175, 0.2524999976158142, 0.18449999392032623, 0.1889999955892563, 0.19449999928474423, 0.210999995470047, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.2280000001192093, 0.21649999916553497, 0.19599999487400055, 0.18000000715255737, 0.1809999942779541, 0.1815000027418137, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20600000023841855, 0.2074999958276749, 0.1875, 0.1809999942779541, 0.21250000596046448, 0.2195000052452087, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.029999999329447743, -0.01, -0.01, 0.22450000047683716, 0.2290000021457672, 0.22599999606609344, 0.2084999978542328, 0.21699999272823337, 0.22599999606609344, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25600001215934753, 0.25600001215934753, 0.2574999928474426, 0.25850000977516174, 0.25850000977516174, 0.25850000977516174, 0.23800000548362732, 0.23899999260902405, 0.2080000042915344, 0.19850000739097595, 0.2134999930858612, 0.2199999988079071, 0.2485000044107437, 0.25049999356269836, 0.1835000067949295, 0.193000003695488, 0.2160000056028366, 0.21649999916553497, 0.22300000488758087, 0.22100000083446503, 0.20149999856948853, 0.1899999976158142, 0.2160000056028366, 0.21400000154972076, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25600001215934753, 0.2554999887943268, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.22450000047683716, 0.22599999606609344, 0.22750000655651093, 0.21449999511241913, 0.22550000250339508, 0.22699999809265137, 0.244499996304512, 0.2450000047683716, 0.193000003695488, 0.19200000166893005, 0.22050000727176663, 0.22349999845027924, 0.23250000178813937, 0.23149999976158145, 0.22300000488758087, 0.19949999451637268, 0.2224999964237213, 0.22349999845027924, 0.23149999976158145, 0.2329999953508377, 0.21050000190734863, 0.2070000022649765, 0.2335000038146973, 0.2335000038146973, 0.2370000034570694, 0.2409999966621399, 0.23549999296665192, 0.24050000309944153, 0.23800000548362732, 0.2370000034570694, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.257999986410141, 0.2345000058412552, 0.23399999737739563, 0.22499999403953552, 0.2134999930858612, 0.2329999953508377, 0.2329999953508377, 0.257999986410141, 0.257999986410141, 0.19699999690055847, 0.18799999356269836, 0.22200000286102295, 0.22699999809265137], "tnlms8f7": [0.19200000166893005, 0.1850000023841858, 0.15700000524520874, 0.2070000022649765, 0.1710000038146973, 0.16349999606609344, 0.2070000022649765, 0.2004999965429306, 0.1589999943971634, 0.21199999749660492, 0.1809999942779541, 0.16200000047683716, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18400000035762787, 0.17550000548362732, 0.1860000044107437, 0.20350000262260437, 0.15950000286102295, 0.164000004529953, 0.17000000178813934, 0.17149999737739563, 0.15600000321865082, 0.21400000154972076, 0.15700000524520874, 0.1679999977350235, 0.2084999978542328, 0.1899999976158142, 0.16449999809265137, 0.21050000190734863, 0.17900000512599945, 0.18299999833106995, 0.20250000059604645, 0.20499999821186063, 0.15649999678134918, 0.23749999701976776, 0.17900000512599945, 0.16500000655651093, 0.164000004529953, 0.1784999966621399, 0.1615000069141388, 0.17399999499320984, 0.16850000619888306, 0.17249999940395355, 0.1979999989271164, 0.2045000046491623, 0.15850000083446503, 0.21549999713897705, 0.15449999272823334, 0.148499995470047, 0.19949999451637268, 0.19949999451637268, 0.164000004529953, 0.22200000286102295, 0.15950000286102295, 0.1615000069141388, 0.181999996304512, 0.18299999833106995, 0.17749999463558197, 0.21449999511241913, 0.16449999809265137, 0.1655000001192093, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1875, 0.17900000512599945, -0.01, 0.21400000154972076, 0.15950000286102295, 0.17149999737739563, 0.181999996304512, 0.1860000044107437, 0.17249999940395355, 0.21649999916553497, 0.1809999942779541, 0.18050000071525577, 0.1794999986886978, 0.1815000027418137, 0.1574999988079071, 0.22300000488758087, 0.17499999701976776, 0.1599999964237213, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1860000044107437, 0.1940000057220459, 0.14350000023841858, 0.20250000059604645, 0.1694999933242798, 0.17299999296665192, 0.1710000038146973, 0.1675000041723251, 0.16899999976158142, 0.21250000596046448, 0.15800000727176666, 0.16200000047683716, 0.18449999392032623, 0.1710000038146973, 0.16200000047683716, 0.2160000056028366, 0.16300000250339508, 0.16050000488758087, 0.164000004529953, 0.16899999976158142, 0.1655000001192093, 0.2160000056028366, 0.16300000250339508, 0.16449999809265137, 0.17350000143051147, 0.1679999977350235, 0.18549999594688416, 0.15950000286102295, 0.16099999845027924, 0.1589999943971634, 0.17800000309944153, -0.01, 0.17350000143051147, 0.2150000035762787, 0.17299999296665192, 0.1770000010728836, 0.19099999964237213, 0.1835000067949295, 0.16599999368190765, 0.2175000011920929, 0.1809999942779541, 0.1694999933242798, 0.20250000059604645, 0.2160000056028366, 0.21050000190734863, 0.19599999487400055, 0.20600000023841855, 0.19900000095367432, 0.18299999833106995, 0.17350000143051147, 0.2029999941587448, 0.1979999989271164, 0.2150000035762787, 0.2134999930858612, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2630000114440918, 0.2644999921321869, 0.22849999368190765, 0.1850000023841858, 0.24150000512599945, 0.2370000034570694, 0.1704999953508377, 0.16699999570846558, 0.1589999943971634, 0.21050000190734863, 0.17149999737739563, 0.1694999933242798, 0.2055000066757202, 0.19449999928474423, 0.15600000321865082, 0.22100000083446503, 0.1720000058412552, 0.18850000202655792, 0.18549999594688416, 0.19750000536441803, 0.17749999463558197, 0.21199999749660492, 0.1599999964237213, 0.1665000021457672, 0.1710000038146973, 0.1704999953508377, 0.16599999368190765, 0.1815000027418137, 0.1655000001192093, 0.16050000488758087, 0.2029999941587448, 0.2080000042915344, 0.1860000044107437, 0.18400000035762787, 0.18299999833106995, 0.17299999296665192, 0.20900000631809235, 0.19900000095367432, 0.15549999475479126, 0.23100000619888303, -0.01, 0.17749999463558197, 0.181999996304512, 0.2039999961853027, 0.18950000405311584, 0.193000003695488, 0.1679999977350235, 0.1694999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2574999928474426, 0.25600001215934753, 0.22849999368190765, 0.23649999499320984, -0.01, 0.24050000309944153, 0.1574999988079071, 0.1665000021457672, 0.1875, 0.1745000034570694, -0.01, 0.1860000044107437, 0.1825000047683716, 0.1704999953508377, 0.15000000596046448, 0.2094999998807907, 0.1675000041723251, 0.16699999570846558, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24799999594688416, -0.01, 0.1850000023841858, 0.1850000023841858, 0.23600000143051147, 0.2319999933242798, 0.16300000250339508, 0.18400000035762787, 0.1979999989271164, 0.20000000298023224, 0.1860000044107437, 0.19699999690055847, 0.17499999701976776, 0.16349999606609344, 0.16349999606609344, 0.2080000042915344, 0.16200000047683716, 0.16349999606609344, 0.18000000715255737, 0.1710000038146973, 0.1665000021457672, 0.2080000042915344, 0.17350000143051147, 0.1704999953508377, 0.1825000047683716, 0.19699999690055847, 0.15850000083446503, 0.14399999380111694, 0.17149999737739563, 0.15649999678134918, 0.2535000145435333, 0.2524999976158142, 0.22550000250339508, 0.2450000047683716, 0.23549999296665192, 0.23100000619888303, 0.18549999594688416, 0.1809999942779541, 0.1889999955892563, 0.16200000047683716, 0.17299999296665192, 0.18850000202655792, 0.20149999856948853, 0.19699999690055847, 0.2004999965429306, 0.19850000739097595, 0.20900000631809235, 0.2074999958276749, 0.20100000500679016, 0.18700000643730164, 0.17749999463558197, 0.19499999284744263, 0.19750000536441803, 0.2039999961853027, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2630000114440918, 0.2644999921321869, 0.22849999368190765, 0.1850000023841858, 0.24150000512599945, 0.2370000034570694, 0.1794999986886978, 0.17550000548362732, 0.15800000727176666, 0.21150000393390656, 0.16599999368190765, 0.17900000512599945, 0.2094999998807907, 0.19050000607967377, 0.16850000619888306, 0.2045000046491623, 0.17599999904632568, 0.16699999570846558, 0.1979999989271164, 0.1955000013113022, 0.1574999988079071, 0.18700000643730164, 0.1679999977350235, 0.16850000619888306, 0.1889999955892563, 0.18549999594688416, 0.1599999964237213, 0.17749999463558197, 0.19099999964237213, 0.17800000309944153, 0.19900000095367432, 0.20149999856948853, 0.19850000739097595, -0.01, -0.01, -0.01, 0.1955000013113022, -0.01, 0.16500000655651093, 0.21299999952316284, 0.164000004529953, 0.16449999809265137, 0.18000000715255737, 0.1704999953508377, 0.1720000058412552, 0.18700000643730164, 0.17399999499320984, 0.1794999986886978, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2549999952316284, 0.25099998712539673, 0.23100000619888303, -0.01, -0.01, 0.2450000047683716, 0.1875, 0.1899999976158142, 0.1784999966621399, 0.20649999380111697, 0.1615000069141388, 0.15600000321865082, 0.18400000035762787, 0.1745000034570694, 0.1720000058412552, 0.19900000095367432, 0.16599999368190765, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24799999594688416, 0.2485000044107437, 0.1850000023841858, 0.1850000023841858, 0.23600000143051147, 0.2319999933242798, 0.17149999737739563, 0.1720000058412552, 0.15399999916553497, 0.18649999797344208, 0.1675000041723251, 0.16850000619888306, 0.15950000286102295, -0.01, -0.01, 0.19850000739097595, 0.15950000286102295, -0.01, -0.01, -0.01, -0.01, 0.2055000066757202, 0.1675000041723251, 0.16050000488758087, 0.16599999368190765, 0.16899999976158142, 0.17249999940395355, 0.1679999977350235, 0.17149999737739563, -0.01, -0.01, -0.01, 0.22550000250339508, 0.2450000047683716, 0.23549999296665192, 0.23100000619888303, 0.1720000058412552, 0.1704999953508377, 0.16599999368190765, -0.01, 0.15600000321865082, 0.16850000619888306], "ghnlphpt": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26249998807907104, -0.01, -0.01, 0.22300000488758087, -0.01, -0.01, -0.01, -0.01, 0.2669999897480011, -0.01, -0.01, -0.01, -0.01, 0.2720000147819519, 0.2004999965429306, 0.26249998807907104, 0.226500004529953, 0.27149999141693115, 0.27300000190734863, -0.01, -0.01, 0.273499995470047, 0.27300000190734863, 0.21449999511241913, 0.2084999978542328, 0.21649999916553497, 0.22050000727176663, 0.20600000023841855, 0.2240000069141388, 0.21299999952316284, 0.22849999368190765, -0.01, -0.01, -0.01, -0.01, 0.2685000002384186, 0.23499999940395355, 0.2345000058412552, -0.01, -0.01, -0.01, -0.01, 0.27399998903274536, 0.2720000147819519, 0.23649999499320984, 0.23999999463558197, 0.24650000035762787, 0.24050000309944153, 0.2524999976158142, 0.2150000035762787, 0.2705000042915344, 0.2565000057220459, 0.2535000145435333, 0.273499995470047, 0.273499995470047, 0.273499995470047, 0.27300000190734863, 0.273499995470047, 0.27300000190734863, 0.27300000190734863, 0.27300000190734863, 0.22699999809265137, 0.2345000058412552, 0.22200000286102295, 0.22499999403953552, 0.21199999749660492, 0.21199999749660492, 0.21050000190734863, 0.20250000059604645, 0.23800000548362732, 0.2290000021457672, 0.21449999511241913, 0.2335000038146973, 0.24899999797344208, 0.2549999952316284, 0.23499999940395355, 0.21050000190734863, 0.22550000250339508, 0.2294999957084656, 0.25699999928474426, 0.24899999797344208, 0.22200000286102295, 0.20200000703334808, 0.24799999594688416, 0.24549999833106995, 0.2440000027418137, 0.25049999356269836, 0.24699999392032623, 0.22849999368190765, 0.2705000042915344, 0.2524999976158142, 0.2524999976158142, 0.26649999618530273, 0.2680000066757202, 0.2705000042915344, 0.2694999873638153, 0.273499995470047, 0.27250000834465027, 0.27300000190734863, 0.27300000190734863, 0.21150000393390656, 0.2189999967813492, 0.2240000069141388, 0.18400000035762787, 0.18950000405311584, 0.20350000262260437, 0.2080000042915344, 0.23649999499320984, 0.23800000548362732, 0.20350000262260437, 0.2055000066757202, 0.2680000066757202, 0.21400000154972076, 0.2199999988079071, 0.19449999928474423, 0.20600000023841855, 0.273499995470047, 0.2199999988079071, 0.2639999985694885, 0.21449999511241913, 0.24799999594688416, 0.23649999499320984, 0.23399999737739563, 0.2705000042915344, 0.2709999978542328, 0.23600000143051147, 0.27250000834465027, 0.265500009059906, 0.27250000834465027, 0.27300000190734863, 0.22300000488758087, 0.19499999284744263, 0.21199999749660492, 0.2370000034570694, 0.2694999873638153, 0.2294999957084656, 0.2485000044107437, 0.257999986410141, 0.22200000286102295, 0.2709999978542328], "d1q0greq": [-0.01, -0.01, -0.01, 0.0025, 0.256, 0.2605, 0.2285, 0.24, 0.256, 0.143, 0.238, 0.256, 0.2505, -0.01, -0.01, 0.0115, 0.233, 0.2525, 0.2425, -0.01, -0.01, 0.0265, 0.234, 0.246, 0.249, 0.25, 0.2295, -0.01, 0.2335, 0.2515, -0.01, -0.01, -0.01, -0.01, 0.249, 0.2535, 0.2245, 0.25, -0.01, -0.01, -0.01, 0.2555, 0.2355, -0.01, -0.01, 0, 0.1825, 0.255, 0.2475, -0.01, -0.01, 0.0005, 0.1845, 0.255, 0.2505, 0.25, 0.236, -0.01, 0.218, 0.2575, -0.01, -0.01, -0.01, -0.01, 0.245, 0.252, 0.16, -0.01, -0.01, -0.01, -0.01, -0.01, 0.147, -0.01, -0.01, 0, 0.2465, 0.251, 0.218, -0.01, -0.01, 0.0005, 0.2025, 0.2435, 0.223, 0.2175, 0.1745, -0.01, 0.214, 0.253], "s0e382wf": [-0.01, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.4370000064373016, 0.4404999911785126, 0.4474999904632568, 0.4370000064373016, 0.43650001287460327, 0.43650001287460327, 0.4370000064373016, 0.43650001287460327, 0.4334999918937683, 0.4165000021457672, 0.4264999926090241, 0.42500001192092896, 0.43650001287460327, -0.01, 0.4370000064373016, 0.4059999883174896, 0.4350000023841858, -0.01, 0.45100000500679016, -0.01, 0.4345000088214874, 0.42500001192092896, 0.4429999887943268, 0.4350000023841858, 0.4404999911785126, 0.4214999973773956, 0.43950000405311584, -0.01, -0.01, -0.01, -0.01, 0.44200000166893005, -0.01, 0.4244999885559082, 0.4275000095367432, 0.429500013589859, 0.4480000138282776, -0.01, -0.01, 0.42800000309944153, -0.01, 0.4235000014305115, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4410000145435333, 0.44449999928474426, 0.43149998784065247, 0.42500001192092896, 0.43950000405311584, 0.4379999935626984, -0.01, 0.45100000500679016, 0.45500001311302185, -0.01, -0.01, -0.01, -0.01, 0.4379999935626984, -0.01, 0.43950000405311584, 0.4399999976158142, 0.43549999594688416, 0.4390000104904175, 0.4415000081062317, 0.44999998807907104, 0.4214999973773956, -0.01, 0.4169999957084656, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4345000088214874, -0.01, 0.4449999928474426, 0.43650001287460327, 0.4309999942779541, 0.4370000064373016, 0.4535000026226044, 0.4359999895095825, 0.45500001311302185, 0.4390000104904175, 0.43549999594688416, 0.4440000057220459, 0.43650001287460327, 0.44600000977516174, -0.01, -0.01, 0.43549999594688416, 0.4404999911785126, -0.01, 0.45249998569488525, 0.41999998688697815, 0.4424999952316284, 0.44600000977516174, 0.42800000309944153, -0.01, 0.44699999690055847, 0.4334999918937683, 0.4350000023841858, -0.01, 0.4359999895095825, 0.4375, -0.01, 0.4490000009536743, -0.01, -0.01, -0.01, 0.4320000112056732, -0.01, -0.01, 0.42500001192092896, -0.01, 0.4440000057220459, 0.4339999854564667, 0.4309999942779541, 0.4440000057220459, -0.01, 0.4345000088214874, 0.4440000057220459, 0.4580000042915344, -0.01, 0.4424999952316284, -0.01, 0.4345000088214874, 0.4165000021457672, 0.43650001287460327, 0.43650001287460327, -0.01, -0.01, 0.43650001287460327, -0.01, 0.43650001287460327, -0.01, 0.43650001287460327, -0.01, 0.43650001287460327, 0.43650001287460327, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43650001287460327, 0.43650001287460327, 0.4359999895095825, -0.01, 0.43650001287460327, -0.01, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, -0.01, -0.01, 0.43650001287460327, 0.43650001287460327, 0.4370000064373016, 0.43650001287460327, 0.43650001287460327, -0.01, 0.4424999952316284, 0.4535000026226044, 0.4440000057220459, -0.01, 0.43950000405311584, -0.01, 0.42100000381469727, -0.01, 0.4235000014305115, 0.4099999964237213, 0.42100000381469727, 0.4259999990463257, 0.4485000073909759, 0.45249998569488525, 0.4334999918937683, 0.4275000095367432, 0.4300000071525574, 0.43299999833106995, -0.01, -0.01, 0.44449999928474426, -0.01, -0.01, -0.01, 0.4300000071525574, -0.01, 0.4099999964237213, 0.41350001096725464, 0.4325000047683716, -0.01, 0.4544999897480011, 0.4555000066757202, -0.01, 0.41999998688697815, -0.01, 0.42100000381469727, 0.4275000095367432, 0.45100000500679016, 0.4009999930858612, 0.4154999852180481, 0.4004999995231629, 0.40299999713897705, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44200000166893005, 0.44200000166893005, 0.43050000071525574, 0.4345000088214874, 0.4390000104904175, 0.43849998712539673, 0.44200000166893005, 0.44200000166893005, 0.44200000166893005, 0.4519999921321869, 0.4404999911785126, 0.4555000066757202, 0.43650001287460327, 0.42100000381469727, 0.41999998688697815, 0.43149998784065247, 0.39800000190734863, 0.429500013589859, 0.3959999978542328, 0.4320000112056732, 0.3684999942779541, 0.414000004529953, 0.4124999940395355, 0.4129999876022339, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4375, -0.01, 0.43050000071525574, 0.4375, 0.43650001287460327, 0.4370000064373016, 0.4480000138282776, 0.44699999690055847, 0.4580000042915344, 0.4580000042915344, 0.4544999897480011, 0.4519999921321869, 0.4370000064373016, 0.3714999854564667, 0.37950000166893005, 0.4404999911785126, 0.4165000021457672, 0.4259999990463257, 0.44699999690055847, 0.445499986410141, 0.421999990940094, 0.4320000112056732, 0.43299999833106995, 0.4309999942779541, 0.4429999887943268, 0.4359999895095825, 0.4375, 0.4429999887943268, 0.43549999594688416, 0.43950000405311584, 0.4449999928474426, 0.45399999618530273, 0.4424999952316284, 0.445499986410141, 0.4309999942779541, 0.4264999926090241, 0.43650001287460327, 0.43650001287460327, 0.4345000088214874, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.4275000095367432, 0.43050000071525574, 0.43849998712539673, 0.44449999928474426, 0.4449999928474426, 0.4429999887943268, 0.4429999887943268, 0.4480000138282776, 0.4410000145435333, 0.42800000309944153, 0.44200000166893005, 0.4255000054836273, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43650001287460327, 0.43650001287460327, 0.4359999895095825, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.4370000064373016, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.4375, 0.44999998807907104, 0.4424999952316284, 0.4259999990463257, 0.4300000071525574, 0.43650001287460327, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44699999690055847, 0.43650001287460327, 0.43849998712539673, 0.4264999926090241, 0.43650001287460327, 0.4345000088214874, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.445499986410141, -0.01, -0.01, 0.4485000073909759, 0.4485000073909759, 0.4235000014305115, 0.4429999887943268, 0.43950000405311584, 0.4399999976158142, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4424999952316284, 0.4429999887943268, 0.43849998712539673, 0.43650001287460327, 0.4375, 0.4390000104904175, 0.43849998712539673, 0.4399999976158142, 0.43849998712539673, 0.4465000033378601, 0.4589999914169311, 0.45399999618530273, 0.4415000081062317, 0.4390000104904175, 0.4300000071525574, 0.42250001430511475, 0.4169999957084656, 0.42399999499320984, 0.4490000009536743, 0.4519999921321869, 0.429500013589859, 0.4235000014305115, 0.43849998712539673, 0.4379999935626984, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4375, 0.4375, 0.43050000071525574, 0.4375, 0.43650001287460327, 0.4370000064373016, 0.4449999928474426, 0.4429999887943268, -0.01, 0.4350000023841858, 0.44449999928474426, 0.43950000405311584, 0.4339999854564667, 0.4350000023841858, 0.43299999833106995, 0.4275000095367432, 0.4375, 0.4259999990463257, 0.44699999690055847, 0.4505000114440918, 0.4480000138282776, 0.4345000088214874, 0.4359999895095825, 0.4259999990463257, 0.44699999690055847, 0.445499986410141, 0.4480000138282776, 0.4339999854564667, 0.445499986410141, 0.43950000405311584, 0.44600000977516174, 0.44600000977516174, 0.4480000138282776, 0.4474999904632568, 0.4399999976158142, 0.4535000026226044, 0.43650001287460327, 0.43650001287460327, 0.4345000088214874, 0.43650001287460327, 0.43650001287460327, 0.43650001287460327, 0.4424999952316284, 0.44350001215934753, 0.4560000002384186, 0.44999998807907104, 0.44200000166893005, 0.4474999904632568, 0.4490000009536743, 0.4480000138282776, 0.4235000014305115, 0.421999990940094, 0.421999990940094, 0.4300000071525574], "g85syyzg": [0.4129999876022339, 0.42800000309944153, 0.421999990940094, 0.4214999973773956, 0.41850000619888306, 0.42399999499320984, 0.4325000047683716, 0.42399999499320984, 0.4124999940395355, 0.4399999976158142, 0.4014999866485596, 0.41999998688697815, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4404999911785126, 0.42800000309944153, 0.4235000014305115, 0.40700000524520874, 0.4300000071525574, 0.4074999988079071, 0.41850000619888306, 0.4154999852180481, 0.43050000071525574, 0.4350000023841858, 0.42250001430511475, 0.4165000021457672, 0.4244999885559082, 0.4259999990463257, 0.4325000047683716, 0.4284999966621399, 0.42500001192092896, 0.421999990940094, 0.4375, 0.44350001215934753, 0.4359999895095825, 0.41850000619888306, 0.42250001430511475, 0.4284999966621399, 0.4485000073909759, 0.44350001215934753, 0.4110000133514404, 0.41350001096725464, 0.43149998784065247, 0.44600000977516174, 0.4339999854564667, 0.4339999854564667, 0.421999990940094, 0.41999998688697815, 0.42899999022483826, 0.43050000071525574, 0.4569999873638153, 0.4519999921321869, 0.4275000095367432, 0.4480000138282776, 0.4154999852180481, 0.4235000014305115, 0.43650001287460327, 0.4345000088214874, 0.4154999852180481, 0.43299999833106995, 0.4180000126361847, 0.4154999852180481, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4129999876022339, 0.43650001287460327, 0.4129999876022339, 0.4235000014305115, 0.4235000014305115, 0.4255000054836273, 0.40849998593330383, 0.41350001096725464, 0.4065000116825104, 0.40849998593330383, 0.4129999876022339, 0.41999998688697815, 0.4309999942779541, 0.4334999918937683, 0.4404999911785126, 0.4404999911785126, 0.4370000064373016, 0.4214999973773956, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44600000977516174, 0.4424999952316284, 0.4325000047683716, 0.4065000116825104, 0.4129999876022339, 0.42800000309944153, 0.4180000126361847, 0.41449999809265137, 0.4025000035762787, 0.40950000286102295, 0.429500013589859, 0.4000000059604645, 0.4465000033378601, 0.4399999976158142, 0.4275000095367432, 0.4505000114440918, 0.4169999957084656, 0.4205000102519989, 0.43149998784065247, 0.4264999926090241, 0.4194999933242798, 0.4264999926090241, 0.4350000023841858, 0.4320000112056732, 0.43299999833106995, 0.43149998784065247, 0.42500001192092896, 0.39399999380111694, 0.414000004529953, 0.4300000071525574, 0.4205000102519989, 0.4275000095367432, 0.4359999895095825, 0.42899999022483826, 0.4149999916553498, 0.4230000078678131, 0.43149998784065247, 0.4339999854564667, 0.4050000011920929, 0.40849998593330383, 0.414000004529953, 0.4370000064373016, 0.4214999973773956, 0.43549999594688416, 0.4259999990463257, 0.4275000095367432, 0.4325000047683716, 0.4284999966621399, 0.4065000116825104, 0.42250001430511475, 0.40700000524520874, 0.4129999876022339, 0.4120000004768371, 0.4390000104904175, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43050000071525574, 0.45100000500679016, 0.4235000014305115, 0.42500001192092896, 0.41749998927116394, 0.4379999935626984, 0.43050000071525574, 0.42800000309944153, 0.4014999866485596, 0.43299999833106995, 0.3919999897480011, 0.4079999923706054, 0.4569999873638153, 0.4415000081062317, 0.41850000619888306, 0.4235000014305115, 0.4065000116825104, 0.4129999876022339, 0.4595000147819519, 0.46149998903274536, 0.4309999942779541, 0.43299999833106995, 0.4214999973773956, 0.4325000047683716, 0.43650001287460327, 0.44449999928474426, 0.4269999861717224, 0.4205000102519989, 0.41449999809265137, 0.4154999852180481, 0.4259999990463257, 0.4284999966621399, 0.4350000023841858, 0.4404999911785126, 0.4284999966621399, 0.4345000088214874, 0.4194999933242798, 0.4160000085830689, 0.41850000619888306, 0.44999998807907104, 0.40700000524520874, 0.4244999885559082, -0.01, 0.4264999926090241, 0.4399999976158142, 0.4110000133514404, 0.4255000054836273, 0.4205000102519989, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42899999022483826, 0.4584999978542328, 0.43549999594688416, 0.45100000500679016, 0.42800000309944153, 0.43299999833106995, 0.4370000064373016, 0.4309999942779541, 0.39500001072883606, 0.4490000009536743, 0.42800000309944153, 0.4415000081062317, 0.4334999918937683, 0.43050000071525574, 0.4214999973773956, 0.43050000071525574, 0.42399999499320984, 0.4180000126361847, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4595000147819519, 0.45249998569488525, 0.4339999854564667, 0.4244999885559082, 0.4169999957084656, 0.4160000085830689, -0.01, -0.01, 0.42100000381469727, 0.43299999833106995, 0.42250001430511475, 0.4269999861717224, 0.43950000405311584, 0.44200000166893005, 0.4404999911785126, 0.4309999942779541, 0.4255000054836273, 0.4334999918937683, 0.4474999904632568, 0.44600000977516174, -0.01, 0.4440000057220459, 0.44600000977516174, 0.4320000112056732, 0.43950000405311584, 0.42899999022483826, 0.41449999809265137, 0.4235000014305115, 0.4230000078678131, 0.4275000095367432, 0.45249998569488525, -0.01, -0.01, 0.4485000073909759, 0.4235000014305115, 0.4300000071525574, 0.44200000166893005, 0.4359999895095825, 0.4154999852180481, 0.4269999861717224, 0.44200000166893005, 0.43050000071525574, 0.42800000309944153, 0.45649999380111694, 0.4255000054836273, 0.42250001430511475, 0.43849998712539673, 0.42500001192092896, 0.41999998688697815, 0.43050000071525574, 0.43549999594688416, 0.4110000133514404, 0.4415000081062317, 0.4480000138282776, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4235000014305115, 0.42500001192092896, 0.41749998927116394, 0.4379999935626984, 0.43549999594688416, 0.4160000085830689, 0.4275000095367432, 0.4334999918937683, 0.3869999945163727, 0.4149999916553498, 0.45750001072883606, 0.4670000076293946, 0.4205000102519989, 0.42399999499320984, 0.4284999966621399, 0.43299999833106995, -0.01, 0.4485000073909759, 0.4284999966621399, 0.41749998927116394, 0.4189999997615814, 0.42399999499320984, 0.4535000026226044, 0.4474999904632568, 0.44999998807907104, 0.4065000116825104, 0.4379999935626984, 0.4345000088214874, 0.4370000064373016, -0.01, 0.4009999930858612, 0.44699999690055847, 0.41999998688697815, 0.429500013589859, -0.01, -0.01, 0.4099999964237213, 0.44449999928474426, 0.44200000166893005, 0.43549999594688416, 0.4235000014305115, 0.42500001192092896, 0.4269999861717224, 0.40299999713897705, 0.4169999957084656, 0.4099999964237213, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4645000100135803, 0.46149998903274536, 0.43950000405311584, 0.4544999897480011, 0.4514999985694885, 0.4194999933242798, 0.4255000054836273, 0.4284999966621399, 0.4000000059604645, 0.414000004529953, 0.42250001430511475, -0.01, 0.4214999973773956, 0.4505000114440918, 0.41999998688697815, 0.44200000166893005, 0.4244999885559082, 0.4300000071525574, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4595000147819519, 0.45249998569488525, 0.4339999854564667, 0.4244999885559082, 0.4169999957084656, 0.4160000085830689, -0.01, 0.4214999973773956, 0.4110000133514404, 0.4244999885559082, 0.41850000619888306, -0.01, 0.42800000309944153, 0.4370000064373016, 0.42399999499320984, 0.44350001215934753, 0.43299999833106995, 0.4300000071525574, 0.4275000095367432, 0.4154999852180481, 0.4415000081062317, 0.4230000078678131, 0.4230000078678131, 0.4255000054836273, -0.01, 0.4194999933242798, -0.01, 0.4235000014305115, 0.43299999833106995, 0.4309999942779541, 0.45249998569488525, 0.44699999690055847, 0.4214999973773956, 0.4485000073909759, -0.01, 0.4300000071525574, 0.42899999022483826, 0.4339999854564667, -0.01, 0.4214999973773956, 0.4194999933242798, 0.4154999852180481], "rq1aqcks": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4375, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.43650001287460327, 0.43549999594688416, 0.45100000500679016, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4339999854564667, 0.4339999854564667, 0.4320000112056732, 0.4350000023841858, -0.01, 0.4359999895095825, 0.4600000083446502, 0.4104999899864197, 0.4235000014305115, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4429999887943268, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4519999921321869, 0.4339999854564667, 0.4339999854564667, 0.4339999854564667, 0.4334999918937683, 0.4350000023841858, 0.4339999854564667, 0.4339999854564667, 0.4339999854564667, 0.4390000104904175, 0.4449999928474426, 0.445499986410141, 0.453000009059906, 0.4334999918937683, 0.44350001215934753, 0.4544999897480011, 0.4535000026226044, 0.4560000002384186, 0.4269999861717224, 0.41749998927116394, 0.4370000064373016, 0.4429999887943268, 0.43849998712539673, 0.43149998784065247, 0.4410000145435333, 0.4465000033378601, 0.45100000500679016, 0.4569999873638153, 0.45750001072883606, 0.429500013589859, 0.4244999885559082, 0.4259999990463257, 0.43149998784065247, 0.4370000064373016, 0.42250001430511475, 0.4410000145435333, 0.45500001311302185, 0.4634999930858612, 0.4339999854564667, 0.4569999873638153, 0.4449999928474426, 0.4555000066757202, 0.43299999833106995, 0.4580000042915344, 0.4339999854564667, 0.4339999854564667, 0.4505000114440918, 0.4410000145435333, 0.4620000123977661, 0.4684999883174896, 0.43650001287460327, 0.44449999928474426, 0.4325000047683716, 0.4370000064373016, 0.4474999904632568, 0.45500001311302185, 0.45249998569488525, 0.4519999921321869, 0.4129999876022339, 0.40950000286102295, 0.4560000002384186, 0.43549999594688416, 0.4309999942779541, 0.4560000002384186, 0.429500013589859, 0.445499986410141, 0.43050000071525574, 0.44449999928474426, 0.4404999911785126, 0.4675000011920929, 0.47699999809265137, 0.453000009059906, 0.4309999942779541, 0.46149998903274536, 0.41350001096725464, 0.4309999942779541, 0.4449999928474426, 0.4404999911785126, 0.4325000047683716, 0.43149998784065247, 0.45249998569488525, 0.4165000021457672, 0.40849998593330383, 0.4629999995231629, 0.43650001287460327, 0.4404999911785126, 0.4505000114440918, 0.4410000145435333, 0.4544999897480011, 0.4494999945163727], "l3ch2l5s": [0.3935, 0.3645, -0.01, 0.401, 0.445, -0.01, 0.4265, 0.4525, 0.437, -0.01, 0.437, 0.408, 0.445, -0.01, -0.01, 0.3915, 0.3965, 0.4435, -0.01, -0.01, -0.01, 0.376, 0.307, 0.4295, 0.445, 0.447, 0.4495, -0.01, 0.4005, 0.44, -0.01, -0.01, -0.01, -0.01, 0.46, 0.453, 0.411, -0.01, 0.4475, 0.438, 0.4235, 0.4395, 0.4605, -0.01, -0.01, -0.01, -0.01, 0.4445, 0.4365, -0.01, -0.01, 0.103, 0.19, 0.433, 0.451, -0.01, -0.01, -0.01, 0.3835, 0.44, -0.01, -0.01, -0.01, -0.01, -0.01, 0.442, 0.428, 0.4505, 0.439, 0.4415, 0.4215, 0.4115, 0.4595, -0.01, -0.01, -0.01, 0.3535, 0.448, 0.44, -0.01, -0.01, 0.103, 0.3905, 0.437, -0.01, -0.01, 0.4745, -0.01, 0.415, 0.4515], "5i2bqatn": [0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, -0.01, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, -0.01, 0.44007858633995056, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.3752455711364746, 0.3673870265483856, 0.30648329854011536, 0.341846764087677, 0.30255404114723206, 0.2946954667568207, 0.41060903668403625, 0.4125736653804779, 0.30648329854011536, 0.3379174768924713, 0.30648329854011536, 0.3123772144317627, 0.42239686846733093, 0.4302554130554199, 0.30255404114723206, 0.341846764087677, 0.30648329854011536, 0.3379174768924713, 0.3791748583316803, 0.35952848196029663, 0.2907662093639374, 0.32220038771629333, 0.3045186698436737, 0.3123772144317627, 0.41060903668403625, 0.4086444079875946, 0.3045186698436737, 0.341846764087677, 0.28094303607940674, 0.28487229347229004, 0.4341846704483032, 0.4322200417518616, 0.29273083806037903, 0.41060903668403625, 0.2789783775806427, 0.31434184312820435, 0.3045186698436737, 0.2868369221687317, 0.24754419922828672, 0.26129665970802307, 0.2161100208759308, 0.22593320906162265, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26522594690322876, 0.29862475395202637, 0.22593320906162265, 0.22200392186641693, 0.21807464957237244, 0.2161100208759308, 0.2750491201877594, 0.2573673725128174, -0.01, 0.2593320310115814, 0.2455795705318451, 0.22789783775806427, 0.29273083806037903, 0.2888015806674957, 0.22789783775806427, -0.01, 0.2888015806674957, 0.23182711005210876, -0.01, 0.25147348642349243, 0.23968565464019775, 0.30255404114723206, -0.01, 0.2121807485818863, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2455795705318451, 0.2750491201877594, 0.24361492693424225, 0.2495088428258896, 0.2161100208759308, 0.22789783775806427, 0.2868369221687317, 0.2966601252555847, 0.2416502982378006, 0.2377210259437561, -0.01, 0.2357563823461533, 0.2671905755996704, 0.2357563823461533, 0.1964636594057083, 0.27701374888420105, 0.22593320906162265, 0.2082514762878418, -0.01, 0.4243614971637726, 0.2750491201877594, -0.01, 0.300589382648468, 0.2966601252555847, 0.4007858633995056, 0.3948919475078583, 0.30648329854011536, 0.332023561000824, 0.2907662093639374, 0.308447927236557, 0.3713163137435913, 0.3713163137435913, 0.27701374888420105, 0.34774067997932434, 0.2888015806674957, 0.2946954667568207, 0.4125736653804779, 0.4007858633995056, 0.2868369221687317, 0.31827113032341003, 0.31041258573532104, 0.31434184312820435, 0.4047151207923889, 0.3909626603126526, 0.308447927236557, 0.33595284819602966, 0.29862475395202637, 0.2888015806674957, 0.4381139576435089, -0.01, 0.2534381151199341, 0.333988219499588, 0.28094303607940674, 0.2946954667568207, 0.44007858633995056, 0.44007858633995056, -0.01, -0.01, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44007858633995056, 0.4381139576435089, 0.44007858633995056, -0.01, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.4381139576435089, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.3909626603126526, 0.3948919475078583, 0.2868369221687317, 0.332023561000824, 0.27701374888420105, 0.300589382648468, 0.365422397851944, 0.3614931106567383, 0.28094303607940674, 0.3202357590198517, 0.33595284819602966, 0.3202357590198517, 0.4086444079875946, 0.40667974948883057, 0.34774067997932434, 0.3536345660686493, 0.300589382648468, 0.333988219499588, 0.3634577691555023, 0.357563853263855, 0.34774067997932434, 0.29862475395202637, 0.35166993737220764, 0.33988213539123535, 0.3948919475078583, 0.38899803161621094, 0.28487229347229004, 0.3752455711364746, 0.2888015806674957, 0.2966601252555847, 0.4361492991447449, 0.4361492991447449, 0.29273083806037903, 0.41453832387924194, 0.28094303607940674, 0.2868369221687317, 0.22593320906162265, 0.22986248135566711, 0.2337917536497116, 0.25540274381637573, 0.24361492693424225, 0.29273083806037903, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3300589323043823, 0.34774067997932434, 0.35952848196029663, 0.3300589323043823, 0.35952848196029663, 0.34381139278411865, 0.25540274381637573, 0.23182711005210876, 0.22396856546401975, 0.26522594690322876, 0.2416502982378006, 0.2455795705318451, 0.2711198329925537, 0.26129665970802307, 0.2161100208759308, 0.3123772144317627, 0.22789783775806427, 0.2534381151199341, 0.174852654337883, 0.22003929316997528, 0.27308449149131775, 0.23968565464019775, 0.2593320310115814, 0.2357563823461533, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31041258573532104, 0.31434184312820435, 0.3536345660686493, 0.34381139278411865, 0.3634577691555023, 0.357563853263855, 0.2671905755996704, 0.2573673725128174, 0.2573673725128174, 0.2671905755996704, 0.26915520429611206, -0.01, 0.2495088428258896, 0.1375245600938797, 0.2671905755996704, 0.3614931106567383, 0.2082514762878418, 0.2161100208759308, 0.4204322099685669, 0.4184675812721253, 0.324165016412735, 0.326129674911499, 0.2888015806674957, 0.308447927236557, 0.3909626603126526, -0.01, 0.31434184312820435, 0.34381139278411865, -0.01, 0.2946954667568207, 0.37328094244003296, 0.37328094244003296, 0.29273083806037903, 0.33595284819602966, 0.31434184312820435, 0.29862475395202637, 0.3929273188114166, 0.3948919475078583, 0.37721022963523865, 0.3673870265483856, 0.40667974948883057, 0.40667974948883057, 0.40667974948883057, 0.40667974948883057, 0.28094303607940674, 0.326129674911499, 0.2750491201877594, 0.2888015806674957, 0.4361492991447449, 0.4361492991447449, 0.28094303607940674, 0.3988212049007416, 0.31434184312820435, 0.2966601252555847, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.44007858633995056, 0.44007858633995056, 0.4381139576435089, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.4420432150363922, 0.44007858633995056, 0.44007858633995056, 0.44007858633995056, 0.4007858633995056, 0.38899803161621094, 0.2868369221687317, 0.326129674911499, 0.2829076647758484, 0.3045186698436737, 0.3752455711364746, 0.3634577691555023, 0.2966601252555847, 0.3300589323043823, 0.3202357590198517, 0.316306471824646, 0.4204322099685669, 0.42239686846733093, 0.29273083806037903, 0.33988213539123535, 0.33595284819602966, 0.33988213539123535, 0.36935165524482727, 0.3634577691555023, 0.33988213539123535, 0.27701374888420105, 0.34774067997932434, 0.34774067997932434, 0.40667974948883057, 0.4007858633995056, 0.316306471824646, 0.36935165524482727, 0.2946954667568207, 0.3045186698436737, 0.4381139576435089, 0.4361492991447449, 0.2907662093639374, 0.41060903668403625, 0.27701374888420105, 0.2868369221687317, 0.27701374888420105, 0.30255404114723206, 0.2495088428258896, 0.23968565464019775, 0.21807464957237244, 0.2455795705318451, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.357563853263855, 0.35952848196029663, 0.3280943036079407, 0.3202357590198517, 0.3811394870281219, 0.36935165524482727, 0.2907662093639374, 0.24361492693424225, 0.22003929316997528, 0.22986248135566711, 0.23182711005210876, 0.2337917536497116, 0.28487229347229004, 0.2907662093639374, 0.25540274381637573, 0.31434184312820435, 0.25147348642349243, 0.21414537727832791, 0.2671905755996704, 0.2671905755996704, 0.2593320310115814, 0.2082514762878418, 0.21021610498428345, 0.22986248135566711, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31041258573532104, 0.31434184312820435, 0.3536345660686493, 0.34381139278411865, 0.3634577691555023, 0.357563853263855, 0.26522594690322876, 0.22789783775806427, 0.2357563823461533, 0.22789783775806427, 0.27701374888420105, 0.2593320310115814, 0.2495088428258896, 0.25147348642349243, 0.2573673725128174, 0.31041258573532104, 0.23182711005210876, 0.22003929316997528, 0.3948919475078583, 0.3929273188114166, 0.3123772144317627, 0.316306471824646, 0.2888015806674957, 0.31041258573532104, 0.3870334029197693, 0.3909626603126526, 0.3045186698436737, 0.32220038771629333, 0.324165016412735, 0.3300589323043823, 0.3850687742233277, 0.3831041157245636, 0.29862475395202637, 0.3280943036079407, 0.31827113032341003, 0.3045186698436737, 0.3929273188114166, 0.3948919475078583, 0.37721022963523865, 0.3673870265483856, 0.40667974948883057, 0.40667974948883057, 0.40667974948883057, 0.3988212049007416, 0.31041258573532104, 0.35166993737220764, 0.316306471824646, 0.29273083806037903, 0.44007858633995056, 0.44007858633995056, 0.2593320310115814, 0.332023561000824, 0.2671905755996704, 0.2966601252555847], "p87lac44": [0.27308449149131775, 0.2711198329925537, 0.24754419922828672, 0.3280943036079407, 0.22986248135566711, 0.22003929316997528, 0.27701374888420105, 0.27308449149131775, 0.2082514762878418, 0.332023561000824, 0.22789783775806427, 0.23968565464019775, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2671905755996704, 0.2671905755996704, 0.22003929316997528, 0.3202357590198517, 0.22789783775806427, 0.22593320906162265, 0.26522594690322876, 0.2495088428258896, 0.22789783775806427, 0.31041258573532104, 0.2161100208759308, 0.22396856546401975, 0.30255404114723206, 0.32220038771629333, 0.22593320906162265, 0.3280943036079407, 0.25147348642349243, 0.21807464957237244, 0.29862475395202637, 0.29273083806037903, 0.21807464957237244, 0.324165016412735, -0.01, 0.22593320906162265, -0.01, -0.01, 0.22986248135566711, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2907662093639374, 0.30255404114723206, 0.2337917536497116, -0.01, 0.22593320906162265, -0.01, 0.2573673725128174, 0.26129665970802307, 0.20235756039619449, -0.01, -0.01, 0.21807464957237244, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2593320310115814, 0.24361492693424225, 0.2829076647758484, 0.341846764087677, 0.2161100208759308, 0.1787819266319275, 0.2495088428258896, 0.27308449149131775, 0.18467582762241364, 0.3457760214805603, 0.2161100208759308, 0.21414537727832791, 0.24361492693424225, 0.23182711005210876, 0.2121807485818863, 0.316306471824646, 0.22593320906162265, 0.21414537727832791, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.23182711005210876, 0.2455795705318451, 0.2121807485818863, 0.326129674911499, 0.2121807485818863, 0.2495088428258896, 0.25147348642349243, 0.2534381151199341, 0.24754419922828672, 0.35166993737220764, -0.01, 0.2377210259437561, 0.2946954667568207, 0.2671905755996704, -0.01, -0.01, 0.2377210259437561, 0.25147348642349243, 0.26522594690322876, 0.27701374888420105, 0.22986248135566711, 0.34774067997932434, 0.2082514762878418, 0.20235756039619449, 0.2416502982378006, 0.25147348642349243, -0.01, -0.01, 0.2495088428258896, 0.2357563823461533, -0.01, 0.2829076647758484, 0.23968565464019775, 0.35166993737220764, 0.2416502982378006, -0.01, 0.2907662093639374, 0.2946954667568207, 0.2377210259437561, 0.3202357590198517, 0.23182711005210876, 0.22396856546401975, 0.25147348642349243, 0.2632612884044647, 0.20628683269023895, 0.3300589323043823, 0.2082514762878418, -0.01, 0.2711198329925537, 0.2829076647758484, 0.2455795705318451, 0.326129674911499, 0.21807464957237244, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.29862475395202637, 0.27308449149131775, -0.01, 0.2671905755996704, -0.01, -0.01, -0.01, 0.2161100208759308, -0.01, 0.2043222039937973, 0.22396856546401975, 0.28094303607940674, 0.28094303607940674, 0.2337917536497116, 0.333988219499588, 0.21807464957237244, 0.21414537727832791, 0.28094303607940674, 0.31041258573532104, 0.2161100208759308, 0.31041258573532104, 0.22986248135566711, 0.2416502982378006, 0.29273083806037903, 0.2907662093639374, 0.23968565464019775, 0.333988219499588, -0.01, -0.01, -0.01, -0.01, 0.2377210259437561, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33595284819602966, 0.2416502982378006, 0.23182711005210876, 0.2573673725128174, -0.01, 0.2888015806674957, 0.316306471824646, 0.22593320906162265, 0.23182711005210876, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.28094303607940674, 0.2671905755996704, 0.2357563823461533, 0.326129674911499, 0.2495088428258896, 0.2671905755996704, 0.26522594690322876, -0.01, 0.22593320906162265, 0.34774067997932434, 0.25147348642349243, 0.2377210259437561, 0.24754419922828672, 0.23968565464019775, 0.19449901580810547, 0.28487229347229004, 0.21021610498428345, 0.2377210259437561, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2377210259437561, 0.2534381151199341, 0.30255404114723206, 0.27308449149131775, 0.2888015806674957, 0.27308449149131775, 0.25540274381637573, 0.22593320906162265, 0.3280943036079407, 0.26522594690322876, 0.25540274381637573, 0.2632612884044647, 0.2573673725128174, 0.22789783775806427, 0.324165016412735, 0.22200392186641693, 0.22789783775806427, 0.26129665970802307, 0.24361492693424225, 0.2161100208759308, 0.32220038771629333, 0.2003929316997528, 0.18664047122001648, 0.2946954667568207, 0.2711198329925537, 0.23182711005210876, 0.3379174768924713, 0.20628683269023895, 0.22593320906162265, 0.26129665970802307, 0.2907662093639374, 0.2632612884044647, 0.31434184312820435, 0.28094303607940674, 0.2711198329925537, 0.2946954667568207, 0.27701374888420105, 0.2573673725128174, 0.31041258573532104, 0.23182711005210876, 0.2357563823461533, 0.24754419922828672, 0.29273083806037903, 0.21807464957237244, 0.332023561000824, 0.23968565464019775, 0.2416502982378006, 0.2632612884044647, 0.2671905755996704, 0.22396856546401975, 0.332023561000824, 0.23182711005210876, 0.2495088428258896, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2829076647758484, 0.29862475395202637, 0.27308449149131775, 0.300589382648468, 0.2671905755996704, 0.30255404114723206, 0.27701374888420105, 0.23968565464019775, 0.23968565464019775, 0.31434184312820435, 0.21807464957237244, 0.22789783775806427, 0.308447927236557, 0.324165016412735, 0.2082514762878418, 0.349705308675766, 0.22986248135566711, 0.2377210259437561, 0.2966601252555847, 0.2966601252555847, 0.2416502982378006, 0.3634577691555023, 0.2534381151199341, 0.23968565464019775, 0.316306471824646, 0.31434184312820435, 0.2121807485818863, 0.32220038771629333, 0.22396856546401975, 0.21414537727832791, 0.2888015806674957, 0.2868369221687317, -0.01, 0.3045186698436737, 0.2534381151199341, 0.2377210259437561, 0.2946954667568207, 0.316306471824646, 0.2534381151199341, 0.316306471824646, 0.2377210259437561, 0.24361492693424225, 0.22396856546401975, 0.22789783775806427, 0.21414537727832791, 0.31041258573532104, 0.22396856546401975, 0.18467582762241364, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.26915520429611206, 0.27308449149131775, 0.2750491201877594, 0.332023561000824, -0.01, 0.2868369221687317, 0.2907662093639374, 0.27308449149131775, 0.2043222039937973, 0.3280943036079407, 0.20628683269023895, 0.20628683269023895, 0.22593320906162265, 0.25540274381637573, 0.2121807485818863, 0.300589382648468, 0.19056974351406095, 0.2043222039937973, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2632612884044647, 0.2377210259437561, 0.2534381151199341, 0.30255404114723206, 0.27308449149131775, -0.01, 0.2593320310115814, 0.2711198329925537, -0.01, 0.3300589323043823, -0.01, 0.2534381151199341, 0.22986248135566711, 0.2711198329925537, -0.01, 0.31041258573532104, 0.2082514762878418, 0.2357563823461533, 0.2337917536497116, 0.23968565464019775, 0.22396856546401975, 0.31434184312820435, 0.1807465553283691, 0.18664047122001648, 0.26129665970802307, 0.2711198329925537, -0.01, 0.324165016412735, 0.21414537727832791, 0.22396856546401975, 0.26129665970802307, 0.2907662093639374, 0.2632612884044647, 0.31434184312820435, -0.01, 0.2711198329925537, 0.26915520429611206, 0.26915520429611206, 0.22986248135566711, -0.01, 0.21414537727832791, 0.22396856546401975], "vqiycw97": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2416502982378006, 0.2829076647758484, 0.2337917536497116, 0.25147348642349243, 0.2750491201877594, -0.01, -0.01, -0.01, -0.01, 0.2750491201877594, 0.28487229347229004, 0.22986248135566711, 0.3791748583316803, 0.357563853263855, 0.34381139278411865, 0.349705308675766, 0.3752455711364746, 0.37328094244003296, 0.3752455711364746, -0.01, -0.01, 0.3713163137435913, 0.37328094244003296, 0.3752455711364746, 0.3300589323043823, -0.01, -0.01, -0.01, -0.01, 0.3045186698436737, -0.01, 0.28487229347229004, -0.01, -0.01, -0.01, -0.01, 0.2750491201877594, 0.2829076647758484, 0.2495088428258896, 0.3752455711364746, 0.3713163137435913, 0.34381139278411865, 0.3614931106567383, 0.35559922456741333, 0.35559922456741333, 0.33988213539123535, 0.3713163137435913, 0.37328094244003296, 0.37328094244003296, -0.01, -0.01, 0.3713163137435913, 0.3752455711364746, 0.34381139278411865, 0.31434184312820435, 0.341846764087677, 0.3536345660686493, 0.37328094244003296, 0.35166993737220764, 0.326129674911499, -0.01, -0.01, -0.01, -0.01, 0.26522594690322876, 0.2711198329925537, 0.22986248135566711, -0.01, -0.01, -0.01, -0.01, 0.2711198329925537, 0.26915520429611206, 0.3713163137435913, 0.3457760214805603, 0.3713163137435913, 0.35559922456741333, 0.37721022963523865, 0.3752455711364746, 0.37328094244003296, 0.3752455711364746, 0.3752455711364746, 0.3752455711364746, 0.3752455711364746, 0.3752455711364746, 0.3752455711364746, 0.33988213539123535, 0.324165016412735, 0.34381139278411865, 0.357563853263855, 0.3752455711364746, 0.37721022963523865, 0.341846764087677, 0.35166993737220764, 0.357563853263855, 0.3457760214805603, 0.2868369221687317, 0.2907662093639374, 0.2711198329925537, 0.22789783775806427, 0.3752455711364746, 0.34774067997932434, 0.3614931106567383, 0.3673870265483856, 0.36935165524482727, 0.35559922456741333, 0.37328094244003296, 0.3752455711364746, 0.324165016412735, 0.326129674911499, 0.3202357590198517, 0.3752455711364746, 0.3752455711364746, 0.316306471824646, 0.2946954667568207, 0.35166993737220764, 0.3379174768924713, 0.2966601252555847, 0.26522594690322876, 0.23968565464019775, 0.26915520429611206, 0.30648329854011536, 0.2337917536497116, 0.34381139278411865, 0.365422397851944, 0.341846764087677, 0.3713163137435913, 0.37328094244003296, 0.3752455711364746, 0.3673870265483856, 0.28094303607940674, 0.300589382648468, 0.36935165524482727, 0.2966601252555847, 0.2829076647758484, 0.28094303607940674, 0.26522594690322876, 0.23182711005210876, 0.22986248135566711, 0.3752455711364746, 0.35952848196029663, 0.35952848196029663, 0.3614931106567383, 0.3752455711364746], "0tpkjxr3": [0.2730844793713163, 0.27897838899803534, -0.01, 0.25343811394891946, 0.35363457760314343, 0.3516699410609037, 0.1925343811394892, 0.26719056974459726, 0.3241650294695481, 0.14538310412573674, 0.3163064833005894, 0.3143418467583497, 0.343811394891945, -0.01, -0.01, 0.22396856581532415, 0.2337917485265226, 0.3418467583497053, 0.33988212180746563, -0.01, -0.01, -0.01, -0.01, 0.3300589390962672, 0.3143418467583497, 0.2966601178781925, 0.24165029469548133, 0.12180746561886052, 0.24950884086444008, 0.32023575638506874, 0.28487229862475444, 0.28487229862475444, -0.01, -0.01, 0.35952848722986247, 0.3516699410609037, 0.21021611001964635, 0.16895874263261296, 0.2770137524557957, -0.01, 0.24950884086444008, 0.29862475442043224, 0.3300589390962672, -0.01, -0.01, -0.01, 0.15324165029469547, 0.3418467583497053, 0.3104125736738703, -0.01, -0.01, -0.01, 0.15324165029469547, 0.33595284872298625, 0.29862475442043224, 0.20039292730844793, 0.21218074656188604, -0.01, 0.2593320235756385, 0.3025540275049116, 0.29469548133595286, 0.2829076620825147, -0.01, -0.01, 0.343811394891945, -0.01, 0.1650294695481336, 0.1925343811394892, 0.2907662082514735, -0.01, 0.2868369351669941, 0.2966601178781925, 0.2888015717092338, -0.01, -0.01, -0.01, -0.01, 0.31237721021611004, 0.3182711198428291, -0.01, -0.01, -0.01, -0.01, 0.3104125736738703, 0.26129666011787817, 0.21611001964636545, 0.1944990176817289, -0.01, 0.26522593320235754, 0.2966601178781925], "q75qr9j4": [0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6652464866638184, 0.6402921676635742, 0.5794278979301453, 0.6074254512786865, 0.5599513053894043, 0.6701156497001648, 0.6743761301040649, 0.622032880783081, 0.5715155005455017, 0.6305538415908813, 0.6183810234069824, 0.6542909145355225, 0.6506390571594238, 0.6585514545440674, 0.6682897210121155, 0.667681097984314, 0.6701156497001648, 0.6530736684799194, 0.6494218111038208, 0.6299452185630798, 0.6031649708747864, 0.6384662389755249, 0.6238588094711304, 0.6707242727279663, 0.6628119349479675, 0.6177723407745361, 0.5666463971138, 0.6086426973342896, 0.572124183177948, 0.6780279874801636, 0.6774193644523621, 0.6177723407745361, 0.5806451439857483, 0.5751673579216003, 0.5337796807289124, 0.5903834700584412, 0.5891661643981934, 0.5946439504623413, 0.5636031627655029, 0.5593426823616028, 0.5380401611328125, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6323797702789307, 0.63420569896698, 0.6293365955352783, 0.5842970013618469, 0.6183810234069824, 0.6147291660308838, 0.6512477397918701, 0.6469871997833252, 0.6335970759391785, 0.5642117857933044, 0.6019476652145386, 0.5940353274345398, 0.6378575563430786, 0.6317711472511292, 0.5538648962974548, 0.5830797553062439, 0.5404747128486633, 0.5246500372886658, 0.4430918991565704, 0.4692635536193848, 0.622032880783081, 0.5562994480133057, 0.6183810234069824, 0.5435179471969604, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5782105922698975, 0.5842970013618469, 0.6402921676635742, 0.5727328062057495, 0.608034074306488, 0.5745587348937988, 0.6262933611869812, 0.6238588094711304, 0.6463785767555237, 0.5702982544898987, 0.6293365955352783, 0.5916007161140442, 0.44552648067474365, 0.48204505443573, 0.5903834700584412, 0.63420569896698, 0.5575167536735535, 0.4485696852207184, 0.6780279874801636, 0.6743761301040649, 0.6177723407745361, 0.6025562882423401, 0.6311625242233276, 0.5897747874259949, 0.6762020587921143, 0.6755934357643127, 0.63420569896698, 0.5617772340774536, 0.6183810234069824, 0.6116859316825867, 0.6786366105079651, 0.6786366105079651, 0.6366403102874756, 0.6043822169303894, 0.6323797702789307, 0.6116859316825867, 0.6701156497001648, 0.6701156497001648, 0.6323797702789307, 0.6013390421867371, 0.6433353424072266, 0.6354230046272278, 0.6762020587921143, 0.6749848127365112, 0.6451612710952759, 0.6177723407745361, 0.6293365955352783, 0.592818021774292, 0.6786366105079651, 0.6786366105079651, 0.622032880783081, 0.5879488587379456, 0.572124183177948, 0.5769932866096497, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6762020587921143, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6701156497001648, 0.663420557975769, 0.6366403102874756, 0.5745587348937988, 0.6129032373428345, 0.5842970013618469, 0.6652464866638184, 0.6609860062599182, 0.627510666847229, 0.5569080710411072, 0.6159464120864868, 0.5976871848106384, 0.6603773832321167, 0.6573341488838196, 0.6682897210121155, 0.6725502014160156, 0.6725502014160156, 0.6682897210121155, 0.6762020587921143, 0.6737675070762634, 0.6542909145355225, 0.6725502014160156, 0.667681097984314, 0.6646378636360168, 0.6615946292877197, 0.6579427719116211, 0.622032880783081, 0.5611686110496521, 0.6250760555267334, 0.5940353274345398, 0.6780279874801636, 0.6768107414245605, 0.6177723407745361, 0.5940353274345398, 0.6116859316825867, 0.5569080710411072, 0.6682897210121155, 0.6755934357643127, 0.6366403102874756, 0.46804624795913696, 0.5143030881881714, 0.4163116216659546, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6743761301040649, 0.6317711472511292, 0.6262933611869812, 0.627510666847229, 0.5964698791503906, 0.6037735939025879, 0.5916007161140442, 0.4382227659225464, 0.33536213636398315, 0.3499695658683777, 0.5404747128486633, 0.47900182008743286, 0.4668289721012115, 0.32379794120788574, 0.6390748620033264, 0.5410833954811096, 0.5514302849769592, 0.5696895718574524, 0.4832623302936554, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6719415783882141, 0.6305538415908813, 0.5982958078384399, 0.6372489333152771, 0.5940353274345398, 0.6646378636360168, 0.6171637177467346, 0.3956177830696106, 0.48934873938560486, 0.4406573474407196, 0.3840535581111908, 0.5587339997291565, 0.3091905117034912, 0.6780279874801636, 0.6768107414245605, 0.632988452911377, 0.6311625242233276, 0.6208155751228333, 0.6153377890586853, 0.6725502014160156, 0.6737675070762634, 0.622032880783081, 0.606816828250885, 0.6396834850311279, 0.6281192898750305, 0.6786366105079651, 0.6786366105079651, 0.6457699537277222, 0.5824710726737976, 0.6335970759391785, 0.6055995225906372, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6737675070762634, 0.6731588840484619, 0.632988452911377, 0.6354230046272278, 0.6500304341316223, 0.6147291660308838, 0.6786366105079651, 0.6786366105079651, 0.6159464120864868, 0.5599513053894043, 0.544126570224762, 0.5757760405540466, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6780279874801636, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6731588840484619, 0.6609860062599182, 0.6122945547103882, 0.5897747874259949, 0.6049908995628357, 0.5769932866096497, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.6749848127365112, 0.6463785767555237, 0.6719415783882141, 0.667681097984314, 0.6640292406082153, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.007303712889552116, -0.01, -0.01, 0.6183810234069824, 0.6147291660308838, 0.592818021774292, 0.5611686110496521, 0.5861229300498962, 0.5709068775177002, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6774193644523621, 0.6171637177467346, 0.622032880783081, 0.6226415038108826, 0.6062081456184387, 0.6195982694625854, 0.6086426973342896, 0.662203311920166, 0.6597687005996704, 0.5660377144813538, 0.5149117708206177, 0.5502130389213562, 0.5709068775177002, 0.5307364463806152, 0.5970785021781921, 0.627510666847229, 0.5660377144813538, 0.6195982694625854, 0.5678636431694031, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6719415783882141, 0.6372489333152771, 0.6007303595542908, 0.63420569896698, 0.5916007161140442, 0.6591600775718689, 0.608034074306488, 0.552647590637207, 0.6250760555267334, 0.5709068775177002, 0.5739501118659973, 0.6110773086547852, 0.5057821273803711, 0.663420557975769, 0.6640292406082153, 0.6463785767555237, 0.6518563628196716, 0.6475958824157715, 0.6202069520950317, 0.6725502014160156, 0.6719415783882141, 0.6354230046272278, 0.6396834850311279, 0.6488131284713745, 0.642726719379425, 0.6786366105079651, 0.6780279874801636, 0.622032880783081, 0.5897747874259949, 0.6226415038108826, 0.6104686260223389, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6786366105079651, 0.6707242727279663, 0.6695070266723633, 0.6360316276550293, 0.6409007906913757, 0.642726719379425, 0.6147291660308838, 0.6786366105079651, 0.6786366105079651, 0.6262933611869812, 0.573341429233551, 0.5958612561225891, -0.01], "hikrp0lg": [0.6037735939025879, 0.5830797553062439, 0.5039561986923218, 0.5727328062057495, 0.5015215873718262, 0.5069993734359741, 0.5855143070220947, 0.587340235710144, 0.531953752040863, 0.5423006415367126, 0.44674375653266907, 0.4631771147251129, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5562994480133057, -0.01, 0.5203895568847656, 0.5423006415367126, 0.47534996271133423, 0.476567268371582, 0.5696895718574524, 0.6098600029945374, 0.5435179471969604, 0.577601969242096, 0.4424832761287689, 0.4631771147251129, 0.6147291660308838, 0.6171637177467346, 0.5289105176925659, 0.5690809488296509, 0.4960438311100006, 0.4978697597980499, 0.6183810234069824, 0.6062081456184387, 0.5392574667930603, 0.5849056839942932, 0.5033475160598755, 0.492391973733902, 0.49908703565597534, 0.5727328062057495, 0.486914187669754, 0.5922093987464905, 0.6086426973342896, 0.5520389676094055, 0.5666463971138, 0.6098600029945374, 0.6086426973342896, 0.5033475160598755, 0.5702982544898987, 0.5885575413703918, 0.5599513053894043, 0.5191722512245178, 0.6055995225906372, 0.587340235710144, 0.558125376701355, 0.5617772340774536, 0.5252586603164673, 0.5459524989128113, 0.5404747128486633, 0.5003043413162231, 0.5209981799125671, 0.4966524541378021, 0.4954351782798767, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5812538266181946, 0.5483871102333069, 0.5429093241691589, 0.572124183177948, 0.5088253021240234, 0.5106512308120728, 0.6098600029945374, 0.5514302849769592, 0.5684723258018494, 0.5520389676094055, 0.5380401611328125, 0.5605599284172058, 0.5471698045730591, 0.5276932716369629, 0.578819215297699, 0.5605599284172058, 0.5009129643440247, 0.4899573922157288, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.5763846635818481, 0.573341429233551, 0.5435179471969604, 0.5447352528572083, 0.4601339101791382, 0.4698721766471863, 0.5599513053894043, 0.537431538105011, 0.511259913444519, 0.516737699508667, 0.5489957332611084, 0.5337796807289124, 0.5970785021781921, 0.5885575413703918, 0.5392574667930603, 0.5739501118659973, 0.5076080560684204, 0.4966524541378021, 0.5477784276008606, 0.5617772340774536, 0.5593426823616028, 0.5617772340774536, 0.497261106967926, 0.5203895568847656, 0.5952525734901428, -0.01, 0.5076080560684204, 0.608034074306488, 0.4954351782798767, 0.5149117708206177, 0.6183810234069824, 0.6092513799667358, 0.5562994480133057, -0.01, 0.5033475160598755, 0.516737699508667, 0.6165550947189331, 0.6104686260223389, 0.5648204684257507, 0.5794278979301453, 0.5660377144813538, 0.552647590637207, 0.6043822169303894, 0.6019476652145386, 0.5276932716369629, 0.5806451439857483, 0.5684723258018494, 0.5502130389213562, 0.6165550947189331, 0.6098600029945374, 0.5240414142608643, 0.5532562136650085, -0.01, 0.5264759659767151, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6372489333152771, 0.5532562136650085, 0.577601969242096, 0.5556908249855042, 0.5629945397377014, 0.4668289721012115, 0.43457090854644775, 0.6171637177467346, 0.6043822169303894, 0.5477784276008606, 0.5636031627655029, 0.5228241086006165, 0.5155203938484192, 0.613511860370636, 0.6037735939025879, 0.5173463225364685, 0.5812538266181946, 0.552647590637207, 0.5368228554725647, 0.492391973733902, 0.4260499179363251, 0.5745587348937988, -0.01, 0.5678636431694031, 0.5727328062057495, 0.6597687005996704, 0.6110773086547852, 0.6001217365264893, 0.6579427719116211, 0.5891661643981934, 0.5885575413703918, -0.01, -0.01, -0.01, 0.5575167536735535, -0.01, 0.5593426823616028, 0.5702982544898987, 0.5514302849769592, -0.01, -0.01, 0.5240414142608643, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6402921676635742, 0.5952525734901428, 0.5629945397377014, 0.5532562136650085, 0.5818624496459961, 0.49847838282585144, 0.5003043413162231, 0.5155203938484192, -0.01, 0.6311625242233276, 0.5818624496459961, 0.4954351782798767, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, -0.01, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6360316276550293, 0.5550821423530579, -0.01, 0.5155203938484192, 0.5611686110496521, 0.552647590637207, 0.5429093241691589, 0.5903834700584412, 0.6074254512786865, 0.45709067583084106, 0.5666463971138, 0.5130858421325684, 0.5069993734359741, 0.5508216619491577, 0.5599513053894043, 0.5325623750686646, 0.5684723258018494, 0.5240414142608643, 0.5173463225364685, -0.01, 0.558125376701355, -0.01, 0.6524649858474731, 0.5283018946647644, 0.5276932716369629, 0.6755934357643127, 0.6755934357643127, -0.01, 0.6755934357643127, -0.01, 0.6269019842147827, 0.6238588094711304, 0.6323797702789307, 0.5599513053894043, 0.5556908249855042, 0.5264759659767151, 0.5270845890045166, 0.6025562882423401, 0.6104686260223389, -0.01, -0.01, 0.5368228554725647, 0.5423006415367126, 0.6098600029945374, 0.6262933611869812, 0.5185636281967163, -0.01, -0.01, 0.5276932716369629, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, -0.01, 0.5593426823616028, 0.5562994480133057, 0.5362142324447632, -0.01, -0.01, -0.01, -0.01, 0.6037735939025879, -0.01, 0.5447352528572083, 0.511259913444519, 0.5076080560684204, 0.573341429233551, 0.5934266448020935, 0.4838709533214569, 0.5800365209579468, 0.45769932866096497, 0.45709067583084106, 0.5757760405540466, 0.5325623750686646, 0.552647590637207, 0.6281192898750305, 0.5660377144813538, 0.5642117857933044, 0.6597687005996704, 0.29275715351104736, 0.5855143070220947, 0.6548995971679688, 0.5964698791503906, 0.5903834700584412, 0.5203895568847656, 0.5623858571052551, 0.5155203938484192, 0.5678636431694031, 0.5076080560684204, 0.5161290168762207, 0.5709068775177002, 0.5958612561225891, 0.5295192003250122, 0.5270845890045166, 0.5209981799125671, 0.5203895568847656, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6439440250396729, 0.5477784276008606, 0.5654290914535522, 0.5051734447479248, 0.5520389676094055, 0.5301278233528137, 0.538648784160614, 0.5325623750686646, 0.537431538105011, 0.5684723258018494, 0.5617772340774536, 0.5039561986923218, 0.5063907504081726, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6317711472511292, 0.5496043562889099, 0.5812538266181946, 0.5465611815452576, 0.5696895718574524, 0.573341429233551, 0.5678636431694031, 0.5964698791503906, 0.6049908995628357, 0.5349969863891602, 0.5769932866096497, 0.4942179024219513, 0.497261106967926, 0.5782105922698975, 0.6043822169303894, 0.4826536774635315, 0.5867316126823425, 0.5301278233528137, 0.5057821273803711, 0.6098600029945374, -0.01, 0.5246500372886658, 0.6415094137191772, 0.5136944651603699, 0.5100426077842712, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6396834850311279, 0.6189896464347839, 0.5855143070220947, -0.01, -0.01, 0.5477784276008606, 0.5550821423530579], "5sc3ymja": [0.6755934357643127, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, -0.01, -0.01, -0.01, -0.01, 0.6378575563430786, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6762020587921143, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.6719415783882141, 0.6768107414245605, 0.6755934357643127, 0.6755934357643127, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, 0.627510666847229, 0.6548995971679688, 0.606816828250885, 0.6670724153518677, 0.578819215297699, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.5757760405540466, -0.01, -0.01, -0.01, -0.01, 0.6755934357643127, 0.6755934357643127, 0.6585514545440674, 0.6640292406082153, 0.6591600775718689, 0.6567255258560181, 0.5824710726737976, 0.6439440250396729, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6749848127365112, 0.6749848127365112, 0.6652464866638184, 0.5970785021781921, 0.6755934357643127, 0.6165550947189331, 0.628727912902832, 0.5769932866096497, 0.6469871997833252, 0.5410833954811096, 0.6768107414245605, 0.6031649708747864, 0.6542909145355225, 0.6457699537277222, 0.648204505443573, 0.6542909145355225, 0.5934266448020935, 0.608034074306488, 0.6092513799667358, 0.5800365209579468, 0.5623858571052551, 0.6092513799667358, 0.5520389676094055, 0.6743761301040649, 0.6573341488838196, 0.6640292406082153, 0.6652464866638184, 0.6755934357643127, 0.6664637923240662, 0.668898344039917, 0.6250760555267334, 0.6086426973342896, 0.6585514545440674, 0.6768107414245605, 0.6762020587921143, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127, 0.6713329553604126, 0.6141204833984375, 0.6615946292877197, 0.6189896464347839, 0.6238588094711304, 0.6098600029945374, 0.668898344039917, 0.6652464866638184, 0.667681097984314, 0.6049908995628357, 0.6737675070762634, 0.6695070266723633, 0.6755934357643127, 0.6755934357643127, 0.6281192898750305, 0.5611686110496521, 0.668898344039917, 0.6615946292877197, 0.6755934357643127, 0.6755934357643127, 0.6384662389755249, 0.4534388184547424, 0.5611686110496521, 0.6147291660308838, 0.6695070266723633, 0.6682897210121155, 0.6743761301040649, 0.6755934357643127, 0.6755934357643127, 0.6591600775718689, 0.6561168432235718, 0.6768107414245605, 0.6755934357643127, 0.6755934357643127, 0.668898344039917, 0.6354230046272278, 0.6244674324989319, 0.6682897210121155, 0.6646378636360168, 0.5958612561225891, 0.6092513799667358, 0.6755934357643127, 0.5922093987464905, 0.5623858571052551, 0.622032880783081, 0.6281192898750305, 0.573341429233551, 0.6743761301040649, 0.6755934357643127, 0.6755934357643127, 0.6755934357643127], "09vtppjh": [0.505173463177115, 0.5228241022519781, -0.01, 0.4351795496043822, 0.6262933657942787, 0.6214242239805234, 0.6019476567255021, 0.6116859403530128, 0.5824710894704809, -0.01, 0.5903834449178332, 0.6129032258064516, 0.6305538648813147, -0.01, -0.01, 0.6372489348752283, 0.4297017650639075, 0.6335970785149118, 0.5246500304321363, -0.01, -0.01, 0.3913572732805843, -0.01, 0.6080340839926963, 0.6269020085209982, 0.6037735849056604, 0.5733414485696896, 0.049300060864272674, 0.4930006086427267, 0.591600730371272, 0.4096165550821668, 0.43639683505782106, -0.01, -0.01, 0.6214242239805234, -0.01, 0.5130858186244674, 0.5617772367620207, 0.5946439440048692, -0.01, 0.36944613511868535, 0.5228241022519781, 0.6299452221545953, -0.01, -0.01, -0.01, 0.23189287888009735, 0.6378575776019476, 0.5617772367620207, -0.01, -0.01, -0.01, 0.41935483870967744, 0.5313451004260499, 0.5587340231284236, 0.48143639683505784, -0.01, -0.01, 0.4881314668289714, -0.01, -0.01, 0.4163116250760803, -0.01, -0.01, 0.6305538648813147, 0.5842970176506391, 0.5508216676810712, -0.01, -0.01, -0.01, -0.01, 0.42483262325015214, 0.6287279367011565, -0.01, -0.01, -0.01, 0.5143031040779062, 0.6104686548995739, 0.5441265976871577, -0.01, -0.01, -0.01, 0.4120511259890444, 0.55203895313451, 0.556299452221546, 0.5423006695069994, 0.5477784540474742, -0.01, 0.5313451004260499, 0.5806451612903226], "lzckrtvs": [0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.3930000066757202, 0.3869999945163727, 0.33799999952316284, 0.3059999942779541, 0.335999995470047, 0.32749998569488525, 0.4000000059604645, 0.39250001311302185, 0.3440000116825104, 0.304500013589859, 0.3384999930858612, 0.33799999952316284, 0.39149999618530273, 0.3765000104904175, 0.3944999873638153, 0.3889999985694885, 0.3880000114440918, 0.3894999921321869, 0.3700000047683716, 0.36800000071525574, 0.3294999897480011, 0.27300000190734863, 0.32899999618530273, 0.3240000009536743, 0.3959999978542328, 0.3860000073909759, 0.328000009059906, 0.3050000071525574, 0.3330000042915344, 0.33250001072883606, 0.4115000069141388, 0.40700000524520874, 0.3165000081062317, 0.3089999854564667, 0.3269999921321869, 0.31949999928474426, 0.27950000762939453, 0.3330000042915344, 0.304500013589859, 0.32350000739097595, 0.33550000190734863, 0.31450000405311584, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25699999928474426, 0.25099998712539673, 0.3700000047683716, 0.3395000100135803, 0.35850000381469727, 0.36250001192092896, 0.35199999809265137, 0.33799999952316284, 0.35850000381469727, 0.3375000059604645, 0.34950000047683716, 0.3499999940395355, 0.3799999952316284, 0.3869999945163727, 0.2919999957084656, 0.3005000054836273, 0.3005000054836273, 0.3165000081062317, 0.2345000058412552, 0.3089999854564667, 0.33649998903274536, 0.32199999690055847, 0.3610000014305115, 0.3504999876022339, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25850000977516174, 0.2214999943971634, 0.37950000166893005, 0.3440000116825104, 0.3855000138282776, 0.3734999895095825, 0.2759999930858612, 0.2630000114440918, 0.3970000147819519, 0.3619999885559082, 0.4025000035762787, 0.3975000083446502, 0.3440000116825104, 0.29100000858306885, 0.2865000069141388, 0.2939999997615814, 0.33000001311302185, 0.29750001430511475, 0.4104999899864197, 0.4110000133514404, 0.32350000739097595, 0.30649998784065247, 0.34599998593330383, 0.3345000147819519, 0.40950000286102295, 0.4074999988079071, 0.34200000762939453, 0.2985000014305115, 0.35100001096725464, 0.35350000858306885, 0.4090000092983246, 0.4065000116825104, 0.3160000145435333, 0.2939999997615814, 0.36000001430511475, 0.35199999809265137, 0.4074999988079071, 0.4050000011920929, 0.3734999895095825, 0.32199999690055847, 0.3894999921321869, 0.3919999897480011, 0.40950000286102295, 0.4074999988079071, 0.3779999911785126, 0.3294999897480011, 0.3804999887943268, 0.3790000081062317, 0.4120000004768371, 0.4124999940395355, 0.32199999690055847, 0.3050000071525574, 0.3684999942779541, 0.35749998688697815, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.4129999876022339, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.3799999952316284, 0.37299999594688416, 0.33899998664855957, 0.3089999854564667, 0.328000009059906, 0.3334999978542328, 0.38449999690055847, 0.3734999895095825, 0.34049999713897705, 0.28949999809265137, 0.34950000047683716, 0.34700000286102295, 0.3765000104904175, 0.3639999926090241, 0.3975000083446502, 0.3955000042915344, 0.3959999978542328, 0.3975000083446502, 0.4124999940395355, 0.4124999940395355, 0.4014999866485596, 0.41350001096725464, 0.40950000286102295, 0.4090000092983246, 0.3824999928474426, -0.01, 0.3395000100135803, 0.3140000104904175, 0.3375000059604645, 0.3384999930858612, 0.4099999964237213, 0.4090000092983246, 0.3075000047683716, 0.31299999356269836, 0.34200000762939453, 0.3269999921321869, 0.32600000500679016, 0.2879999876022339, 0.2809999883174896, 0.31049999594688416, 0.3009999990463257, 0.2409999966621399, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, -0.01, 0.33649998903274536, 0.34200000762939453, 0.36800000071525574, -0.01, 0.35600000619888306, 0.3630000054836273, 0.2590000033378601, 0.3125, 0.265500009059906, 0.3149999976158142, 0.23849999904632568, 0.19850000739097595, 0.22849999368190765, 0.1914999932050705, 0.36800000071525574, 0.3095000088214874, 0.34200000762939453, 0.3714999854564667, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.4104999899864197, 0.25049999356269836, 0.2694999873638153, 0.3860000073909759, 0.3804999887943268, 0.39800000190734863, 0.39500001072883606, 0.22699999809265137, 0.2214999943971634, 0.2809999883174896, 0.3149999976158142, 0.25949999690055847, 0.1745000034570694, 0.40950000286102295, 0.4099999964237213, 0.3840000033378601, 0.36649999022483826, -0.01, 0.3815000057220459, 0.4050000011920929, 0.4034999907016754, 0.3754999935626984, 0.3465000092983246, 0.37599998712539673, 0.37950000166893005, 0.4115000069141388, 0.4115000069141388, 0.33550000190734863, 0.2450000047683716, 0.3659999966621399, 0.359499990940094, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.4045000076293946, 0.4050000011920929, 0.3865000009536743, 0.37049999833106995, 0.38199999928474426, 0.3790000081062317, 0.4110000133514404, 0.4110000133514404, 0.2994999885559082, 0.3050000071525574, 0.359499990940094, 0.35499998927116394, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.4129999876022339, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.3970000147819519, 0.3815000057220459, 0.32899999618530273, 0.29899999499320984, 0.33149999380111694, 0.31150001287460327, 0.3860000073909759, 0.37950000166893005, 0.3474999964237213, 0.28700000047683716, 0.3425000011920929, 0.34200000762939453, 0.3970000147819519, 0.39250001311302185, 0.39800000190734863, 0.3959999978542328, 0.39800000190734863, 0.4004999995231629, 0.41350001096725464, 0.41350001096725464, 0.4050000011920929, 0.4124999940395355, 0.4099999964237213, 0.4079999923706054, 0.39399999380111694, 0.38850000500679016, 0.34450000524520874, 0.29350000619888306, 0.32899999618530273, 0.3319999873638153, -0.01, 0.4104999899864197, 0.30300000309944153, 0.3199999928474426, 0.33399999141693115, 0.3190000057220459, 0.3255000114440918, 0.3095000088214874, 0.3095000088214874, 0.2994999885559082, 0.34200000762939453, 0.32749998569488525, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.33500000834465027, 0.359499990940094, 0.35249999165534973, 0.33399999141693115, 0.35350000858306885, 0.3474999964237213, 0.3824999928474426, 0.3869999945163727, 0.3005000054836273, 0.3244999945163727, 0.31450000405311584, 0.3190000057220459, 0.2335000038146973, 0.226500004529953, 0.3544999957084656, 0.36000001430511475, 0.36899998784065247, 0.3504999876022339, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.4099999964237213, 0.2574999928474426, 0.2370000034570694, 0.3935000002384186, 0.37599998712539673, 0.4014999866485596, 0.39899998903274536, 0.3310000002384186, 0.29350000619888306, 0.3100000023841858, 0.32350000739097595, 0.33149999380111694, 0.3244999945163727, 0.39800000190734863, 0.3955000042915344, 0.3964999914169311, 0.3790000081062317, 0.3865000009536743, 0.3855000138282776, 0.4000000059604645, 0.39800000190734863, 0.390500009059906, 0.35749998688697815, 0.39149999618530273, 0.38999998569488525, 0.4110000133514404, 0.4099999964237213, 0.335999995470047, 0.2919999957084656, 0.36550000309944153, 0.34950000047683716, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.41350001096725464, 0.40849998593330383, 0.4065000116825104, 0.3709999918937683, 0.3345000147819519, 0.3765000104904175, 0.3745000064373016, 0.4129999876022339, 0.4129999876022339, 0.3305000066757202, 0.3050000071525574, -0.01, 0.34599998593330383], "li0kaahk": [0.3050000071525574, 0.3149999976158142, 0.30799999833106995, 0.3179999887943268, 0.3799999952316284, 0.3855000138282776, 0.3100000023841858, 0.3215000033378601, 0.28349998593330383, 0.29750001430511475, 0.33649998903274536, 0.3610000014305115, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31850001215934753, 0.31450000405311584, 0.3264999985694885, 0.2849999964237213, 0.3919999897480011, 0.37599998712539673, 0.28299999237060547, 0.28450000286102295, 0.328000009059906, 0.32749998569488525, 0.35100001096725464, 0.3610000014305115, 0.2955000102519989, 0.29899999499320984, 0.2824999988079071, 0.3149999976158142, 0.2944999933242798, 0.28850001096725464, 0.296999990940094, 0.28450000286102295, 0.25699999928474426, 0.31299999356269836, -0.01, 0.273499995470047, 0.27900001406669617, 0.3084999918937683, 0.3084999918937683, 0.3370000123977661, 0.3255000114440918, 0.3095000088214874, 0.3059999942779541, 0.2809999883174896, 0.2630000114440918, 0.3075000047683716, 0.28700000047683716, 0.27900001406669617, 0.2994999885559082, 0.289000004529953, 0.26899999380111694, 0.3174999952316284, 0.28450000286102295, 0.2815000116825104, 0.29350000619888306, 0.29249998927116394, 0.3569999933242798, 0.2630000114440918, 0.3059999942779541, 0.27000001072883606, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2639999985694885, 0.27399998903274536, 0.30550000071525574, 0.2800000011920929, 0.30399999022483826, 0.29899999499320984, 0.29649999737739563, 0.2759999930858612, 0.29350000619888306, 0.27000001072883606, 0.3154999911785126, 0.3009999990463257, 0.26249998807907104, 0.27399998903274536, 0.3639999926090241, 0.3384999930858612, 0.3569999933242798, 0.3644999861717224, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2644999921321869, 0.25949999690055847, 0.3944999873638153, 0.28700000047683716, 0.3734999895095825, 0.35600000619888306, 0.2590000033378601, 0.30250000953674316, 0.3610000014305115, 0.3240000009536743, 0.3869999945163727, 0.3894999921321869, 0.2680000066757202, 0.27399998903274536, 0.28299999237060547, 0.2915000021457672, 0.28349998593330383, 0.2824999988079071, 0.27649998664855957, 0.289000004529953, 0.2615000009536743, 0.2985000014305115, 0.26249998807907104, 0.27549999952316284, 0.2915000021457672, 0.27799999713897705, 0.2980000078678131, 0.3345000147819519, 0.25600001215934753, 0.2720000147819519, 0.2705000042915344, 0.2809999883174896, 0.29100000858306885, 0.30000001192092896, 0.2750000059604645, 0.2879999876022339, 0.2680000066757202, 0.25999999046325684, 0.2540000081062317, 0.29499998688697815, 0.28349998593330383, 0.28700000047683716, 0.3050000071525574, 0.2994999885559082, 0.34549999237060547, -0.01, 0.3754999935626984, 0.38100001215934753, 0.3165000081062317, 0.3319999873638153, 0.3089999854564667, 0.2784999907016754, 0.3610000014305115, 0.3659999966621399, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.3695000112056732, 0.296999990940094, 0.2840000092983246, 0.30649998784065247, 0.30250000953674316, 0.3400000035762787, 0.3580000102519989, 0.2930000126361847, 0.32249999046325684, 0.29249998927116394, 0.29750001430511475, 0.3059999942779541, 0.2939999997615814, 0.29499998688697815, 0.289000004529953, 0.25200000405311584, 0.27250000834465027, 0.2865000069141388, 0.28949999809265137, 0.2980000078678131, 0.2955000102519989, 0.2879999876022339, 0.3215000033378601, 0.3109999895095825, 0.3075000047683716, 0.4065000116825104, 0.3815000057220459, 0.3970000147819519, 0.40700000524520874, 0.39250001311302185, 0.3959999978542328, 0.2849999964237213, 0.29899999499320984, 0.29649999737739563, 0.3100000023841858, 0.3179999887943268, 0.3100000023841858, 0.3070000112056732, 0.2980000078678131, 0.2329999953508377, 0.2565000057220459, 0.2939999997615814, 0.2745000123977661, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.382999986410141, 0.3075000047683716, 0.30399999022483826, 0.34049999713897705, 0.25, 0.31450000405311584, 0.32350000739097595, 0.30550000071525574, 0.28999999165534973, 0.35199999809265137, 0.3269999921321869, 0.3765000104904175, 0.34700000286102295, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, -0.01, 0.3639999926090241, 0.2904999852180481, 0.29350000619888306, 0.390500009059906, 0.3395000100135803, 0.39149999618530273, 0.3865000009536743, 0.28450000286102295, 0.2709999978542328, 0.28600001335144043, 0.26100000739097595, 0.28349998593330383, 0.26499998569488525, 0.296999990940094, 0.2955000102519989, 0.25600001215934753, 0.24699999392032623, 0.28349998593330383, -0.01, 0.28700000047683716, 0.2915000021457672, 0.27549999952316284, 0.3540000021457672, 0.26600000262260437, 0.28299999237060547, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, -0.01, 0.29350000619888306, 0.30399999022483826, 0.29750001430511475, 0.265500009059906, -0.01, 0.25, -0.01, 0.2994999885559082, 0.3529999852180481, 0.34950000047683716, 0.3804999887943268, 0.3840000033378601, 0.32899999618530273, 0.3125, 0.3019999861717224, -0.01, 0.37299999594688416, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.3935000002384186, 0.2800000011920929, 0.2759999930858612, 0.32199999690055847, -0.01, -0.01, -0.01, 0.28049999475479126, -0.01, 0.2720000147819519, 0.2944999933242798, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.40549999475479126, 0.4000000059604645, 0.3930000066757202, 0.4059999883174896, 0.3970000147819519, 0.39500001072883606, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.28349998593330383, 0.30550000071525574, 0.2985000014305115, 0.26350000500679016, 0.2930000126361847, 0.289000004529953, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.3639999926090241, 0.2619999945163727, 0.28600001335144043, 0.30649998784065247, 0.2824999988079071, 0.27799999713897705, 0.2824999988079071, 0.28700000047683716, 0.31299999356269836, 0.3955000042915344, 0.35899999737739563, 0.3855000138282776, 0.3765000104904175, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, -0.01, 0.4115000069141388, 0.4115000069141388, 0.3865000009536743, 0.28949999809265137, 0.29100000858306885, 0.3930000066757202, 0.35499998927116394, 0.39399999380111694, 0.39250001311302185, 0.2800000011920929, 0.2874999940395355, 0.2694999873638153, 0.26649999618530273, 0.2815000116825104, 0.2854999899864197, 0.3084999918937683, 0.29499998688697815, 0.2680000066757202, 0.2535000145435333, 0.2720000147819519, 0.2904999852180481, 0.2685000002384186, 0.2849999964237213, 0.27399998903274536, -0.01, 0.28349998593330383, 0.25099998712539673, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.37299999594688416, 0.28700000047683716, 0.3009999990463257, 0.2549999952316284, 0.26899999380111694, 0.28349998593330383, 0.29750001430511475], "xrzp33gj": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2985000014305115, 0.40549999475479126, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3619999885559082, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3190000057220459, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3970000147819519, 0.3889999985694885, 0.39899998903274536, 0.4099999964237213, -0.01, -0.01, 0.3959999978542328, 0.4115000069141388, 0.4104999899864197, 0.4120000004768371, -0.01, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.35100001096725464, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3190000057220459, 0.304500013589859, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2919999957084656, 0.2720000147819519, 0.39500001072883606, 0.390500009059906, 0.3964999914169311, 0.4110000133514404, -0.01, -0.01, -0.01, 0.4115000069141388, 0.4115000069141388, 0.4115000069141388, 0.4124999940395355, 0.4115000069141388, 0.4115000069141388, 0.4120000004768371, 0.4120000004768371, 0.36149999499320984, 0.359499990940094, 0.4020000100135803, 0.375, 0.3774999976158142, 0.3395000100135803, 0.3564999997615814, 0.3395000100135803, 0.3855000138282776, 0.3725000023841858, 0.33000001311302185, 0.3504999876022339, 0.30149999260902405, 0.29350000619888306, 0.3294999897480011, 0.31450000405311584, 0.3005000054836273, 0.31450000405311584, 0.28200000524520874, 0.28450000286102295, 0.265500009059906, 0.4090000092983246, 0.4059999883174896, 0.4009999930858612, 0.4050000011920929, 0.4059999883174896, 0.40299999713897705, 0.4014999866485596, 0.4000000059604645, 0.3975000083446502, 0.4115000069141388, 0.4110000133514404, 0.4099999964237213, 0.4110000133514404, 0.4120000004768371, 0.4115000069141388, 0.3555000126361847, 0.34450000524520874, 0.3634999990463257, 0.3790000081062317, 0.3569999933242798, 0.35199999809265137, 0.3490000069141388, 0.3944999873638153, 0.3944999873638153, 0.3019999861717224, 0.3955000042915344, 0.3944999873638153, 0.26350000500679016, 0.26350000500679016, 0.4009999930858612, 0.40849998593330383, 0.38749998807907104, 0.4110000133514404, 0.38100001215934753, 0.3449999988079071, 0.3059999942779541, 0.30149999260902405, 0.3440000116825104, 0.3919999897480011, 0.4110000133514404, 0.4020000100135803], "qmyvmdq1": [0.3825, 0.3985, -0.01, 0.3665, 0.4085, 0.404, 0.4005, 0.408, 0.402, 0.178, 0.403, 0.4075, 0.4085, -0.01, -0.01, 0.394, 0.3585, 0.4075, 0.3955, -0.01, -0.01, 0.32, 0.2685, 0.3935, 0.4055, 0.401, 0.4, 0.042, 0.3925, 0.398, 0.3865, 0.359, -0.01, -0.01, 0.408, 0.401, 0.3395, 0.398, 0.3895, -0.01, 0.327, 0.405, 0.407, -0.01, -0.01, -0.01, 0.278, 0.4065, 0.403, -0.01, -0.01, -0.01, 0.1825, 0.391, 0.3445, 0.36, 0.4055, -0.01, 0.2975, 0.407, 0.3045, 0.3595, -0.01, -0.01, 0.4095, 0.406, 0.3795, -0.01, -0.01, -0.01, -0.01, 0.3965, 0.3995, -0.01, -0.01, -0.01, 0.342, 0.409, 0.3855, -0.01, -0.01, -0.01, 0.2265, 0.397, 0.2765, 0.3615, 0.3825, -0.01, 0.329, 0.3945], "k94ikq6w": [0.528, 0.2645, -0.01, 0.2325, 0.802, 0.802, 0.785, 0.802, 0.802, 0.5645, 0.8015, 0.802, 0.802, -0.01, -0.01, 0.269, -0.01, -0.01, 0.8015, -0.01, -0.01, 0.5, 0.7125, -0.01, 0.8015, -0.01, 0.801, -0.01, -0.01, 0.789, 0.262, -0.01, -0.01, -0.01, 0.802, -0.01, 0.782, 0.802, 0.802, 0.562, 0.789, 0.8015, 0.802, -0.01, -0.01, -0.01, 0.7075, 0.802, 0.801, -0.01, -0.01, 0.3035, -0.01, 0.8015, 0.802, 0.802, 0.802, -0.01, 0.7745, 0.789, 0.279, 0.0685, -0.01, -0.01, 0.802, 0.8005, 0.7845, 0.8015, 0.802, 0.554, 0.801, 0.795, 0.8015, -0.01, -0.01, -0.01, 0.7785, 0.8015, 0.794, -0.01, -0.01, 0.3135, 0.631, 0.7995, 0.8025, -0.01, 0.802, -0.01, 0.7965, 0.79], "3yr6bmem": [0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.4886297285556793, 0.44373178482055664, 0.44897958636283875, 0.4204081594944, 0.4431487023830414, 0.3422740399837494, 0.4851312041282654, 0.46880465745925903, 0.4297375977039337, 0.4198250770568848, 0.3772594630718231, 0.3825072944164276, 0.4740524888038635, 0.4583090245723725, 0.4483965039253235, 0.42915451526641846, 0.4408163130283356, 0.42274051904678345, 0.4886297285556793, 0.4676384925842285, 0.4507288634777069, 0.43848395347595215, 0.4361515939235687, 0.4099125266075134, 0.4798833727836609, 0.45131194591522217, 0.4501457810401917, 0.44373178482055664, 0.3865889310836792, 0.32186588644981384, 0.495626837015152, 0.46064141392707825, 0.40758016705513, 0.47113701701164246, 0.3953352868556976, 0.372011661529541, 0.462390661239624, 0.45947521924972534, 0.463556855916977, 0.449562668800354, 0.3510203957557678, 0.37667638063430786, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.449562668800354, 0.4577259421348572, 0.4618075788021088, 0.41749271750450134, 0.43848395347595215, 0.41341108083724976, 0.48454809188842773, 0.4769679307937622, 0.4419825077056885, 0.44606414437294006, 0.42507287859916687, 0.3749271035194397, 0.4501457810401917, 0.4612244963645935, 0.359183669090271, 0.4944606423377991, 0.2857142984867096, 0.4046647250652313, 0.4326530694961548, 0.40583088994026184, 0.4023323655128479, 0.4478134214878082, 0.4297375977039337, 0.3603498637676239, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4244897961616516, 0.43032070994377136, 0.4746355712413788, 0.4419825077056885, 0.4309037923812866, 0.40758016705513, 0.4524781405925751, 0.4472303092479706, 0.46705538034439087, 0.421574354171753, 0.4314868748188019, 0.4169096350669861, 0.4717201292514801, 0.4274052381515503, 0.4198250770568848, 0.43965014815330505, 0.4169096350669861, 0.2897959053516388, 0.49504372477531433, 0.4944606423377991, 0.43848395347595215, 0.4239067137241363, 0.4087463617324829, 0.40408164262771606, 0.49504372477531433, 0.4886297285556793, 0.4239067137241363, 0.4309037923812866, 0.4145772457122803, 0.40058308839797974, 0.49504372477531433, 0.4921282827854157, 0.4169096350669861, -0.01, -0.01, 0.40408164262771606, 0.5014577507972717, 0.4967930018901825, 0.4483965039253235, 0.4448979496955872, 0.4478134214878082, 0.4466472268104553, 0.49329444766044617, 0.47755101323127747, 0.4402332305908203, 0.4244897961616516, 0.4367347061634064, -0.01, 0.49504372477531433, 0.49504372477531433, 0.4332361519336701, -0.01, 0.421574354171753, 0.4145772457122803, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.49504372477531433, 0.49504372477531433, -0.01, 0.49504372477531433, -0.01, 0.49504372477531433, 0.49504372477531433, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, -0.01, -0.01, 0.4536443054676056, 0.4402332305908203, 0.4349854290485382, 0.3801749348640442, 0.4839650094509125, 0.4448979496955872, 0.4600583016872406, 0.4349854290485382, 0.4326530694961548, 0.413994163274765, 0.47638484835624695, 0.45539358258247375, 0.4653061330318451, 0.4379008710384369, 0.4338192343711853, 0.4233236014842987, 0.48688048124313354, 0.4664722979068756, 0.4583090245723725, 0.43032070994377136, 0.4431487023830414, 0.39008745551109314, 0.4851312041282654, 0.413994163274765, 0.4542274177074432, 0.4641399383544922, 0.43848395347595215, 0.3510203957557678, 0.4938775599002838, 0.47113701701164246, 0.42274051904678345, 0.46705538034439087, 0.3469387888908386, 0.39475217461586, 0.4542274177074432, 0.45131194591522217, 0.3935860097408294, 0.42798835039138794, 0.3708454668521881, 0.3731778562068939, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4740524888038635, 0.4752186536788941, 0.4542274177074432, 0.4349854290485382, 0.4472303092479706, 0.40408164262771606, 0.4927113652229309, 0.4839650094509125, 0.4524781405925751, 0.43440234661102295, 0.4209912419319153, 0.39650145173072815, 0.4000000059604645, 0.4029154479503632, 0.36618074774742126, 0.44256559014320374, 0.3521865904331207, 0.30495625734329224, 0.3970845341682434, 0.41749271750450134, 0.4034985303878784, 0.4169096350669861, 0.40174928307533264, 0.27172011137008667, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4233236014842987, 0.4034985303878784, 0.4483965039253235, 0.4419825077056885, 0.43848395347595215, 0.40174928307533264, 0.44256559014320374, 0.4361515939235687, 0.4448979496955872, 0.4163265228271485, 0.4221574366092682, 0.40758016705513, 0.37959182262420654, 0.37667638063430786, 0.29970845580101013, 0.43206995725631714, -0.01, 0.2618075907230377, 0.49504372477531433, 0.4944606423377991, 0.42274051904678345, 0.4314868748188019, 0.4180757999420166, 0.40699708461761475, 0.49504372477531433, 0.4897959232330322, 0.42915451526641846, 0.4198250770568848, 0.4081632792949677, 0.3988338112831116, -0.01, 0.4927113652229309, 0.45539358258247375, 0.4034985303878784, 0.3941690921783447, 0.3836734592914582, -0.01, 0.5026239156723022, 0.4600583016872406, 0.4507288634777069, 0.46064141392707825, -0.01, 0.4810495674610138, 0.4705539345741272, 0.43848395347595215, 0.4198250770568848, 0.4402332305908203, 0.4274052381515503, 0.49504372477531433, 0.49504372477531433, 0.4297375977039337, 0.4454810619354248, 0.42682215571403503, 0.3620991110801697, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.49504372477531433, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, -0.01, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.49504372477531433, 0.4862973690032959, 0.4256559908390045, 0.4367347061634064, 0.43032070994377136, 0.4367347061634064, 0.3609329462051392, 0.4577259421348572, 0.45131194591522217, 0.4448979496955872, 0.4262390732765198, 0.40932944416999817, 0.4198250770568848, 0.4728862941265106, 0.4577259421348572, 0.43440234661102295, 0.4297375977039337, 0.42274051904678345, 0.4361515939235687, 0.48804664611816406, 0.4641399383544922, 0.4419825077056885, 0.4285714328289032, 0.4478134214878082, 0.3970845341682434, 0.4793002903461456, 0.43848395347595215, 0.4518950581550598, -0.01, 0.4192419946193695, 0.365597665309906, 0.4938775599002838, 0.46472302079200745, 0.42507287859916687, 0.4454810619354248, 0.3889212906360626, 0.3865889310836792, 0.45306122303009033, 0.4507288634777069, 0.4419825077056885, 0.44897958636283875, 0.3422740399837494, 0.36734694242477417, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4524781405925751, 0.4577259421348572, 0.4478134214878082, 0.4244897961616516, 0.4338192343711853, 0.4087463617324829, 0.4798833727836609, 0.4793002903461456, 0.4676384925842285, 0.4448979496955872, 0.4087463617324829, 0.3772594630718231, 0.4524781405925751, 0.4524781405925751, 0.35043731331825256, 0.44606414437294006, 0.27988338470458984, 0.38075801730155945, 0.4443148672580719, 0.40758016705513, 0.4233236014842987, 0.4379008710384369, 0.4390670657157898, 0.3708454668521881, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4256559908390045, 0.4151603579521179, 0.44373178482055664, 0.4309037923812866, 0.4297375977039337, 0.4046647250652313, 0.4536443054676056, 0.43965014815330505, 0.43440234661102295, 0.42682215571403503, 0.4239067137241363, 0.4052478075027466, 0.46880465745925903, 0.4256559908390045, 0.37551021575927734, 0.43440234661102295, 0.40174928307533264, 0.3090378940105438, -0.01, 0.4944606423377991, 0.4145772457122803, 0.4221574366092682, 0.4128279983997345, 0.40758016705513, 0.49504372477531433, 0.48921284079551697, 0.4507288634777069, 0.4285714328289032, 0.4233236014842987, 0.4046647250652313, 0.49504372477531433, 0.49096208810806274, -0.01, 0.4309037923812866, -0.01, 0.3982507288455963, 0.4997084438800812, 0.49737608432769775, 0.4373177886009216, 0.4478134214878082, -0.01, 0.449562668800354, 0.4921282827854157, 0.4781341254711151, 0.4472303092479706, 0.4221574366092682, 0.4338192343711853, 0.4349854290485382, 0.49504372477531433, 0.49504372477531433, 0.4151603579521179, 0.4483965039253235, 0.4244897961616516, 0.4029154479503632], "9sbul8yi": [0.4221574366092682, 0.3696793019771576, 0.359183669090271, 0.4501457810401917, 0.31370261311531067, 0.38717201352119446, 0.4413994252681732, 0.4518950581550598, 0.38717201352119446, 0.4349854290485382, -0.01, 0.36501458287239075, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.388338178396225, 0.3970845341682434, 0.43440234661102295, 0.27230319380760193, 0.3539358675479889, 0.4034985303878784, 0.3953352868556976, 0.421574354171753, 0.4104956388473511, 0.336443156003952, 0.35043731331825256, 0.4285714328289032, 0.4192419946193695, 0.3877550959587097, 0.4314868748188019, 0.3119533658027649, 0.3247813284397125, 0.3970845341682434, 0.40699708461761475, 0.3702623844146729, 0.4390670657157898, 0.3813410997390747, 0.4169096350669861, 0.4361515939235687, 0.41749271750450134, 0.3970845341682434, 0.43965014815330505, 0.3865889310836792, 0.3813410997390747, 0.4046647250652313, 0.4128279983997345, 0.34518951177597046, 0.44897958636283875, 0.30204081535339355, 0.3288629651069641, 0.4548105001449585, 0.4408163130283356, 0.3370262384414673, 0.455976665019989, 0.346355676651001, 0.3422740399837494, 0.29562681913375854, 0.30845481157302856, 0.3014577329158783, 0.4379008710384369, 0.30612245202064514, 0.31020408868789673, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4081632792949677, 0.3446063995361328, 0.3195335268974304, 0.4431487023830414, 0.34169095754623413, 0.346355676651001, 0.4204081594944, 0.42507287859916687, 0.19183672964572904, 0.41341108083724976, 0.365597665309906, 0.352769672870636, 0.2897959053516388, 0.2612244784832001, 0.3341107964515686, 0.40932944416999817, 0.25072887539863586, 0.32303208112716675, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3405247926712036, 0.34169095754623413, 0.33469387888908386, 0.4379008710384369, 0.30728861689567566, 0.3148688077926636, 0.35451894998550415, 0.3941690921783447, 0.3119533658027649, 0.4472303092479706, 0.18367347121238708, 0.34927114844322205, 0.4157434403896332, 0.4542274177074432, 0.3615160286426544, 0.3970845341682434, 0.3860058188438415, 0.3836734592914582, 0.4390670657157898, 0.4443148672580719, 0.3836734592914582, 0.413994163274765, 0.34518951177597046, 0.34927114844322205, 0.3749271035194397, 0.413994163274765, 0.29271137714385986, 0.4256559908390045, 0.34110787510871887, 0.33469387888908386, 0.4326530694961548, 0.4466472268104553, 0.3702623844146729, 0.43848395347595215, 0.2950437366962433, 0.3090378940105438, 0.4145772457122803, 0.3988338112831116, 0.3842565715312958, 0.4466472268104553, 0.26005831360816956, 0.30612245202064514, 0.4571428596973419, 0.4478134214878082, 0.3475218713283539, 0.4349854290485382, 0.3201166093349457, 0.40932944416999817, 0.4548105001449585, 0.42682215571403503, 0.352769672870636, 0.45131194591522217, 0.29037901759147644, 0.359183669090271, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4577259421348572, 0.38717201352119446, 0.359183669090271, 0.4466472268104553, 0.2950437366962433, 0.3725947439670563, 0.4064140021800995, 0.3994169235229492, 0.4116618037223816, 0.421574354171753, 0.32419824600219727, 0.3247813284397125, 0.4431487023830414, 0.4419825077056885, 0.3539358675479889, 0.4518950581550598, 0.3329446017742157, 0.3469387888908386, 0.40058308839797974, 0.4274052381515503, 0.35976675152778625, 0.43440234661102295, 0.365597665309906, 0.3696793019771576, 0.4361515939235687, 0.43206995725631714, 0.3877550959587097, 0.42274051904678345, 0.3854227364063263, 0.39008745551109314, 0.42507287859916687, 0.4239067137241363, 0.35335275530815125, 0.4548105001449585, 0.33352768421173096, 0.34810495376586914, 0.4349854290485382, 0.4361515939235687, 0.2921282947063446, 0.4664722979068756, 0.3486880362033844, 0.3329446017742157, 0.26938775181770325, 0.2542273998260498, 0.3510203957557678, 0.4314868748188019, -0.01, 0.2699708342552185, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4122448861598969, 0.3801749348640442, 0.30728861689567566, 0.4483965039253235, 0.323615163564682, 0.330029159784317, -0.01, 0.3825072944164276, 0.2472303211688995, 0.4204081594944, 0.35860058665275574, 0.36734694242477417, 0.2781341075897217, 0.262390673160553, 0.330029159784317, -0.01, 0.26822158694267273, 0.28629738092422485, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.32419824600219727, 0.30204081535339355, 0.30845481157302856, 0.44897958636283875, 0.30320701003074646, 0.3405247926712036, 0.3801749348640442, 0.39475217461586, 0.31545189023017883, 0.44256559014320374, 0.1586005836725235, 0.30495625734329224, 0.38075801730155945, 0.3358600437641144, 0.36734694242477417, 0.4064140021800995, 0.34285715222358704, 0.3475218713283539, 0.42915451526641846, -0.01, -0.01, 0.40408164262771606, 0.3510203957557678, -0.01, 0.4052478075027466, 0.39241981506347656, 0.38309037685394287, 0.4116618037223816, 0.36384838819503784, 0.3708454668521881, 0.4204081594944, 0.4239067137241363, 0.3341107964515686, 0.4600583016872406, 0.32594752311706543, 0.3819242119789123, 0.4128279983997345, 0.4209912419319153, 0.32711368799209595, 0.4658892154693603, 0.22507289052009585, 0.2728863060474396, 0.4233236014842987, 0.4046647250652313, -0.01, 0.43848395347595215, 0.2973760962486267, 0.36734694242477417, -0.01, 0.4157434403896332, -0.01, 0.43848395347595215, 0.3206997215747833, 0.36734694242477417, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.42915451526641846, 0.4128279983997345, 0.401166170835495, 0.4367347061634064, 0.3055393695831299, 0.3749271035194397, 0.4297375977039337, 0.4233236014842987, 0.39650145173072815, 0.4104956388473511, 0.3405247926712036, 0.3247813284397125, 0.42915451526641846, 0.4338192343711853, 0.2775510251522064, 0.4413994252681732, 0.33469387888908386, 0.3358600437641144, 0.4000000059604645, 0.41749271750450134, 0.34927114844322205, 0.4361515939235687, 0.36501458287239075, 0.3731778562068939, -0.01, 0.4373177886009216, 0.37142857909202576, 0.4326530694961548, 0.3988338112831116, 0.401166170835495, -0.01, 0.4204081594944, 0.3749271035194397, 0.4448979496955872, 0.3358600437641144, 0.3708454668521881, 0.4571428596973419, 0.4518950581550598, 0.30612245202064514, 0.46880465745925903, 0.35976675152778625, 0.35568514466285706, 0.25889211893081665, 0.28746354579925537, 0.1113702654838562, 0.43440234661102295, 0.28396502137184143, 0.2950437366962433, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3819242119789123, 0.3743440210819245, 0.31895044445991516, 0.43848395347595215, 0.3446063995361328, 0.3539358675479889, 0.43032070994377136, 0.4099125266075134, 0.2530612349510193, 0.4198250770568848, 0.3696793019771576, 0.36384838819503784, 0.28513118624687195, 0.27988338470458984, 0.38075801730155945, 0.40174928307533264, 0.26822158694267273, 0.32186588644981384, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34810495376586914, 0.3469387888908386, 0.294460654258728, 0.4349854290485382, 0.2827988266944885, 0.30204081535339355, 0.4239067137241363, 0.4116618037223816, 0.3067055344581604, -0.01, 0.1784256547689438, 0.35976675152778625, 0.38483965396881104, 0.40058308839797974, 0.4419825077056885, 0.39008745551109314, 0.3626822233200073, 0.35976675152778625, 0.42682215571403503, 0.4180757999420166, 0.3498542308807373, 0.3959183692932129, 0.35743439197540283, 0.330029159784317, 0.33469387888908386, 0.3860058188438415, 0.39475217461586, -0.01, 0.35451894998550415, 0.3615160286426544, 0.4285714328289032, 0.4448979496955872, 0.35976675152778625, 0.4466472268104553, 0.3148688077926636, 0.35335275530815125, 0.3731778562068939, 0.3521865904331207, 0.31370261311531067, 0.4478134214878082, 0.25481048226356506, 0.2909621000289917], "933n8vho": [0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, -0.01, -0.01, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4419825077056885, 0.288046658039093, 0.4728862941265106, 0.4588921368122101, 0.4728862941265106, 0.449562668800354, 0.4548105001449585, 0.26297375559806824, 0.4419825077056885, 0.3014577329158783, 0.32536444067955017, 0.3183673322200775, -0.01, -0.01, -0.01, -0.01, 0.45131194591522217, 0.4151603579521179, 0.4641399383544922, 0.45539358258247375, 0.401166170835495, 0.32944607734680176, -0.01, -0.01, -0.01, -0.01, 0.4349854290485382, 0.37959182262420654, 0.41749271750450134, 0.36501458287239075, 0.4793002903461456, 0.4588921368122101, 0.47638484835624695, 0.4787172079086304, 0.4810495674610138, 0.47755101323127747, 0.4752186536788941, 0.4618075788021088, 0.47230321168899536, 0.47638484835624695, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, -0.01, -0.01, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4256559908390045, 0.3860058188438415, 0.4571428596973419, 0.4705539345741272, 0.4676384925842285, 0.4658892154693603, 0.44897958636283875, 0.30845481157302856, 0.43965014815330505, 0.43848395347595215, 0.3696793019771576, 0.35568514466285706, 0.37959182262420654, -0.01, -0.01, -0.01, -0.01, 0.4524781405925751, 0.45131194591522217, 0.4239067137241363, 0.317201167345047, 0.3358600437641144, -0.01, -0.01, -0.01, -0.01, 0.3708454668521881, -0.01, 0.4064140021800995, 0.2699708342552185, 0.4769679307937622, 0.4798833727836609, 0.4793002903461456, 0.4746355712413788, 0.4810495674610138, 0.4746355712413788, 0.45947521924972534, 0.45947521924972534, 0.48571428656578064, 0.4577259421348572, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, -0.01, -0.01, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4810495674610138, 0.4116618037223816, 0.3090378940105438, 0.4734693765640259, 0.4758017361164093, 0.4379008710384369, 0.2985422611236572, 0.44256559014320374, 0.3206997215747833, 0.3457725942134857, 0.2571428716182709, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.4507288634777069, 0.4443148672580719, 0.4116618037223816, 0.47638484835624695, 0.4483965039253235, 0.34110787510871887, 0.3370262384414673, 0.4274052381515503, 0.40583088994026184, 0.4285714328289032, 0.38483965396881104, 0.4833819270133972, 0.4676384925842285, 0.4717201292514801, 0.401166170835495, 0.4600583016872406, 0.4810495674610138, 0.4833819270133972, 0.47230321168899536, 0.455976665019989, 0.4588921368122101, 0.4781341254711151], "d2u4p3ti": [-0.01, -0.01, -0.01, -0.01, -0.01, 0.4425655976676385, 0.358600583090379, -0.01, 0.4845481049562682, -0.01, -0.01, -0.01, -0.01, 0.4693877551020408, -0.01, 0.4798833819241982, 0.4798833819241982, 0.4501457725947522, 0.46122448979591835, -0.01, 0.40349854227405246, 0.480466472303207, -0.01, -0.01, 0.4717201166180758, -0.01, -0.01, 0.4921282798833819, 0.3481049562682216, 0.48104956268221577, 0.46122448979591835, 0.4606413994169096, 0.4553935860058309, 0.40349854227405246, 0.485131195335277, 0.482798833819242, 0.4728862973760933, 0.4880466472303207, 0.4868804664723032, 0.3784256559766764, 0.4787172011661808, 0.4746355685131195, 0.4833819241982507, 0.39825072886297375, 0.46705539358600584, 0.4787172011661808, 0.4857142857142857, 0.4151603498542274, 0.47580174927113705, 0.4909620991253644, 0.485131195335277, 0.4798833819241982, 0.48104956268221577, 0.4787172011661808, 0.4524781341107872, 0.443731778425656, 0.44314868804664725, 0.485131195335277, 0.44198250728862976, 0.46647230320699706, 0.48104956268221577, 0.3446064139941691, 0.48104956268221577, 0.46588921282798834, 0.4833819241982507, 0.3889212827988338, 0.4798833819241982, 0.4740524781341108, 0.4880466472303207, 0.4297376093294461, 0.439067055393586, 0.33294460641399415, 0.47230320699708456, 0.4163265306122449, 0.4839650145772595, 0.46705539358600584, 0.4618075801749271, 0.4746355685131195, 0.3807580174927114, 0.4717201166180758, 0.4629737609329446, 0.4892128279883382, 0.40233236151603496, 0.4559766763848396, 0.4798833819241982, 0.4151603498542274, 0.43731778425655976, 0.4798833819241982, 0.4763848396501458, 0.4839650145772595], "98f9waz4": [0.0225, 0.057, -0.01, -0.01, 0.2535, 0.255, 0.25, 0.257, 0.2565, 0.1145, 0.256, 0.266, 0.2565, -0.01, -0.01, -0.01, 0.2495, 0.2605, 0.2405, -0.01, -0.01, 0.043, 0.2535, 0.262, 0.242, 0.2485, 0.253, -0.01, 0.2695, 0.25, -0.01, -0.01, -0.01, -0.01, 0.258, 0.27, 0.242, -0.01, -0.01, 0.1325, -0.01, 0.255, 0.252, -0.01, -0.01, 0.0125, 0.248, 0.2555, 0.2455, -0.01, -0.01, 0.0305, 0.2145, 0.255, 0.2485, 0.259, -0.01, -0.01, 0.2375, 0.2585, -0.01, -0.01, -0.01, -0.01, 0.2595, 0.266, 0.2275, 0.258, 0.265, 0.156, 0.2455, 0.2535, 0.2545, -0.01, -0.01, -0.01, 0.251, 0.258, 0.2545, -0.01, -0.01, 0.0305, 0.236, 0.259, 0.253, 0.258, 0.251, -0.01, 0.2495, 0.258], "ljcbdxpa": [0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9605000019073486, 0.9649999737739564, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9605000019073486, 0.9649999737739564, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9660000205039978, 0.9610000252723694, 0.9664999842643738, 0.965499997138977, 0.9664999842643738, -0.01, 0.9664999842643738, 0.959999978542328, 0.965499997138977, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9605000019073486, 0.9649999737739564, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9660000205039978, 0.9645000100135804, 0.9660000205039978, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9649999737739564, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9645000100135804, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9660000205039978, 0.9645000100135804, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9660000205039978, 0.9635000228881836, -0.01, 0.965499997138977, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9660000205039978, 0.9649999737739564, 0.9649999737739564, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9639999866485596, 0.9645000100135804, 0.9660000205039978, 0.9664999842643738, -0.01, 0.9660000205039978, 0.9635000228881836, 0.9649999737739564, 0.965499997138977, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9645000100135804, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9645000100135804, 0.9664999842643738, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9645000100135804, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9645000100135804, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9645000100135804, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9585000276565552, 0.965499997138977, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9580000042915344, 0.9645000100135804, 0.9649999737739564, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9649999737739564, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9610000252723694, 0.9660000205039978, -0.01, -0.01, 0.9664999842643738, 0.9660000205039978, 0.9585000276565552, 0.9660000205039978, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9649999737739564, 0.9660000205039978, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9660000205039978, 0.9649999737739564, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9660000205039978, 0.9664999842643738, 0.965499997138977, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9649999737739564, 0.962499976158142, -0.01, 0.9660000205039978, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9645000100135804, 0.965499997138977, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9645000100135804, 0.9649999737739564, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9660000205039978, 0.9639999866485596, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9660000205039978, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9645000100135804, 0.9660000205039978, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.959999978542328, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.959500014781952, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9649999737739564, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, 0.9660000205039978, 0.9660000205039978, -0.01, -0.01, 0.9660000205039978, -0.01, -0.01, 0.965499997138977, -0.01, 0.9664999842643738, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, 0.9664999842643738, -0.01, -0.01, -0.01, 0.9664999842643738, 0.959500014781952, -0.01, 0.9649999737739564, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9580000042915344, 0.965499997138977, 0.9660000205039978, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9639999866485596, 0.9649999737739564, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9645000100135804, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9635000228881836, 0.965499997138977, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.965499997138977, 0.9635000228881836, 0.965499997138977, 0.965499997138977, -0.01, 0.9664999842643738, -0.01, 0.965499997138977, 0.965499997138977, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9610000252723694, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, 0.962000012397766, -0.01, 0.9664999842643738, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, -0.01, -0.01, 0.9664999842643738, 0.9664999842643738, 0.9664999842643738, 0.962499976158142, -0.01, 0.9664999842643738, 0.9664999842643738, -0.01, 0.9664999842643738, 0.962499976158142, 0.9664999842643738, -0.01, 0.9664999842643738, -0.01, -0.01, 0.9614999890327454, 0.9664999842643738, 0.9664999842643738], "scbko4h4": [0.9424999952316284, 0.9455000162124634, 0.9399999976158142, 0.9725000262260436, 0.9350000023841858, 0.9355000257492064, 0.9424999952316284, 0.9455000162124634, 0.9399999976158142, 0.9725000262260436, -0.01, 0.9355000257492064, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9520000219345092, 0.9514999985694884, 0.9265000224113464, 0.9725000262260436, 0.9350000023841858, 0.934499979019165, 0.944000005722046, 0.94650000333786, 0.9409999847412108, 0.9725000262260436, 0.9334999918937684, 0.9350000023841858, 0.962000012397766, 0.9585000276565552, 0.9369999766349792, 0.9725000262260436, 0.9325000047683716, -0.01, 0.962000012397766, 0.9585000276565552, 0.9369999766349792, 0.9725000262260436, 0.9325000047683716, 0.9235000014305116, 0.9714999794960022, 0.9710000157356262, 0.953000009059906, 0.9714999794960022, -0.01, 0.9714999794960022, 0.9570000171661376, 0.9559999704360962, 0.9259999990463256, 0.9725000262260436, 0.9290000200271606, 0.9290000200271606, 0.962000012397766, 0.9614999890327454, 0.9365000128746032, 0.9725000262260436, 0.9304999709129332, 0.925000011920929, 0.930999994277954, -0.01, 0.9330000281333924, 0.9725000262260436, 0.9294999837875366, 0.9294999837875366, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.934499979019165, 0.9384999871253968, 0.9415000081062316, 0.9725000262260436, 0.9325000047683716, 0.9269999861717224, 0.9340000152587892, 0.9350000023841858, 0.9315000176429749, 0.9725000262260436, 0.9290000200271606, 0.9334999918937684, 0.9384999871253968, 0.9315000176429749, 0.9325000047683716, 0.9725000262260436, -0.01, 0.9179999828338624, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9369999766349792, 0.9390000104904176, 0.9394999742507936, 0.9725000262260436, 0.9254999756813048, 0.9315000176429749, 0.9350000023841858, 0.9304999709129332, 0.9334999918937684, 0.9725000262260436, 0.9164999723434448, 0.9225000143051147, 0.9375, 0.9390000104904176, 0.9259999990463256, 0.9725000262260436, 0.9350000023841858, 0.9300000071525574, 0.9375, 0.9390000104904176, 0.9259999990463256, 0.9725000262260436, 0.9350000023841858, 0.9300000071525574, 0.930999994277954, 0.9325000047683716, -0.01, 0.9455000162124634, 0.9390000104904176, 0.9325000047683716, -0.01, 0.9380000233650208, 0.9369999766349792, -0.01, -0.01, 0.9369999766349792, 0.9380000233650208, -0.01, -0.01, 0.9725000262260436, 0.9334999918937684, 0.9275000095367432, 0.949999988079071, 0.9509999752044678, -0.01, 0.9725000262260436, 0.9409999847412108, 0.9415000081062316, 0.9484999775886536, 0.9474999904632568, 0.934499979019165, 0.9725000262260436, 0.944000005722046, 0.9375, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9484999775886536, 0.9520000219345092, 0.9330000281333924, 0.9725000262260436, 0.9359999895095824, 0.9325000047683716, 0.9490000009536744, 0.94650000333786, 0.9355000257492064, 0.9725000262260436, 0.9380000233650208, 0.9380000233650208, 0.959999978542328, 0.959500014781952, 0.9300000071525574, 0.9725000262260436, 0.9279999732971193, 0.9265000224113464, 0.9614999890327454, 0.9645000100135804, 0.9390000104904176, 0.9725000262260436, 0.9390000104904176, 0.934499979019165, 0.9725000262260436, 0.972000002861023, 0.9610000252723694, 0.972000002861023, 0.9725000262260436, 0.9714999794960022, 0.9649999737739564, 0.9639999866485596, 0.9265000224113464, 0.9725000262260436, 0.930999994277954, 0.930999994277954, 0.962000012397766, 0.9664999842643738, 0.9319999814033508, 0.9725000262260436, 0.9355000257492064, 0.9340000152587892, 0.9334999918937684, 0.92849999666214, 0.925000011920929, 0.9725000262260436, 0.9304999709129332, 0.9315000176429749, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9304999709129332, 0.9300000071525574, 0.9365000128746032, 0.9725000262260436, 0.9325000047683716, 0.9319999814033508, 0.9380000233650208, 0.9359999895095824, 0.9315000176429749, 0.9725000262260436, 0.9300000071525574, 0.9290000200271606, 0.9380000233650208, 0.9390000104904176, 0.9300000071525574, 0.9725000262260436, 0.9304999709129332, 0.9275000095367432, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9330000281333924, 0.930999994277954, 0.9300000071525574, 0.9725000262260436, 0.930999994277954, 0.9304999709129332, 0.9365000128746032, 0.9384999871253968, 0.9240000247955322, 0.9725000262260436, 0.934499979019165, 0.9290000200271606, 0.9415000081062316, 0.9409999847412108, 0.9340000152587892, 0.9725000262260436, 0.9325000047683716, 0.9304999709129332, 0.934499979019165, 0.9330000281333924, 0.9350000023841858, 0.9725000262260436, 0.9269999861717224, 0.9265000224113464, 0.9300000071525574, 0.9240000247955322, 0.9459999799728394, 0.9394999742507936, 0.9375, 0.9334999918937684, 0.9359999895095824, 0.9424999952316284, 0.9294999837875366, 0.9725000262260436, 0.925000011920929, 0.9229999780654908, 0.9380000233650208, 0.9350000023841858, 0.9350000023841858, 0.9725000262260436, 0.9279999732971193, 0.9290000200271606, 0.9509999752044678, 0.9480000138282776, 0.9300000071525574, 0.9725000262260436, 0.9399999976158142, 0.9375, 0.9524999856948853, 0.9505000114440918, 0.9334999918937684, 0.9725000262260436, 0.9480000138282776, 0.9445000290870668, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9524999856948853, 0.9505000114440918, 0.9334999918937684, 0.9725000262260436, 0.9480000138282776, 0.9445000290870668, 0.9509999752044678, 0.9484999775886536, 0.934499979019165, 0.9725000262260436, 0.9384999871253968, 0.9340000152587892, 0.9629999995231628, 0.9645000100135804, 0.9390000104904176, 0.9725000262260436, 0.9394999742507936, 0.9394999742507936, 0.962000012397766, 0.962499976158142, 0.9290000200271606, 0.9725000262260436, 0.9330000281333924, 0.9265000224113464, 0.972000002861023, 0.972000002861023, 0.959500014781952, 0.972000002861023, 0.9725000262260436, 0.9714999794960022, 0.962000012397766, 0.959999978542328, 0.9369999766349792, 0.9725000262260436, 0.9325000047683716, 0.934499979019165, 0.962000012397766, 0.9614999890327454, 0.9279999732971193, 0.9725000262260436, -0.01, 0.9254999756813048, 0.9394999742507936, 0.9409999847412108, 0.9275000095367432, 0.9725000262260436, 0.9275000095367432, 0.9294999837875366, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9409999847412108, -0.01, 0.9359999895095824, 0.9725000262260436, 0.9254999756813048, 0.9269999861717224, 0.9375, 0.9390000104904176, 0.9350000023841858, 0.9725000262260436, 0.9340000152587892, 0.930999994277954, 0.9300000071525574, 0.9365000128746032, 0.934499979019165, 0.9725000262260436, 0.9340000152587892, 0.934499979019165, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.9304999709129332, 0.930999994277954, 0.9355000257492064, 0.9725000262260436, 0.9315000176429749, 0.9294999837875366, 0.9355000257492064, 0.9355000257492064, 0.9359999895095824, 0.9725000262260436, 0.9315000176429749, 0.9300000071525574, 0.9415000081062316, 0.9445000290870668, 0.9319999814033508, 0.9725000262260436, 0.9294999837875366, 0.9334999918937684, 0.9334999918937684, 0.9394999742507936, 0.9390000104904176, 0.9725000262260436, 0.9279999732971193, 0.9294999837875366, 0.934499979019165, 0.9325000047683716, 0.9350000023841858, 0.9409999847412108, 0.9365000128746032, 0.934499979019165, 0.9369999766349792, 0.9384999871253968, -0.01, 0.9725000262260436, 0.9330000281333924, 0.9330000281333924, 0.9455000162124634, 0.9419999718666076, 0.9210000038146972, 0.9725000262260436, 0.9290000200271606, 0.9275000095367432], "qfzblohn": [0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, -0.01, -0.01, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9710000157356262, 0.972000002861023, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9704999923706056, 0.9710000157356262, -0.01, -0.01, -0.01, -0.01, 0.968500018119812, 0.9700000286102296, 0.9710000157356262, 0.9700000286102296, 0.9704999923706056, 0.9700000286102296, -0.01, -0.01, -0.01, -0.01, 0.9695000052452089, 0.9700000286102296, 0.9710000157356262, 0.9704999923706056, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9695000052452089, 0.9700000286102296, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, -0.01, -0.01, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9714999794960022, 0.972000002861023, 0.9725000262260436, 0.9725000262260436, 0.972000002861023, 0.9700000286102296, 0.9704999923706056, -0.01, -0.01, -0.01, -0.01, 0.9710000157356262, 0.9710000157356262, 0.9704999923706056, 0.9704999923706056, 0.9700000286102296, 0.9695000052452089, -0.01, -0.01, -0.01, -0.01, 0.9700000286102296, 0.9700000286102296, 0.9700000286102296, 0.968999981880188, 0.9725000262260436, 0.9725000262260436, 0.9714999794960022, 0.9725000262260436, 0.9714999794960022, 0.9704999923706056, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, -0.01, -0.01, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.972000002861023, 0.9725000262260436, 0.9714999794960022, 0.972000002861023, 0.972000002861023, 0.972000002861023, 0.9725000262260436, 0.9725000262260436, 0.9704999923706056, 0.9710000157356262, -0.01, -0.01, -0.01, -0.01, 0.968999981880188, 0.9704999923706056, 0.968999981880188, 0.9710000157356262, 0.9700000286102296, 0.9700000286102296, -0.01, -0.01, -0.01, -0.01, 0.9700000286102296, 0.968999981880188, 0.9704999923706056, 0.9710000157356262, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9714999794960022, 0.9704999923706056, 0.9725000262260436, 0.9725000262260436, 0.9725000262260436, 0.9700000286102296], "cyx8x2ef": [-0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.812, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.858, 0.73, -0.01, -0.01, 0.73, 0.8155, 0.801, 0.801, 0.733, 0.801, 0.801, 0.6195, 0.6195, 0.8845, 0.6195, 0.6195, 0.802, 0.8015, 0.802, 0.811, 0.7545, 0.811, 0.811, 0.804, 0.804, 0.866, 0.8155, 0.804, 0.804, 0.801, 0.7425, 0.723, 0.6895, 0.801, 0.5575, 0.5365, 0.9365, 0.661, 0.768, 0.5365, 0.8235, 0.831, 0.8295, 0.7275, 0.72, 0.79, 0.8305, 0.8275, 0.9035, 0.818, 0.819, 0.804, 0.733, 0.733, 0.733, 0.7355, 0.733, 0.591, 0.591, 0.9405, 0.591, 0.5885, 0.591, 0.858, 0.8675, 0.858, 0.73, 0.701, 0.8155, 0.8155, 0.8655, 0.8155, 0.835], "7a6dob4a": [0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.20999999344348907, 0.2029999941587448, 0.15950000286102295, 0.1770000010728836, 0.17550000548362732, 0.17399999499320984, 0.2280000001192093, 0.22349999845027924, 0.1745000034570694, 0.17499999701976776, 0.1655000001192093, 0.1809999942779541, 0.2195000052452087, 0.2175000011920929, 0.1835000067949295, 0.17900000512599945, 0.1899999976158142, 0.1875, 0.1955000013113022, 0.19850000739097595, 0.1720000058412552, 0.17000000178813934, 0.16699999570846558, 0.17649999260902405, 0.2175000011920929, 0.2195000052452087, 0.16099999845027924, 0.1809999942779541, 0.17249999940395355, 0.17499999701976776, 0.2485000044107437, 0.2434999942779541, 0.15850000083446503, 0.1720000058412552, 0.17350000143051147, 0.1825000047683716, 0.2179999947547913, 0.2175000011920929, 0.1899999976158142, 0.18549999594688416, 0.19449999928474423, 0.18050000071525577, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2434999942779541, 0.2434999942779541, 0.20350000262260437, 0.1815000027418137, 0.22100000083446503, 0.2195000052452087, 0.21050000190734863, 0.20649999380111697, 0.18649999797344208, 0.1794999986886978, 0.1850000023841858, 0.1835000067949295, 0.24899999797344208, 0.24650000035762787, 0.1665000021457672, 0.16850000619888306, 0.17149999737739563, -0.01, 0.20000000298023224, 0.20100000500679016, 0.16850000619888306, 0.18050000071525577, 0.1899999976158142, 0.1784999966621399, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2134999930858612, 0.21699999272823337, 0.2080000042915344, 0.1815000027418137, 0.22100000083446503, 0.2185000032186508, 0.19699999690055847, 0.1955000013113022, 0.2045000046491623, 0.1860000044107437, 0.2055000066757202, 0.19699999690055847, 0.23600000143051147, 0.23899999260902405, 0.1694999933242798, 0.1665000021457672, 0.1809999942779541, 0.1860000044107437, 0.2524999976158142, 0.25200000405311584, 0.1794999986886978, 0.181999996304512, 0.1965000033378601, 0.20100000500679016, 0.25049999356269836, 0.24699999392032623, 0.18400000035762787, 0.17599999904632568, 0.1955000013113022, 0.19050000607967377, 0.24650000035762787, 0.244499996304512, 0.20149999856948853, 0.193000003695488, 0.20499999821186063, 0.21150000393390656, 0.2524999976158142, 0.2524999976158142, 0.20499999821186063, 0.1815000027418137, 0.2290000021457672, 0.2319999933242798, 0.2434999942779541, 0.24250000715255737, 0.2055000066757202, 0.18050000071525577, 0.20200000703334808, 0.2055000066757202, 0.2535000145435333, 0.2535000145435333, 0.18299999833106995, 0.15700000524520874, 0.20100000500679016, 0.19900000095367432, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.21150000393390656, 0.21299999952316284, 0.17350000143051147, 0.181999996304512, 0.18850000202655792, 0.18549999594688416, 0.21050000190734863, 0.2045000046491623, 0.18299999833106995, 0.1599999964237213, 0.1745000034570694, 0.1784999966621399, 0.20999999344348907, 0.21400000154972076, 0.19099999964237213, 0.1835000067949295, 0.1809999942779541, 0.18549999594688416, 0.20149999856948853, 0.1940000057220459, 0.18000000715255737, 0.1704999953508377, 0.20200000703334808, 0.2029999941587448, 0.2185000032186508, 0.2224999964237213, 0.1679999977350235, 0.181999996304512, 0.1679999977350235, 0.17299999296665192, 0.24799999594688416, 0.2450000047683716, 0.15199999511241913, 0.1675000041723251, 0.1825000047683716, 0.1825000047683716, 0.1710000038146973, 0.17299999296665192, 0.1665000021457672, 0.16899999976158142, 0.18299999833106995, 0.1745000034570694, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2524999976158142, 0.2524999976158142, 0.244499996304512, 0.2419999986886978, 0.25200000405311584, 0.2515000104904175, 0.17350000143051147, 0.17499999701976776, 0.19200000166893005, 0.1899999976158142, 0.1924999952316284, 0.19699999690055847, 0.1599999964237213, 0.2460000067949295, 0.2080000042915344, 0.1770000010728836, 0.1550000011920929, 0.15649999678134918, 0.164000004529953, 0.1679999977350235, 0.1860000044107437, 0.16500000655651093, 0.1809999942779541, 0.18050000071525577, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2475000023841858, 0.2475000023841858, 0.25, 0.24650000035762787, -0.01, 0.2529999911785126, 0.17499999701976776, 0.1694999933242798, 0.21199999749660492, 0.20999999344348907, 0.20600000023841855, 0.20200000703334808, 0.09149999916553496, 0.15449999272823334, 0.12999999523162842, 0.17599999904632568, 0.164000004529953, 0.15549999475479126, 0.24950000643730164, 0.2485000044107437, 0.2039999961853027, 0.1794999986886978, 0.193000003695488, 0.1955000013113022, 0.2535000145435333, 0.2524999976158142, 0.19750000536441803, 0.1875, 0.20149999856948853, 0.20149999856948853, 0.2529999911785126, 0.2535000145435333, 0.17550000548362732, 0.17499999701976776, 0.19850000739097595, -0.01, 0.2535000145435333, 0.2535000145435333, 0.2540000081062317, 0.2524999976158142, 0.2535000145435333, 0.2535000145435333, 0.24250000715255737, 0.2419999986886978, 0.20499999821186063, 0.19699999690055847, 0.21050000190734863, 0.21549999713897705, 0.2535000145435333, 0.2535000145435333, -0.01, 0.1784999966621399, 0.20499999821186063, 0.19949999451637268, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, -0.01, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.2535000145435333, 0.21250000596046448, 0.2070000022649765, 0.1679999977350235, 0.16850000619888306, 0.17299999296665192, 0.16850000619888306, 0.22750000655651093, 0.2214999943971634, 0.17649999260902405, 0.16500000655651093, 0.17749999463558197, 0.1784999966621399, -0.01, 0.20900000631809235, 0.1850000023841858, 0.1809999942779541, 0.17000000178813934, 0.1784999966621399, 0.20250000059604645, 0.2039999961853027, 0.18850000202655792, 0.17149999737739563, 0.20149999856948853, 0.19699999690055847, 0.2094999998807907, 0.2084999978542328, 0.17749999463558197, 0.17900000512599945, 0.1655000001192093, 0.17399999499320984, 0.2475000023841858, 0.23649999499320984, -0.01, 0.18000000715255737, 0.17149999737739563, 0.1784999966621399, 0.20649999380111697, 0.1965000033378601, 0.17900000512599945, 0.18050000071525577, 0.1770000010728836, 0.1704999953508377, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.25, 0.25, 0.25099998712539673, 0.24300000071525577, 0.25200000405311584, 0.2524999976158142, 0.2080000042915344, 0.2004999965429306, 0.1850000023841858, 0.1710000038146973, 0.18950000405311584, 0.19850000739097595, 0.24799999594688416, 0.2460000067949295, 0.17399999499320984, 0.1655000001192093, 0.17350000143051147, 0.16899999976158142, 0.2080000042915344, 0.2070000022649765, 0.1835000067949295, 0.17149999737739563, 0.18950000405311584, 0.1815000027418137, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.24650000035762787, 0.24549999833106995, 0.24699999392032623, 0.24549999833106995, 0.25099998712539673, 0.25200000405311584, 0.19699999690055847, 0.1965000033378601, 0.20649999380111697, 0.1940000057220459, 0.20600000023841855, 0.20200000703334808, 0.24050000309944153, 0.24250000715255737, 0.1704999953508377, 0.17550000548362732, 0.17900000512599945, 0.17900000512599945, 0.25, 0.24799999594688416, 0.19200000166893005, 0.1675000041723251, 0.2039999961853027, 0.20250000059604645, 0.2434999942779541, 0.24300000071525577, 0.19949999451637268, 0.1825000047683716, 0.20000000298023224, 0.210999995470047, 0.2440000027418137, 0.24300000071525577, 0.20999999344348907, 0.181999996304512, 0.19499999284744263, 0.2004999965429306, 0.2535000145435333, 0.2535000145435333, 0.2529999911785126, 0.2524999976158142, 0.2535000145435333, 0.2535000145435333, 0.2440000027418137, 0.24300000071525577, 0.19949999451637268, 0.1889999955892563, 0.20350000262260437, 0.21050000190734863, 0.2535000145435333, 0.2535000145435333, 0.16500000655651093, 0.17149999737739563, 0.20649999380111697, 0.20600000023841855], "t0kyb9nc": [0.16249999403953552, 0.1889999955892563, 0.15299999713897705, 0.20999999344348907, 0.1414999961853027, 0.13699999451637268, 0.17249999940395355, 0.18050000071525577, 0.14000000059604645, 0.2004999965429306, 0.15199999511241913, 0.1420000046491623, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1679999977350235, 0.1710000038146973, 0.13899999856948853, 0.19949999451637268, 0.13650000095367432, 0.14399999380111694, 0.1710000038146973, 0.17800000309944153, 0.14800000190734863, 0.1889999955892563, 0.14550000429153442, 0.14800000190734863, 0.1809999942779541, 0.1825000047683716, 0.1509999930858612, 0.20649999380111697, 0.13600000739097595, 0.15600000321865082, 0.16899999976158142, 0.18549999594688416, 0.1589999943971634, 0.21400000154972076, 0.15000000596046448, 0.1615000069141388, 0.16500000655651093, 0.15549999475479126, 0.14749999344348907, 0.13950000703334808, 0.1404999941587448, 0.13449999690055847, 0.18649999797344208, 0.1889999955892563, 0.16449999809265137, 0.21449999511241913, 0.15000000596046448, 0.15199999511241913, 0.17000000178813934, 0.16300000250339508, 0.1340000033378601, 0.2070000022649765, 0.13349999487400055, 0.1445000022649765, 0.15800000727176666, 0.15399999916553497, 0.1289999932050705, 0.19750000536441803, -0.01, 0.1509999930858612, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1809999942779541, 0.1914999932050705, 0.1420000046491623, 0.21199999749660492, 0.16500000655651093, 0.15549999475479126, 0.16599999368190765, 0.164000004529953, 0.16200000047683716, 0.2074999958276749, 0.1525000035762787, 0.15449999272823334, 0.1589999943971634, 0.15549999475479126, 0.18850000202655792, 0.19200000166893005, 0.15199999511241913, 0.15399999916553497, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.16249999403953552, 0.16449999809265137, 0.11900000274181366, 0.19949999451637268, 0.14900000393390656, 0.16300000250339508, 0.1615000069141388, 0.15850000083446503, 0.1289999932050705, 0.20250000059604645, 0.15649999678134918, 0.15600000321865082, 0.15549999475479126, 0.14900000393390656, 0.15850000083446503, 0.19750000536441803, 0.14249999821186066, 0.13500000536441803, 0.17299999296665192, 0.1675000041723251, 0.13500000536441803, 0.21150000393390656, 0.14100000262260437, 0.14100000262260437, 0.1770000010728836, 0.18449999392032623, 0.15649999678134918, 0.19499999284744263, 0.1379999965429306, 0.1445000022649765, 0.1615000069141388, 0.15299999713897705, 0.15649999678134918, 0.2195000052452087, 0.148499995470047, 0.15150000154972076, 0.16200000047683716, 0.16349999606609344, 0.13950000703334808, 0.2094999998807907, 0.1449999958276749, 0.1420000046491623, 0.18449999392032623, 0.18549999594688416, 0.1889999955892563, 0.17299999296665192, 0.18950000405311584, 0.18950000405311584, 0.1704999953508377, 0.16899999976158142, 0.17149999737739563, 0.18549999594688416, 0.1955000013113022, 0.17149999737739563, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1979999989271164, 0.2185000032186508, 0.1825000047683716, 0.1860000044107437, 0.1784999966621399, 0.1889999955892563, 0.1745000034570694, 0.1679999977350235, 0.1679999977350235, 0.19050000607967377, 0.15000000596046448, 0.15049999952316284, 0.16050000488758087, 0.17149999737739563, 0.15299999713897705, 0.2094999998807907, 0.15000000596046448, 0.15000000596046448, 0.16599999368190765, 0.17350000143051147, 0.13349999487400055, -0.01, 0.13950000703334808, 0.13449999690055847, 0.15000000596046448, 0.15449999272823334, 0.15399999916553497, 0.1274999976158142, 0.1449999958276749, 0.13249999284744263, 0.1875, 0.18799999356269836, 0.17649999260902405, 0.1924999952316284, 0.1655000001192093, 0.1679999977350235, 0.16099999845027924, 0.1694999933242798, 0.1675000041723251, 0.20600000023841855, 0.14749999344348907, 0.1574999988079071, 0.14949999749660492, 0.16050000488758087, 0.16300000250339508, 0.18649999797344208, 0.16050000488758087, 0.15649999678134918, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1979999989271164, 0.18000000715255737, 0.19050000607967377, 0.18950000405311584, 0.17900000512599945, 0.18799999356269836, 0.15649999678134918, 0.14650000631809235, 0.1704999953508377, 0.1675000041723251, 0.15549999475479126, 0.1679999977350235, 0.15199999511241913, 0.1509999930858612, 0.1185000017285347, 0.1889999955892563, 0.14550000429153442, 0.15299999713897705, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1914999932050705, 0.1934999972581863, 0.14350000023841858, 0.1875, 0.1745000034570694, 0.16500000655651093, 0.1509999930858612, 0.164000004529953, 0.16599999368190765, 0.15850000083446503, 0.16050000488758087, 0.15600000321865082, 0.16500000655651093, 0.15649999678134918, 0.13249999284744263, 0.193000003695488, 0.14749999344348907, 0.15549999475479126, 0.18050000071525577, 0.17649999260902405, 0.1289999932050705, 0.2074999958276749, 0.14350000023841858, 0.15700000524520874, 0.17000000178813934, 0.1794999986886978, 0.1404999941587448, -0.01, 0.15800000727176666, 0.1445000022649765, 0.1899999976158142, 0.18050000071525577, 0.16349999606609344, 0.1860000044107437, -0.01, 0.1770000010728836, 0.17550000548362732, 0.17249999940395355, 0.14100000262260437, 0.17749999463558197, 0.14550000429153442, 0.13650000095367432, 0.17149999737739563, 0.17299999296665192, 0.18000000715255737, 0.17599999904632568, -0.01, 0.17599999904632568, 0.17299999296665192, 0.17350000143051147, 0.1430000066757202, 0.19900000095367432, 0.16099999845027924, 0.16200000047683716, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.1965000033378601, 0.19750000536441803, 0.17649999260902405, 0.1509999930858612, -0.01, 0.17299999296665192, -0.01, -0.01, 0.1459999978542328, 0.1934999972581863, 0.15299999713897705, -0.01, 0.16500000655651093, 0.1675000041723251, 0.14550000429153442, 0.2029999941587448, 0.15549999475479126, 0.15049999952316284, 0.17299999296665192, 0.1655000001192093, 0.15950000286102295, 0.1889999955892563, 0.14949999749660492, 0.16300000250339508, 0.15700000524520874, 0.1525000035762787, 0.14550000429153442, 0.14000000059604645, 0.15049999952316284, 0.15649999678134918, 0.17649999260902405, 0.1899999976158142, 0.1599999964237213, 0.1914999932050705, 0.16899999976158142, 0.17249999940395355, 0.1694999933242798, 0.17299999296665192, 0.15600000321865082, 0.21649999916553497, 0.15000000596046448, 0.1525000035762787, 0.15549999475479126, 0.16050000488758087, -0.01, 0.19200000166893005, 0.1675000041723251, 0.16050000488758087, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20999999344348907, 0.18299999833106995, 0.148499995470047, 0.1850000023841858, 0.19200000166893005, 0.18850000202655792, 0.14949999749660492, 0.15600000321865082, 0.1599999964237213, 0.1720000058412552, 0.16249999403953552, 0.15800000727176666, 0.1599999964237213, 0.15549999475479126, 0.15449999272823334, 0.18649999797344208, 0.1574999988079071, 0.1525000035762787, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.18000000715255737, 0.18549999594688416, 0.18000000715255737, 0.15549999475479126, 0.16050000488758087, 0.16850000619888306, -0.01, 0.1615000069141388, 0.1509999930858612, 0.16699999570846558, 0.1445000022649765, 0.1469999998807907, 0.16899999976158142, 0.17149999737739563, 0.13699999451637268, 0.1860000044107437, 0.1469999998807907, 0.1469999998807907, 0.15649999678134918, 0.1675000041723251, 0.1550000011920929, 0.20149999856948853, 0.15649999678134918, 0.15000000596046448, 0.16500000655651093, 0.16699999570846558, 0.13699999451637268, 0.1979999989271164, 0.1535000056028366, 0.1445000022649765, 0.19050000607967377, 0.193000003695488, 0.1675000041723251, 0.181999996304512, 0.16599999368190765, 0.17599999904632568, 0.15449999272823334, 0.14650000631809235, 0.12950000166893005, 0.17399999499320984, 0.1420000046491623, 0.1330000013113022], "dtijolpo": [0.25600001215934753, 0.25600001215934753, 0.25600001215934753, 0.25600001215934753, -0.01, -0.01, 0.25600001215934753, 0.25600001215934753, 0.25600001215934753, 0.25600001215934753, 0.2055000066757202, 0.20149999856948853, 0.22599999606609344, 0.226500004529953, 0.23250000178813937, 0.22050000727176663, 0.181999996304512, 0.2039999961853027, 0.21199999749660492, 0.21150000393390656, 0.20900000631809235, 0.2074999958276749, -0.01, -0.01, -0.01, -0.01, 0.2395000010728836, 0.2319999933242798, 0.19750000536441803, 0.1835000067949295, 0.1934999972581863, 0.17900000512599945, -0.01, -0.01, -0.01, -0.01, 0.22699999809265137, 0.21699999272823337, 0.19750000536441803, 0.16850000619888306, 0.2450000047683716, 0.24650000035762787, 0.2460000067949295, 0.2460000067949295, 0.23649999499320984, 0.23250000178813937, 0.2554999887943268, 0.244499996304512, 0.23549999296665192, 0.23800000548362732, 0.25600001215934753, 0.2554999887943268, 0.2554999887943268, 0.2554999887943268, -0.01, -0.01, 0.25600001215934753, 0.25600001215934753, 0.25600001215934753, 0.25600001215934753, 0.18850000202655792, 0.18950000405311584, 0.2195000052452087, 0.21649999916553497, 0.22599999606609344, 0.2175000011920929, 0.19200000166893005, 0.20200000703334808, 0.20600000023841855, 0.1965000033378601, 0.20149999856948853, 0.18850000202655792, -0.01, -0.01, -0.01, -0.01, 0.24549999833106995, 0.244499996304512, 0.18050000071525577, 0.18449999392032623, 0.193000003695488, 0.19699999690055847, -0.01, -0.01, -0.01, -0.01, 0.24899999797344208, 0.2450000047683716, 0.17149999737739563, 0.1720000058412552, 0.2395000010728836, 0.2434999942779541, 0.2475000023841858, 0.24650000035762787, 0.24950000643730164, 0.25450000166893005, 0.25049999356269836, 0.2554999887943268, 0.2335000038146973, 0.23800000548362732, 0.25600001215934753, 0.2529999911785126, 0.2540000081062317, 0.2524999976158142, -0.01, -0.01, 0.25600001215934753, 0.2554999887943268, 0.25600001215934753, 0.25600001215934753, 0.18950000405311584, 0.2074999958276749, 0.2179999947547913, 0.22849999368190765, 0.23149999976158145, 0.2070000022649765, 0.20250000059604645, 0.18400000035762787, 0.2045000046491623, 0.19599999487400055, 0.20250000059604645, 0.1934999972581863, -0.01, -0.01, -0.01, -0.01, 0.2440000027418137, 0.2395000010728836, 0.19200000166893005, 0.20499999821186063, 0.19750000536441803, 0.1924999952316284, -0.01, -0.01, -0.01, -0.01, 0.244499996304512, 0.2440000027418137, 0.1835000067949295, 0.16349999606609344, 0.24050000309944153, 0.24699999392032623, 0.2345000058412552, 0.24699999392032623, 0.23849999904632568, 0.2395000010728836, 0.2529999911785126, 0.2515000104904175, 0.226500004529953, -0.01], "6wmjqpgy": [0.094, 0.085, -0.01, 0.073, 0.2395, 0.2385, 0.2275, 0.238, 0.238, 0.1175, 0.2385, 0.237, 0.2355, -0.01, -0.01, 0.026, 0.238, 0.239, 0.2375, -0.01, -0.01, 0.123, 0.226, 0.238, 0.2375, 0.237, 0.2385, -0.01, 0.237, 0.2395, -0.01, -0.01, -0.01, -0.01, 0.2385, 0.238, 0.2275, 0.2395, 0.2385, 0.143, 0.238, 0.2365, 0.236, -0.01, -0.01, 0.002, 0.2305, 0.2375, 0.238, -0.01, -0.01, 0.0045, 0.1945, 0.2385, 0.2375, 0.238, 0.2365, -0.01, 0.2385, 0.2385, -0.01, 0.002, -0.01, -0.01, 0.2385, 0.2375, 0.231, 0.2295, 0.238, -0.01, 0.228, 0.224, 0.2375, -0.01, -0.01, 0.002, 0.2375, 0.239, 0.2405, -0.01, -0.01, 0.0045, 0.2245, 0.2375, 0.2395, 0.239, 0.2405, -0.01, 0.2395, 0.2395], "2r7es2cd": [0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.3190000057220459, 0.3140000104904175, 0.2549999952316284, 0.2199999988079071, 0.2529999911785126, 0.24650000035762787, 0.3334999978542328, 0.3264999985694885, 0.2529999911785126, 0.2214999943971634, 0.24899999797344208, 0.24699999392032623, 0.30399999022483826, 0.28349998593330383, 0.26249998807907104, 0.23800000548362732, 0.24799999594688416, 0.23749999701976776, 0.2980000078678131, 0.2919999957084656, 0.24699999392032623, 0.22499999403953552, 0.2605000138282776, 0.257999986410141, 0.3269999921321869, 0.3264999985694885, 0.2370000034570694, 0.22599999606609344, 0.24950000643730164, 0.2434999942779541, 0.34200000762939453, 0.34049999713897705, 0.23849999904632568, 0.2370000034570694, 0.25850000977516174, 0.24050000309944153, 0.3264999985694885, 0.3230000138282776, 0.265500009059906, 0.23499999940395355, 0.26249998807907104, 0.25699999928474426, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33399999141693115, 0.3330000042915344, 0.3174999952316284, 0.25200000405311584, 0.3149999976158142, 0.3154999911785126, 0.320499986410141, 0.3240000009536743, 0.2865000069141388, 0.257999986410141, 0.2815000116825104, 0.2824999988079071, 0.3384999930858612, 0.3375000059604645, 0.23600000143051147, 0.2160000056028366, 0.25999999046325684, 0.25850000977516174, 0.3244999945163727, 0.31450000405311584, 0.29600000381469727, 0.25949999690055847, 0.2800000011920929, 0.28299999237060547, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31049999594688416, 0.31700000166893005, 0.3215000033378601, 0.2685000002384186, 0.31850001215934753, 0.3199999928474426, 0.29600000381469727, 0.3050000071525574, 0.3125, -0.01, 0.304500013589859, 0.2994999885559082, -0.01, 0.33550000190734863, 0.2460000067949295, 0.26100000739097595, 0.2784999907016754, 0.26600000262260437, 0.34200000762939453, 0.34200000762939453, 0.29600000381469727, 0.24799999594688416, 0.2994999885559082, 0.2930000126361847, 0.3425000011920929, 0.3425000011920929, 0.29499998688697815, 0.2529999911785126, 0.3095000088214874, 0.3050000071525574, 0.34049999713897705, 0.34049999713897705, 0.29899999499320984, 0.2485000044107437, 0.30649998784065247, 0.3059999942779541, 0.34200000762939453, 0.34200000762939453, 0.31450000405311584, 0.2524999976158142, 0.3294999897480011, 0.3294999897480011, 0.34200000762939453, 0.34200000762939453, 0.3174999952316284, 0.2630000114440918, 0.3059999942779541, 0.30399999022483826, 0.34200000762939453, 0.34200000762939453, 0.26350000500679016, 0.22050000727176663, 0.2854999899864197, 0.28349998593330383, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, -0.01, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.3179999887943268, 0.31200000643730164, 0.23999999463558197, 0.22450000047683716, 0.26350000500679016, 0.2549999952316284, 0.3330000042915344, 0.3190000057220459, 0.25, 0.22849999368190765, 0.25699999928474426, 0.24899999797344208, 0.31200000643730164, 0.29249998927116394, 0.2590000033378601, 0.2345000058412552, 0.25200000405311584, 0.25099998712539673, 0.29600000381469727, 0.2854999899864197, 0.25, 0.21699999272823337, 0.2720000147819519, 0.2644999921321869, 0.32499998807907104, 0.32100000977516174, 0.2450000047683716, 0.22599999606609344, 0.27000001072883606, 0.2515000104904175, 0.3409999907016754, 0.34049999713897705, 0.22699999809265137, 0.2294999957084656, 0.2535000145435333, 0.24699999392032623, 0.3269999921321869, 0.32600000500679016, 0.27649998664855957, 0.2574999928474426, 0.2535000145435333, 0.2409999966621399, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33500000834465027, 0.3345000147819519, 0.32100000977516174, 0.2615000009536743, 0.320499986410141, 0.32100000977516174, 0.31349998712539673, 0.3165000081062317, 0.30799999833106995, 0.2840000092983246, 0.3059999942779541, 0.30300000309944153, 0.2759999930858612, -0.01, 0.22699999809265137, 0.23899999260902405, 0.2450000047683716, 0.23250000178813937, 0.29649999737739563, 0.29249998927116394, 0.28949999809265137, -0.01, 0.27799999713897705, 0.257999986410141, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31450000405311584, 0.320499986410141, 0.3334999978542328, 0.273499995470047, 0.3244999945163727, 0.3264999985694885, 0.2994999885559082, 0.29649999737739563, 0.32199999690055847, 0.28700000047683716, 0.3230000138282776, 0.320499986410141, 0.2775000035762787, 0.2775000035762787, 0.25099998712539673, 0.2395000010728836, 0.27649998664855957, 0.257999986410141, 0.34200000762939453, 0.34200000762939453, -0.01, 0.2590000033378601, 0.30550000071525574, 0.289000004529953, 0.34200000762939453, 0.34200000762939453, 0.2874999940395355, 0.2450000047683716, 0.30799999833106995, 0.30250000953674316, 0.34200000762939453, 0.34200000762939453, 0.2955000102519989, 0.244499996304512, 0.30300000309944153, 0.2980000078678131, 0.34200000762939453, 0.34200000762939453, 0.3244999945163727, -0.01, 0.33649998903274536, 0.3370000123977661, 0.3409999907016754, 0.34150001406669617, 0.32350000739097595, 0.28949999809265137, 0.328000009059906, 0.3319999873638153, 0.34200000762939453, 0.34200000762939453, 0.2680000066757202, -0.01, 0.2849999964237213, 0.27549999952316284, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.34200000762939453, 0.32199999690055847, 0.31450000405311584, 0.2329999953508377, 0.2195000052452087, 0.2590000033378601, 0.25450000166893005, 0.32899999618530273, 0.32249999046325684, 0.24950000643730164, 0.22450000047683716, 0.24799999594688416, 0.24899999797344208, 0.3109999895095825, 0.2944999933242798, 0.26750001311302185, 0.2319999933242798, 0.244499996304512, 0.24950000643730164, 0.2985000014305115, 0.29350000619888306, 0.2475000023841858, 0.2160000056028366, 0.2590000033378601, 0.25450000166893005, 0.3319999873638153, 0.32749998569488525, 0.2549999952316284, 0.22450000047683716, 0.2409999966621399, 0.25099998712539673, 0.34200000762939453, 0.3409999907016754, 0.23549999296665192, 0.226500004529953, 0.23899999260902405, 0.2409999966621399, 0.32249999046325684, 0.3240000009536743, -0.01, 0.2280000001192093, 0.2549999952316284, 0.2565000057220459, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.33399999141693115, 0.3345000147819519, 0.32499998807907104, 0.2639999985694885, 0.32350000739097595, 0.3244999945163727, 0.31450000405311584, 0.3075000047683716, 0.28700000047683716, 0.2630000114440918, 0.27000001072883606, 0.26899999380111694, 0.3384999930858612, 0.33799999952316284, 0.2460000067949295, 0.2134999930858612, 0.25200000405311584, 0.2460000067949295, 0.31049999594688416, 0.31200000643730164, 0.28450000286102295, 0.25200000405311584, 0.2849999964237213, 0.2694999873638153, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2759999930858612, 0.2540000081062317, 0.33149999380111694, 0.3305000066757202, 0.32749998569488525, 0.26499998569488525, 0.32350000739097595, 0.2939999997615814, 0.2930000126361847, 0.3109999895095825, 0.30000001192092896, 0.2955000102519989, 0.335999995470047, 0.335999995470047, 0.23800000548362732, 0.2770000100135803, 0.2720000147819519, 0.34200000762939453, 0.34200000762939453, 0.29350000619888306, 0.2515000104904175, 0.29899999499320984, 0.29649999737739563, 0.34200000762939453, 0.34200000762939453, 0.2944999933242798, 0.2475000023841858, 0.2980000078678131, 0.29750001430511475, 0.34049999713897705, 0.34049999713897705, 0.304500013589859, 0.24799999594688416, 0.2985000014305115, 0.30000001192092896, 0.34200000762939453, 0.34200000762939453, 0.32350000739097595, 0.25850000977516174, 0.33649998903274536, 0.3375000059604645, 0.34049999713897705, 0.34049999713897705, 0.31700000166893005, 0.27950000762939453, 0.3084999918937683, 0.30799999833106995, 0.34200000762939453, 0.34200000762939453, 0.2565000057220459, 0.21250000596046448, 0.28349998593330383, 0.2815000116825104], "q0fadl6x": [0.21050000190734863, 0.21699999272823337, 0.1809999942779541, 0.27549999952316284, 0.17649999260902405, 0.2134999930858612, 0.2175000011920929, 0.21549999713897705, 0.17749999463558197, 0.28049999475479126, 0.193000003695488, 0.2039999961853027, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.20900000631809235, -0.01, 0.19949999451637268, 0.2824999988079071, 0.18400000035762787, 0.1710000038146973, 0.21299999952316284, 0.2070000022649765, -0.01, 0.26499998569488525, 0.19050000607967377, -0.01, 0.2319999933242798, 0.22849999368190765, 0.1914999932050705, 0.2750000059604645, 0.2199999988079071, -0.01, 0.24050000309944153, 0.2195000052452087, 0.17249999940395355, 0.29899999499320984, 0.18950000405311584, 0.1694999933242798, 0.2080000042915344, 0.2080000042915344, 0.181999996304512, -0.01, 0.19750000536441803, 0.19050000607967377, 0.25, 0.2524999976158142, 0.18799999356269836, 0.30000001192092896, 0.20600000023841855, 0.18950000405311584, 0.21050000190734863, 0.2134999930858612, 0.20499999821186063, 0.28450000286102295, 0.19949999451637268, 0.1875, 0.20250000059604645, 0.19850000739097595, 0.1615000069141388, 0.28200000524520874, 0.20149999856948853, 0.20649999380111697, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2319999933242798, -0.01, 0.1924999952316284, 0.2745000123977661, 0.2070000022649765, 0.21649999916553497, 0.18000000715255737, -0.01, 0.15850000083446503, -0.01, 0.18700000643730164, 0.21050000190734863, -0.01, 0.20600000023841855, 0.17900000512599945, 0.24899999797344208, 0.18700000643730164, 0.2055000066757202, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2074999958276749, 0.19750000536441803, 0.1354999989271164, 0.2840000092983246, 0.20350000262260437, 0.1889999955892563, 0.1794999986886978, 0.2004999965429306, 0.20100000500679016, 0.27900001406669617, 0.19499999284744263, 0.20350000262260437, 0.20000000298023224, 0.20999999344348907, 0.20600000023841855, 0.2680000066757202, 0.1875, 0.18549999594688416, 0.23399999737739563, 0.2224999964237213, 0.1815000027418137, 0.265500009059906, 0.1955000013113022, 0.20000000298023224, 0.2039999961853027, 0.20649999380111697, 0.2055000066757202, 0.2329999953508377, -0.01, 0.19850000739097595, 0.21150000393390656, 0.2080000042915344, 0.2084999978542328, 0.2879999876022339, 0.19949999451637268, 0.1875, 0.2029999941587448, 0.21199999749660492, 0.1914999932050705, 0.2775000035762787, 0.16300000250339508, 0.1850000023841858, 0.19499999284744263, 0.2160000056028366, 0.1899999976158142, 0.28200000524520874, 0.21050000190734863, 0.19900000095367432, 0.226500004529953, 0.22300000488758087, 0.17499999701976776, 0.2770000100135803, 0.2045000046491623, 0.193000003695488, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.22100000083446503, 0.2304999977350235, 0.17599999904632568, -0.01, 0.21199999749660492, 0.20149999856948853, -0.01, 0.22349999845027924, 0.1815000027418137, 0.2680000066757202, 0.19099999964237213, 0.1770000010728836, 0.2300000041723251, 0.2224999964237213, -0.01, 0.26249998807907104, 0.1720000058412552, 0.2185000032186508, 0.24050000309944153, 0.24250000715255737, 0.17749999463558197, 0.3084999918937683, 0.21150000393390656, 0.19850000739097595, 0.2004999965429306, 0.21150000393390656, 0.19949999451637268, -0.01, 0.1850000023841858, 0.17749999463558197, 0.22499999403953552, 0.22750000655651093, 0.2004999965429306, 0.2784999907016754, 0.1965000033378601, 0.20100000500679016, 0.23250000178813937, 0.2294999957084656, 0.2029999941587448, 0.2529999911785126, 0.21150000393390656, 0.22050000727176663, 0.22200000286102295, 0.21649999916553497, 0.14000000059604645, 0.24650000035762787, 0.2134999930858612, 0.2179999947547913, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2335000038146973, 0.2280000001192093, 0.18449999392032623, 0.2605000138282776, 0.2304999977350235, 0.20900000631809235, 0.19599999487400055, 0.18649999797344208, 0.16699999570846558, 0.25099998712539673, 0.23250000178813937, 0.20600000023841855, 0.193000003695488, 0.1899999976158142, 0.1720000058412552, 0.23849999904632568, 0.19900000095367432, 0.1979999989271164, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2240000069141388, 0.21400000154972076, 0.22050000727176663, 0.27799999713897705, 0.2195000052452087, 0.1835000067949295, -0.01, 0.2179999947547913, 0.19949999451637268, 0.27149999141693115, 0.2080000042915344, 0.21299999952316284, 0.2029999941587448, 0.19200000166893005, 0.17350000143051147, 0.2705000042915344, -0.01, 0.1955000013113022, 0.20149999856948853, -0.01, 0.17800000309944153, 0.2619999945163727, 0.1815000027418137, 0.18799999356269836, 0.2214999943971634, 0.2224999964237213, 0.18799999356269836, 0.23499999940395355, 0.19499999284744263, 0.20000000298023224, 0.22499999403953552, 0.2304999977350235, 0.18549999594688416, 0.2784999907016754, 0.1809999942779541, 0.1875, 0.22550000250339508, 0.22200000286102295, 0.21299999952316284, 0.2824999988079071, 0.17900000512599945, 0.1934999972581863, 0.21549999713897705, 0.21699999272823337, 0.1979999989271164, 0.27950000762939453, 0.2084999978542328, 0.2004999965429306, 0.23100000619888303, 0.2440000027418137, 0.20600000023841855, 0.27549999952316284, 0.2055000066757202, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2094999998807907, 0.2080000042915344, 0.19050000607967377, -0.01, 0.1889999955892563, 0.1825000047683716, 0.22100000083446503, 0.21549999713897705, 0.1875, 0.265500009059906, 0.1745000034570694, 0.19200000166893005, 0.24050000309944153, 0.24799999594688416, 0.1955000013113022, 0.2750000059604645, 0.19099999964237213, 0.181999996304512, 0.2450000047683716, 0.24050000309944153, 0.1924999952316284, 0.29750001430511475, 0.2045000046491623, 0.19099999964237213, 0.21199999749660492, 0.18649999797344208, 0.1940000057220459, 0.18299999833106995, 0.1889999955892563, 0.1979999989271164, 0.2175000011920929, 0.21649999916553497, 0.19449999928474423, 0.2815000116825104, 0.20100000500679016, 0.1835000067949295, 0.22849999368190765, 0.22100000083446503, 0.1875, -0.01, 0.17749999463558197, 0.17800000309944153, -0.01, 0.21449999511241913, -0.01, 0.2759999930858612, 0.2055000066757202, 0.1940000057220459, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.2345000058412552, 0.23999999463558197, 0.19850000739097595, 0.20350000262260437, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.27649998664855957, 0.1815000027418137, 0.1889999955892563, -0.01, 0.21150000393390656, 0.1835000067949295, 0.1924999952316284, 0.15700000524520874, 0.25600001215934753, 0.1875, 0.18299999833106995, 0.19750000536441803, 0.20350000262260437, 0.21699999272823337, 0.23800000548362732, 0.1914999932050705, 0.21699999272823337, 0.2214999943971634, 0.18000000715255737, 0.2070000022649765, 0.1875, 0.18299999833106995, 0.18299999833106995, 0.20149999856948853, 0.2694999873638153, 0.2039999961853027, 0.21699999272823337, 0.20499999821186063, 0.20149999856948853, 0.2070000022649765, 0.26249998807907104, 0.19850000739097595, 0.17599999904632568, 0.22349999845027924, 0.21449999511241913, 0.1934999972581863, 0.25600001215934753, 0.17900000512599945, 0.1694999933242798, 0.1955000013113022, 0.19750000536441803, 0.20600000023841855, 0.22050000727176663, 0.21400000154972076, 0.181999996304512, 0.22699999809265137, 0.23600000143051147, 0.19949999451637268, 0.2800000011920929, 0.18700000643730164, 0.20350000262260437, 0.19449999928474423, 0.18850000202655792, 0.2745000123977661, 0.18449999392032623, 0.193000003695488], "b47t3rbw": [0.34049999713897705, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, -0.01, -0.01, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, 0.31200000643730164, 0.30399999022483826, 0.33250001072883606, 0.3334999978542328, 0.31949999928474426, 0.3084999918937683, 0.2980000078678131, 0.28049999475479126, 0.3179999887943268, 0.3140000104904175, 0.2994999885559082, 0.2919999957084656, -0.01, -0.01, -0.01, -0.01, 0.3255000114440918, 0.3230000138282776, 0.27399998903274536, 0.28049999475479126, 0.289000004529953, 0.2775000035762787, -0.01, -0.01, -0.01, -0.01, 0.3140000104904175, 0.3095000088214874, 0.2590000033378601, 0.2669999897480011, 0.3384999930858612, 0.3375000059604645, 0.3375000059604645, 0.3400000035762787, 0.3370000123977661, 0.335999995470047, 0.3409999907016754, 0.34049999713897705, 0.3370000123977661, 0.33899998664855957, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, -0.01, -0.01, 0.3409999907016754, 0.3409999907016754, 0.34049999713897705, 0.34049999713897705, 0.30300000309944153, 0.29249998927116394, 0.33000001311302185, 0.32350000739097595, 0.31200000643730164, 0.296999990940094, 0.28700000047683716, 0.2619999945163727, 0.3009999990463257, 0.30799999833106995, 0.2865000069141388, 0.2824999988079071, -0.01, -0.01, -0.01, -0.01, 0.32600000500679016, 0.32899999618530273, 0.2720000147819519, 0.2694999873638153, 0.2874999940395355, 0.3005000054836273, -0.01, -0.01, -0.01, -0.01, 0.31450000405311584, 0.3075000047683716, 0.27950000762939453, 0.2750000059604645, 0.3400000035762787, 0.34049999713897705, 0.33649998903274536, 0.33649998903274536, 0.3400000035762787, 0.3384999930858612, 0.34049999713897705, 0.3400000035762787, 0.33799999952316284, 0.33000001311302185, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, -0.01, -0.01, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, 0.34049999713897705, 0.3149999976158142, 0.30300000309944153, 0.32749998569488525, 0.32899999618530273, 0.29899999499320984, 0.2915000021457672, 0.2775000035762787, 0.2709999978542328, 0.3179999887943268, 0.3100000023841858, 0.2919999957084656, 0.2939999997615814, -0.01, -0.01, -0.01, -0.01, 0.3264999985694885, 0.335999995470047, 0.27000001072883606, 0.27000001072883606, 0.2939999997615814, 0.2784999907016754, -0.01, -0.01, -0.01, -0.01, -0.01, 0.31949999928474426, 0.24799999594688416, 0.24250000715255737, 0.3400000035762787, 0.33899998664855957, 0.33500000834465027, 0.33899998664855957, 0.33399999141693115, 0.33550000190734863, 0.34049999713897705, 0.34049999713897705, 0.3334999978542328, 0.33799999952316284], "ogkykku8": [-0.01, 0.109, -0.01, 0.104, 0.3275, 0.328, 0.277, 0.319, 0.3285, 0.108, 0.2835, 0.309, 0.326, -0.01, -0.01, 0.0815, 0.323, 0.325, 0.31, -0.01, -0.01, 0.1235, 0.2885, 0.3235, 0.315, 0.31, 0.31, -0.01, 0.3225, 0.3265, 0.033, 0.06, -0.01, -0.01, 0.327, 0.329, 0.2445, 0.308, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3235, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, -0.01, 0.3235, 0.274, 0.3, 0.3175, 0.077, 0.2685, 0.328, 0.315, 0.0905, 0.1695, 0.3215, 0.315, 0.322, 0.2635, 0.3265, 0.3255, 0.3285, 0.256, 0.3085, 0.328, 0.0695, 0.2915, 0.272, 0.3205, 0.082, 0.3255, 0.325, 0.3125, 0.073, 0.2975, 0.323, 0.313, 0.3035, 0.3045, 0.313, 0.3225]} diff --git a/examples/atlas/sc_similarity_examples/configs/exclude_dataset.json b/examples/atlas/sc_similarity_examples/configs/exclude_dataset.json new file mode 100644 index 00000000..53eafe07 --- /dev/null +++ b/examples/atlas/sc_similarity_examples/configs/exclude_dataset.json @@ -0,0 +1 @@ +{"heart":["97a17473-e2b1-4f31-a544-44a60773e2dd","f75f2ff4-2884-4c2d-b375-70de37a34507"]} diff --git a/examples/atlas/sc_similarity_examples/data_processing/__init__.py b/examples/atlas/sc_similarity_examples/data_processing/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/examples/atlas/sc_similarity_examples/data_processing/merge_result_metadata.py b/examples/atlas/sc_similarity_examples/data_processing/merge_result_metadata.py new file mode 100644 index 00000000..106bba95 --- /dev/null +++ b/examples/atlas/sc_similarity_examples/data_processing/merge_result_metadata.py @@ -0,0 +1,18 @@ +tissues = ["blood", "brain", "heart", "intestine", "kidney", "lung", "pancreas"] +import pandas as pd + +from dance.settings import ATLASDIR, SIMILARITYDIR + +if __name__ == "__main__": + for tissue in tissues: + metadata_df = pd.read_csv(ATLASDIR / f"metadatas/{tissue}_metadata.csv") + sweep_result_df = pd.read_csv(ATLASDIR / f"sweep_results/{tissue.capitalize()}_ans.csv") + sweep_result_df = sweep_result_df.rename(columns={"Dataset_id": "dataset_id"}) + sweep_result_df["dataset_id"] = sweep_result_df["dataset_id"].str.split('(').str[0] + result_df = metadata_df.merge(sweep_result_df, how="outer", on="dataset_id") + # result_df.to_csv(SIMILARITYDIR / f"data/results/{tissue}_result.csv") + # for tissue in tissues: + # df=pd.read_csv(SIMILARITYDIR / f"data/results/{tissue}_result.csv") + with pd.ExcelWriter(SIMILARITYDIR / "data/Cell Type Annotation Atlas.xlsx", mode='a', + if_sheet_exists='replace') as writer: + result_df.to_excel(writer, sheet_name=tissue) diff --git a/examples/atlas/sc_similarity_examples/readme.md b/examples/atlas/sc_similarity_examples/readme.md new file mode 100644 index 00000000..07a6a3b8 --- /dev/null +++ b/examples/atlas/sc_similarity_examples/readme.md @@ -0,0 +1,8 @@ +\[scGPT->metadatas\]+\[get_result_web->sweep_results\]+\[data_processing/merge_result_metadata.py\]->\[data/cell_type_annotation_atlas.xlsx\] +\[data/cell_type_annotation_atlas.xlsx\]+\[similarity/analyze_atlas_accuracy.py\]->\[data/in_atlas_datas\] +\[similarity/example_usage_anndata.py\]+\[data/in_atlas_datas\]+\[data/cell_type_annotation_atlas.xlsx\]->\[data/dataset_similarity\] +\[data/dataset_similarity\]+\[similarity/process_tissue_similarity_matrices.py\]->\[data/new_sim\] + +#run_similarity_optimization.sh +\[data/new_sim\]+\[similarity/optimize_similarity_weights.py\]+\[cache/sweep_cache.json\]->\[data/similarity_weights_results\] +\[data/similarity_weights_results\]+\[similarity/visualize_atlas_performance.py\]+\[cache/sweep_cache.json\]->\[data/imgs\] diff --git a/examples/atlas/sc_similarity_examples/run_similarity_optimization.sh b/examples/atlas/sc_similarity_examples/run_similarity_optimization.sh new file mode 100644 index 00000000..8125db5f --- /dev/null +++ b/examples/atlas/sc_similarity_examples/run_similarity_optimization.sh @@ -0,0 +1,23 @@ +#!/bin/bash + +# Define array +array=("blood" "brain" "heart" "intestine" "kidney" "lung" "pancreas") +# Loop through array and run Python scripts +for tissue in "${array[@]}" +do + # python similarity/example_usage_anndata.py --tissue "$tissue" >> example_usage_anndata.log 2>&1 + python similarity/optimize_similarity_weights.py --tissue "$tissue" + python visualization/visualize_atlas_performance.py --tissue "$tissue" + python similarity/optimize_similarity_weights.py --tissue "$tissue" --in_query + python visualization/visualize_atlas_performance.py --tissue "$tissue" --in_query + python similarity/optimize_similarity_weights.py --tissue "$tissue" --reduce_error + python visualization/visualize_atlas_performance.py --tissue "$tissue" --reduce_error + python similarity/optimize_similarity_weights.py --tissue "$tissue" --in_query --reduce_error + python visualization/visualize_atlas_performance.py --tissue "$tissue" --in_query --reduce_error + echo "Started processing tissue: $tissue" +done + +# Wait for all background processes to complete +wait + +echo "All Python scripts have completed execution" diff --git a/examples/atlas/sc_similarity_examples/similarity/analyze_atlas_accuracy.py b/examples/atlas/sc_similarity_examples/similarity/analyze_atlas_accuracy.py new file mode 100644 index 00000000..be034f51 --- /dev/null +++ b/examples/atlas/sc_similarity_examples/similarity/analyze_atlas_accuracy.py @@ -0,0 +1,231 @@ +import argparse +import os +import re +import sys +from pathlib import Path + +import numpy as np +import pandas as pd +import yaml +from tqdm import tqdm + +from dance.settings import DANCEDIR, SIMILARITYDIR + +sys.path.append(str(DANCEDIR)) +import ast + +from get_result_web import get_sweep_url, spilt_web + +from dance import logger +from dance.settings import entity, project +from dance.utils import try_import + +file_root = str(Path(__file__).resolve().parent.parent) + + +def find_unique_matching_row(df, config_col, input_dict_list): + """Find a unique matching row in DataFrame based on specified criteria. + + Parameters + ---------- + df : pandas.DataFrame + DataFrame containing the data to search + config_col : str + Name of the DataFrame column containing dictionary list strings + input_dict_list : list of dict + Input dictionary list for matching + + Returns + ------- + pandas.Series + The matching row from the DataFrame + + Raises + ------ + ValueError + If the number of matching rows is not exactly one + + """ + + # Define a function for parsing strings and comparing + def is_match(config_str): + try: + # Safely parse string to Python object using ast.literal_eval + config = ast.literal_eval(config_str) + return config == input_dict_list + except (ValueError, SyntaxError): + # If parsing fails, no match + return False + + # Apply comparison function to get a boolean series + matches = df[config_col].apply(is_match) + + # Get all matching rows + matching_rows = df[matches] + + # Check number of matching rows + num_matches = len(matching_rows) + if num_matches == 1: + return matching_rows.iloc[0] + elif num_matches == 0: + raise ValueError("No matching rows found.") + else: + raise ValueError(f"Found {num_matches} matching rows, expected exactly one.") + + +wandb = try_import("wandb") + + +def is_matching_dict(yaml_str, target_dict): + """Compare YAML configuration with target dictionary. + + Parameters + ---------- + yaml_str : str + YAML configuration string to parse + target_dict : dict + Target dictionary to compare against + + Returns + ------- + bool + True if dictionaries match, False otherwise + + """ + # Parse YAML string + yaml_config = yaml.safe_load(yaml_str) + + # Build expected dictionary format + expected_dict = {} + for i, item in enumerate(yaml_config): + # Skip misc and graph.cell types, or SCNFeature targets + if item['type'] in ['misc', 'graph.cell'] or item['target'] == 'SCNFeature': + continue + key = f"pipeline.{i}.{item['type']}" + value = item['target'] + expected_dict[key] = value + + return expected_dict == target_dict + + +def get_ans(query_dataset, method): + """Get test accuracy results for a given dataset and method. + + Parameters + ---------- + query_dataset : str + Dataset identifier + method : str + Method name to analyze + + Returns + ------- + pandas.DataFrame or None + DataFrame containing test accuracy results, None if results don't exist + + """ + result_path = f"{file_root}/tuning/{method}/{query_dataset}/results/atlas/best_test_acc.csv" + if not os.path.exists(result_path): + logger.warning(f"{result_path} not exists") + return None + data = pd.read_csv(result_path) + sweep_url = get_sweep_url(data) + _, _, sweep_id = spilt_web(sweep_url) + sweep = wandb.Api().sweep(f"{entity}/{project}/{sweep_id}") + ans = pd.DataFrame(index=[method], columns=atlas_datasets) + for i, run_kwarg in enumerate(sweep.config["parameters"]["run_kwargs"]["values"]): + ans.loc[method, atlas_datasets[i]] = find_unique_matching_row(data, "run_kwargs", run_kwarg)["test_acc"] + # ans.append({atlas_datasets[i]:find_unique_matching_row(data,"run_kwargs",run_kwarg)["test_acc"]}) + return ans + + +def get_ans_from_cache(query_dataset, method): + """Get cached test accuracy results for atlas datasets. + + Parameters + ---------- + query_dataset : str + Query dataset identifier + method : str + Method name to analyze + + Returns + ------- + pandas.DataFrame + DataFrame containing test accuracy results from cache + + """ + # Get best method from step2 of atlas datasets + # Search accuracy according to best method (all values should exist) + ans = pd.DataFrame(index=[method], columns=[f"{atlas_dataset}_from_cache" for atlas_dataset in atlas_datasets]) + step_str = conf_data[conf_data["dataset_id"] == query_dataset][method].iloc[0] + if pd.isna(step_str): + logger.warning(f"{query_dataset} is nan in {method}") + return ans + sweep_url = re.search(r"step2:([^|]+)", step_str).group(1) + _, _, sweep_id = spilt_web(sweep_url) + sweep = wandb.Api().sweep(f"{entity}/{project}/{sweep_id}") + runs = sweep.runs + for atlas_dataset in tqdm(atlas_datasets): + best_yaml = conf_data[conf_data["dataset_id"] == atlas_dataset][f"{method}_step2_best_yaml"].iloc[0] + match_run = None + + # Find matching run configuration + for run in tqdm(runs, leave=False): + if isinstance(best_yaml, float) and np.isnan(best_yaml): + continue + if is_matching_dict(best_yaml, run.config): + if match_run is not None: + raise ValueError("Multiple matching runs found when only one expected") + match_run = run + + if match_run is None: + logger.warning(f"No matching configuration found for {atlas_dataset} with method {method}") + else: + ans.loc[method, f"{atlas_dataset}_from_cache"] = (match_run.summary["test_acc"] + if "test_acc" in match_run.summary else np.nan) + + return ans + + +ans_all = {} +parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) +parser.add_argument("--methods", default=["cta_actinn", "cta_celltypist", "cta_scdeepsort", "cta_singlecellnet"], + nargs="+") +parser.add_argument("--tissue", type=str, default="pancreas") +args = parser.parse_args() +methods = args.methods +tissue = args.tissue + +# atlas_datasets = [ +# "01209dce-3575-4bed-b1df-129f57fbc031", "055ca631-6ffb-40de-815e-b931e10718c0", +# "2a498ace-872a-4935-984b-1afa70fd9886", "2adb1f8a-a6b1-4909-8ee8-484814e2d4bf", +# "3faad104-2ab8-4434-816d-474d8d2641db", "471647b3-04fe-4c76-8372-3264feb950e8", +# "4c4cd77c-8fee-4836-9145-16562a8782fe", "84230ea4-998d-4aa8-8456-81dd54ce23af", +# "8a554710-08bc-4005-87cd-da9675bdc2e7", "ae29ebd0-1973-40a4-a6af-d15a5f77a80f", +# "bc260987-8ee5-4b6e-8773-72805166b3f7", "bc2a7b3d-f04e-477e-96c9-9d5367d5425c", +# "d3566d6a-a455-4a15-980f-45eb29114cab", "d9b4bc69-ed90-4f5f-99b2-61b0681ba436", +# "eeacb0c1-2217-4cf6-b8ce-1f0fedf1b569" +# ] +# query_datasets = [ +# "c7775e88-49bf-4ba2-a03b-93f00447c958", "456e8b9b-f872-488b-871d-94534090a865", +# "738942eb-ac72-44ff-a64b-8943b5ecd8d9", "a5d95a42-0137-496f-8a60-101e17f263c8", +# "71be997d-ff75-41b9-8a9f-1288c865f921" +# ] +conf_data = pd.read_excel(SIMILARITYDIR / "data/Cell Type Annotation Atlas.xlsx", sheet_name=tissue) +# conf_data = pd.read_csv(f"results/{tissue}_result.csv", index_col=0) +atlas_datasets = list(conf_data[conf_data["queryed"] == False]["dataset_id"]) +query_datasets = list(conf_data[conf_data["queryed"] == True]["dataset_id"]) +if __name__ == "__main__": + for query_dataset in query_datasets: + ans = [] + for method in methods: + ans.append(get_ans_from_cache(query_dataset, method)) + ans = pd.concat(ans) + ans_all[query_dataset] = ans + print(query_dataset) + # for k, v in ans_all.items(): + file_path = SIMILARITYDIR / f"data/in_atlas_datas/{tissue}/{str(methods)}_{query_dataset}_in_atlas.csv" + folder_path = Path(file_path).parent + folder_path.mkdir(parents=True, exist_ok=True) + ans.to_csv(file_path) diff --git a/examples/atlas/sc_similarity_examples/similarity/example_usage_anndata.py b/examples/atlas/sc_similarity_examples/similarity/example_usage_anndata.py new file mode 100644 index 00000000..87f7f92d --- /dev/null +++ b/examples/atlas/sc_similarity_examples/similarity/example_usage_anndata.py @@ -0,0 +1,187 @@ +import argparse +import json +import os +from pathlib import Path + +import numpy as np +import pandas as pd +import scanpy as sc +import torch +from anndata import AnnData +from scipy.sparse import issparse +from torch.utils.data import TensorDataset + +from dance import logger +from dance.atlas.sc_similarity.anndata_similarity import AnnDataSimilarity, get_anndata +from dance.settings import DANCEDIR, SIMILARITYDIR +from dance.utils import set_seed + +# target_files = [ +# "01209dce-3575-4bed-b1df-129f57fbc031", "055ca631-6ffb-40de-815e-b931e10718c0", +# "2a498ace-872a-4935-984b-1afa70fd9886", "2adb1f8a-a6b1-4909-8ee8-484814e2d4bf", +# "3faad104-2ab8-4434-816d-474d8d2641db", "471647b3-04fe-4c76-8372-3264feb950e8", +# "4c4cd77c-8fee-4836-9145-16562a8782fe", "84230ea4-998d-4aa8-8456-81dd54ce23af", +# "8a554710-08bc-4005-87cd-da9675bdc2e7", "ae29ebd0-1973-40a4-a6af-d15a5f77a80f", +# "bc260987-8ee5-4b6e-8773-72805166b3f7", "bc2a7b3d-f04e-477e-96c9-9d5367d5425c", +# "d3566d6a-a455-4a15-980f-45eb29114cab", "d9b4bc69-ed90-4f5f-99b2-61b0681ba436", +# "eeacb0c1-2217-4cf6-b8ce-1f0fedf1b569" +# ] +parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) +parser.add_argument("--tissue", type=str, default="pancreas") +parser.add_argument("--data_dir", default=DANCEDIR / f"examples/tuning/temp_data") +args = parser.parse_args() + +data_dir = args.data_dir +set_seed(42) +tissue = args.tissue +# conf_data = pd.read_csv(f"results/{tissue}_result.csv", index_col=0) +conf_data = pd.read_excel(SIMILARITYDIR / "data/Cell Type Annotation Atlas.xlsx", sheet_name=tissue) +atlas_datasets = list(conf_data[conf_data["queryed"] == False]["dataset_id"]) +query_datasets = list(conf_data[conf_data["queryed"] == True]["dataset_id"]) + + +class CustomEncoder(json.JSONEncoder): + + def default(self, obj): + if isinstance(obj, (np.float32, np.float64)): + return float(obj) + if isinstance(obj, (np.int32, np.int64)): + return int(obj) + if isinstance(obj, pd.DataFrame): + return obj.to_dict(orient='records') + return super().default(obj) + + +def dataset_from_anndata(adata: AnnData, label_key: str = 'cell_type', classes=None): + """Convert AnnData object to PyTorch TensorDataset. + + Parameters + ---------- + adata : AnnData + Input AnnData object + label_key : str, default='cell_type' + Column name in adata.obs containing cell type labels + classes : list, optional + Predefined class labels. If None, will be inferred from data + + Returns + ------- + TensorDataset + PyTorch dataset with features and labels + + """ + X = adata.X + if issparse(X): + X = X.toarray() + X_tensor = torch.from_numpy(X).float() + Y = adata.obs[label_key].values + if pd.api.types.is_numeric_dtype(Y): + targets = torch.LongTensor(Y) + if classes is None: + classes = sorted(np.unique(Y)) + else: + unique_classes = sorted(np.unique(Y)) + # class_to_idx = {cls: idx for idx, cls in enumerate(unique_classes)} + # Y_encoded = np.array([class_to_idx[cls] for cls in Y]) + targets = torch.LongTensor(Y.codes) + if classes is None: + classes = unique_classes + ds = TensorDataset(X_tensor, targets) + ds.targets = targets + ds.classes = classes + return ds + + +# def run_test_otdd(): +# data_root = "/home/zyxing/dance/examples/tuning/temp_data/train/human" +# for target_file in target_files: +# source_data = sc.read_h5ad(f"{data_root}/human_{tissue.capitalize()}{source_file}_data.h5ad") +# target_data = sc.read_h5ad(f"{data_root}/human_{tissue.capitalize()}{target_file}_data.h5ad") +# source_ds = dataset_from_anndata(source_data) +# target_ds = dataset_from_anndata(target_data) +# dist = DatasetDistance(source_ds, target_ds) +# dist.distance() + + +def run_test_case(source_file): + """Calculate similarity matrices between source and target datasets. + + Parameters + ---------- + source_file : str + Name of the source dataset file + + Returns + ------- + pandas.DataFrame + Similarity scores for different metrics + + """ + ans = {} + source_data = get_anndata(train_dataset=[f"{source_file}"], data_dir=data_dir, tissue=tissue.capitalize()) + + for target_file in atlas_datasets: + # source_data=sc.read_h5ad(f"{data_root}/{source_file}.h5ad") + # target_data=sc.read_h5ad(f"{data_root}/{target_file}.h5ad") + target_data = get_anndata(train_dataset=[f"{target_file}"], data_dir=data_dir, tissue=tissue.capitalize()) + + # Initialize similarity calculator with multiple metrics + similarity_calculator = AnnDataSimilarity( + adata1=source_data, adata2=target_data, sample_size=10, init_random_state=42, n_runs=1, + ground_truth_conf_path=SIMILARITYDIR / "data/Cell Type Annotation Atlas.xlsx", adata1_name=source_file, + adata2_name=target_file, tissue=tissue) + + # Calculate similarity using multiple methods + ans[target_file] = similarity_calculator.get_similarity_matrix_A2B(methods=[ + "wasserstein", "Hausdorff", "chamfer", "energy", "sinkhorn2", "bures", "spectral", "common_genes_num", + "ground_truth", "mmd", "metadata_sim" + ]) + + # Convert results to DataFrame and save + ans = pd.DataFrame(ans) + # ans_to_path = f'sims/{tissue}/sim_{source_file}.csv' + # os.makedirs(os.path.dirname(ans_to_path), exist_ok=True) + # ans.to_csv(ans_to_path) + return ans + + +start = False +query_data = os.listdir(SIMILARITYDIR / "data/in_atlas_datas" / f"{tissue}") +excel_path = SIMILARITYDIR / f"data/dataset_similarity/{tissue}_similarity.xlsx" +# with pd.ExcelWriter(file_root / f"{tissue}_similarity.xlsx", engine='openpyxl') as writer: +logger.info(f"tissue: {tissue}") +for source_file in query_datasets: + # if source_file[:4]=='e868': + # start=True + # if not start: + # continue + logger.info(f"source_file: {source_file}") + query_ans = pd.concat([ + pd.read_csv(SIMILARITYDIR / "data/in_atlas_datas" / f"{tissue}" / element, index_col=0) + for element in query_data if element.split("_")[-3] == source_file + ]) + rename_dict = {col: col.replace('_from_cache', '') for col in query_ans.columns if '_from_cache' in col} + query_ans = query_ans.rename(columns=rename_dict) + ans = run_test_case(source_file) + merged_df = pd.concat([query_ans, ans], join='inner') + if os.path.exists(excel_path): + excel = pd.ExcelFile(excel_path, engine='openpyxl') + if source_file[:4] in excel.sheet_names: + # Try to read the specified sheet + existing_df = pd.read_excel(SIMILARITYDIR / f"data/dataset_similarity/{tissue}_similarity.xlsx", + sheet_name=source_file[:4], engine="openpyxl", index_col=0) + # Find rows that exist in the new dataframe but not in the existing table + merged_df = pd.concat([existing_df, merged_df]) + merged_df = merged_df.applymap(lambda x: tuple(x) if isinstance(x, list) else x) + # Then deduplicate, using keep='last' instead of subset parameter + merged_df = merged_df[~merged_df.index.duplicated(keep='last')] + # merged_df = merged_df.drop_duplicates(subset=merged_df.index.name, keep='last') + excel.close() + if os.path.exists(excel_path): + mode = 'a' + if_sheet_exists = "replace" + else: + mode = 'w' + if_sheet_exists = None + with pd.ExcelWriter(excel_path, engine='openpyxl', mode=mode, if_sheet_exists=if_sheet_exists) as writer: + merged_df.to_excel(writer, sheet_name=source_file[:4]) diff --git a/examples/atlas/sc_similarity_examples/similarity/optimize_similarity_weights.py b/examples/atlas/sc_similarity_examples/similarity/optimize_similarity_weights.py new file mode 100644 index 00000000..030a2cef --- /dev/null +++ b/examples/atlas/sc_similarity_examples/similarity/optimize_similarity_weights.py @@ -0,0 +1,199 @@ +"""Calculate optimal weights for similarity metrics in cell type annotation. + +This script analyzes different similarity metrics (like Wasserstein, Hausdorff, etc.) and metadata similarity +to find optimal weights that minimize the total rank of correct cell type predictions across multiple datasets. + +The script: +1. Loads similarity scores from Excel files +2. Computes rankings for different cell type annotation methods +3. Finds optimal weights (w1, w2) for combining feature-based and metadata-based similarity +4. Outputs the best performing feature and its corresponding weight + +Returns +------- +DataFrame + Results containing feature names, weights, and corresponding total ranks + +""" + +import argparse +import os +import sys + +import numpy as np +import pandas as pd + +from dance.settings import SIMILARITYDIR + +sys.path.append(str(SIMILARITYDIR)) +print(sys.path) +from similarity.process_tissue_similarity_matrices import convert_to_complex +from visualization.visualize_atlas_performance import get_runs + +from dance.utils import set_seed, try_import + + +def get_ans(): + """Load similarity scores from Excel files for each dataset. + + Returns + ------- + dict + Dictionary mapping dataset IDs to their similarity score DataFrames + + """ + ans = {} + for query_dataset in query_datasets: + if query_dataset in exclude_dataset: + continue + data = pd.read_excel(SIMILARITYDIR / f"data/new_sim/{tissue}_similarity.xlsx", sheet_name=query_dataset[:4], + index_col=0) + ans[query_dataset] = data + return ans + + +def get_rank(reduce_error, in_query): + """Calculate rankings for each cell type annotation method. + + Updates the input DataFrames with rank columns for each method, where lower ranks + indicate better performance. + + """ + + def query_rank(x, test_accs, reduce_error): + if pd.isna(x): + if reduce_error: + return 10000 + else: + x = -0.01 + rank = sum(1 for test_acc in test_accs if test_acc > x) + 1 + return rank + + if in_query: + for query_dataset, data in ans.items(): + for method in methods: + rank_col = 'rank_' + method + data.loc[rank_col, :] = data.loc[method, :].apply( + lambda x: query_rank(x, get_runs(conf_data, query_dataset, method), reduce_error)) + else: + for query_dataset, data in ans.items(): + for method in methods: + rank_col = 'rank_' + method + # if method not in data.index: + # data.loc[rank_col, :] = 10000 + # continue + if reduce_error: + data.loc[rank_col, :] = data.loc[method, :].rank(ascending=False, method='min', na_option='keep') + data.loc[rank_col, :] = data.loc[rank_col, :].fillna(10000) + else: + data.loc[rank_col, :] = data.loc[method, :].rank(ascending=False, method='min', na_option='bottom') + + +def objective(w1, feature_name): + """Calculate total rank score for given weights and feature. + + Parameters + ---------- + w1 : float + Weight for the feature-based similarity (0-1) + feature_name : str + Name of the similarity feature to evaluate + + Returns + ------- + float + Total rank score (lower is better) + + """ + w2 = 1 - w1 + total_rank = 0 + for query_dataset, data in ans.items(): + df_A = data.copy() + # if feature_name == "bures": + df_A.loc[feature_name, :] = df_A.loc[feature_name, :].apply(convert_to_complex) + # print(df_A.loc[feature_name, :]) + df_A.loc['score_similarity', :] = w1 * df_A.loc[feature_name, :].values.astype(float) + w2 * df_A.loc[ + 'metadata_sim', :].values.astype(float) + if df_A.loc['score_similarity', :].isna().any(): + pass + df_A.loc['score_similarity', :] = df_A.loc['score_similarity', :].fillna(0) + max_idx = df_A.loc['score_similarity', :].idxmax() + max_B = df_A.loc[:, max_idx] + ranks = [] + for method in methods: + ranks.append(max_B.loc['rank_' + method]) + total_rank += np.sum(ranks) + return total_rank + + +if __name__ == "__main__": + pd.set_option('future.no_silent_downcasting', True) + wandb = try_import("wandb") + entity = "xzy11632" + project = "dance-dev" + # query_datasets = [ + # "c7775e88-49bf-4ba2-a03b-93f00447c958", + # "456e8b9b-f872-488b-871d-94534090a865", + # "738942eb-ac72-44ff-a64b-8943b5ecd8d9", + # # "a5d95a42-0137-496f-8a60-101e17f263c8", + # "71be997d-ff75-41b9-8a9f-1288c865f921" + # ] + parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument("--tissue", type=str, default="heart") + parser.add_argument("--reduce_error", action="store_true") + parser.add_argument("--in_query", action="store_true") + + args = parser.parse_args() + tissue = args.tissue + reduce_error = args.reduce_error + in_query = args.in_query + set_seed(42) + # conf_data = pd.read_csv(f"results/{tissue}_result.csv", index_col=0) + conf_data = pd.read_excel(SIMILARITYDIR / "data/Cell Type Annotation Atlas.xlsx", sheet_name=tissue) + query_datasets = list(conf_data[conf_data["queryed"] == True]["dataset_id"]) + methods = ["cta_actinn", "cta_celltypist", "cta_scdeepsort", "cta_singlecellnet"] + feature_names = ["wasserstein", "Hausdorff", "chamfer", "energy", "sinkhorn2", "bures", "spectral", "mmd"] + import json + with open(SIMILARITYDIR / "configs/exclude_dataset.json", encoding='utf-8') as f: + exclude_dataset_json = json.load(f) + exclude_dataset = exclude_dataset_json[tissue] if tissue in exclude_dataset_json else [] + + ans = get_ans() + get_rank(reduce_error=reduce_error, in_query=in_query) + all_results = [] + # for query_dataset, data in ans.items(): + # data.to_csv(f"ranks/{tissue}/{query_dataset}_rank.csv") + for feature_name in feature_names: + w1_values = np.linspace(0, 1, 101) + results = [] + for w1 in w1_values: + total_rank = objective(w1, feature_name) + results.append({'feature_name': feature_name, 'w1': w1, 'total_rank': total_rank}) + all_results.extend(results) + # for w1 in w1_values: + # total_rank = objective(w1) + # results.append({'w1': w1, 'total_rank': total_rank}) + + results_df = pd.DataFrame(all_results) + results_df.to_csv(f"temp/{tissue}_results_df.csv") + best_result = results_df.loc[results_df['total_rank'].idxmin()] + + print('Best similarity feature:', best_result['feature_name']) + print('Best w1:', best_result['w1']) + print('Corresponding total rank:', best_result['total_rank']) + + import json + import os + result_path = SIMILARITYDIR / f"data/similarity_weights_results/{'reduce_error_' if reduce_error else ''}{'in_query_' if in_query else ''}sim_dict.json" + if not os.path.exists(result_path): + sim_dict = {} + else: + with open(result_path, encoding='utf-8') as f: + sim_dict = json.load(f) + sim_dict[tissue] = { + "feature_name": best_result['feature_name'], + "weight1": best_result['w1'], + "total rank": int(best_result['total_rank']) + } + with open(result_path, 'w', encoding='utf-8') as f: + json.dump(sim_dict, f, indent=4, ensure_ascii=False) diff --git a/examples/atlas/sc_similarity_examples/similarity/process_tissue_similarity_matrices.py b/examples/atlas/sc_similarity_examples/similarity/process_tissue_similarity_matrices.py new file mode 100644 index 00000000..19d3e8c7 --- /dev/null +++ b/examples/atlas/sc_similarity_examples/similarity/process_tissue_similarity_matrices.py @@ -0,0 +1,146 @@ +import ast +import os + +import numpy as np +import pandas as pd + +from dance.settings import SIMILARITYDIR + + +def convert_to_complex(s): + """Convert string representations of complex numbers to float values. + + Parameters + ---------- + s : str or float + Input value to convert + + Returns + ------- + float + Real part of complex number or NaN if conversion fails + + """ + if isinstance(s, float) or isinstance(s, int): + return s + try: + s = ast.literal_eval(s) + return float(s.real) + except (ValueError, SyntaxError): + return np.nan + + +def convert_complex_value(x): + """Helper function to convert a single value.""" + if isinstance(x, str): + try: + complex_val = complex(x.strip('()')) + # If imaginary part is close to 0, return real part + if abs(complex_val.imag) < 1e-10: + return float(complex_val.real) + return complex_val + except ValueError: + return x + elif isinstance(x, complex): + # If imaginary part is close to 0, return real part + if abs(x.imag) < 1e-10: + return float(x.real) + return x + return x + + +def unify_complex_float_types_cell(df): + """Process by cell.""" + for col in df.columns: + for idx in df.index: + df.at[idx, col] = convert_complex_value(df.at[idx, col]) + return df + + +def unify_complex_float_types_row(df): + """Process by row.""" + for idx in df.index: + df.loc[idx] = df.loc[idx].apply(convert_complex_value) + return df + + +def unify_complex_float_types(df): + """Process by column.""" + for col in df.columns: + # Skip non-numeric columns + if not pd.api.types.is_numeric_dtype(df[col]): + continue + + # Check if contains complex numbers + has_complex = df[col].apply(lambda x: isinstance(x, complex)).any() + + if has_complex: + # Convert column to complex and process + df[col] = df[col].apply(convert_complex_value) + + return df + + +def process_excel_files(excel_files): + # List to store all data + all_data = [] + + for file_path in excel_files: + # Get filename (without extension) + file_name = os.path.splitext(os.path.basename(file_path))[0] + + # Read all sheets in Excel file + excel = pd.ExcelFile(file_path) + + # Process each sheet + for sheet_name in excel.sheet_names: + # Read data + df = pd.read_excel(file_path, sheet_name=sheet_name) + + # Transpose data + df_transposed = df.transpose() + + # Add filename and sheet name columns + df_transposed['file_name'] = file_name + df_transposed['sheet_name'] = sheet_name + + # Add data to list + all_data.append(df_transposed) + + # Merge all data + final_df = pd.concat(all_data, ignore_index=True) + + # Unify data types + final_df = unify_complex_float_types(final_df) + + # Save as CSV + output_path = os.path.join(os.path.dirname(excel_files[0]), 'combined_output.csv') + final_df.to_csv(output_path, encoding='utf-8-sig', index=True) + + return output_path + + +if __name__ == "__main__": + tissues = ["blood", "brain", "heart", "intestine", "kidney", "lung", "pancreas"] + for tissue in tissues: + file_path = SIMILARITYDIR / f"data/dataset_similarity/{tissue}_similarity.xlsx" + excel = pd.ExcelFile(file_path) + for sheet_name in excel.sheet_names: + df = pd.read_excel(file_path, sheet_name=sheet_name, index_col=0) + df = df[~df.index.duplicated(keep='last')] + # df=unify_complex_float_types_row(df) #Some complex numbers may lose precision, but it's not a big issue since only real parts are used for comparison + df = unify_complex_float_types_cell( + df + ) #Some complex numbers may lose precision, but it's not a big issue since only real parts are used for comparison + if os.path.exists(SIMILARITYDIR / f"data/new_sim/{tissue}_similarity.xlsx"): + mode = 'a' + if_sheet_exists = "replace" + else: + mode = 'w' + if_sheet_exists = None + with pd.ExcelWriter(SIMILARITYDIR / f"data/new_sim/{tissue}_similarity.xlsx", engine='openpyxl', mode=mode, + if_sheet_exists=if_sheet_exists) as writer: + df.to_excel(writer, sheet_name=sheet_name) + excel_files = [SIMILARITYDIR / f"data/new_sim/{tissue}_similarity.xlsx" for tissue in tissues] + output_file = process_excel_files(excel_files) + print(f"Combined data has been saved to: {output_file}") diff --git a/examples/atlas/sc_similarity_examples/visualization/__init__.py b/examples/atlas/sc_similarity_examples/visualization/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/examples/atlas/sc_similarity_examples/visualization/visualize_atlas_performance.py b/examples/atlas/sc_similarity_examples/visualization/visualize_atlas_performance.py new file mode 100644 index 00000000..cb032f54 --- /dev/null +++ b/examples/atlas/sc_similarity_examples/visualization/visualize_atlas_performance.py @@ -0,0 +1,233 @@ +import argparse +import os +import re +import sys +from pathlib import Path + +import numpy as np +import pandas as pd + +from dance.settings import ATLASDIR, SIMILARITYDIR +from dance.utils import set_seed, try_import + +sys.path.append(str(SIMILARITYDIR)) +sys.path.append(str(ATLASDIR)) +import json + +import matplotlib.pyplot as plt +import seaborn as sns +from get_result_web import spilt_web +from similarity.process_tissue_similarity_matrices import convert_to_complex + +wandb = try_import("wandb") + +from dance.settings import entity, project + + +def get_accs(sweep): + """Extract test accuracies from a wandb sweep. + + Parameters + ---------- + sweep : wandb.Sweep + Sweep object containing multiple runs + + Returns + ------- + list + List of test accuracies from all runs + + """ + ans = [] + for run in sweep.runs: + if "test_acc" in run.summary: + ans.append(run.summary["test_acc"]) + return ans + + +# def get_runs(sweep_record): +# """Parse sweep URLs and collect all run results. + +# Parameters +# ---------- +# sweep_record : str +# String containing sweep URLs for different steps + +# Returns +# ------- +# list +# Combined list of test accuracies from all sweeps + +# """ +# step_links = {} +# pattern = r'(step\d+):((?:https?://[^|,]+(?:,)?)+)' +# matches = re.finditer(pattern, sweep_record) +# for match in matches: +# step = match.group(1) # e.g., 'step2' +# links_str = match.group(2) # e.g., 'https://...y31tzbnv' +# links = links_str.split(',') +# step_links[step] = links +# ans = [] +# for step, links in step_links.items(): +# for sweep_url in links: +# _, _, sweep_id = spilt_web(sweep_url) +# sweep = wandb.Api(timeout=1000).sweep(f"{entity}/{project}/{sweep_id}") +# ans += get_accs(sweep) +# return ans + + +def get_atlas_ans(query_dataset, method): + """Calculate atlas-based prediction accuracy for a given dataset and method. + + Parameters + ---------- + query_dataset : str + Dataset identifier + method : str + Method name to evaluate + + Returns + ------- + float + Predicted accuracy based on atlas similarity + + """ + data = pd.read_excel(SIMILARITYDIR / f"data/new_sim/{tissue}_similarity.xlsx", sheet_name=query_dataset[:4], + index_col=0) + weight1 = sim_dict[tissue]["weight1"] # Weight for feature-based similarity + weight2 = 1 - weight1 # Weight for metadata similarity + data.loc[feature_name, :] = data.loc[feature_name, :].apply(convert_to_complex) + weighted_sum = data.loc[feature_name, :] * weight1 + data.loc["metadata_sim", :] * weight2 + atlas_dataset_res = weighted_sum.idxmax() # Get most similar dataset + max_value = weighted_sum.max() + if method in data.index: + return data.loc[method, atlas_dataset_res], atlas_dataset_res + else: + return 0, "null" + + +def vis(data, target_value, title, ax): + """Create violin plot comparing distribution of accuracies with atlas prediction. + + Parameters + ---------- + data : list + List of accuracy values + target_value : float + Atlas-predicted accuracy value + title : str + Plot title + ax : matplotlib.axes.Axes + Axes object to plot on + + """ + # sns.boxplot(data=data, color='skyblue',ax=ax) + # if target_value is not np.nan: + # ax.axhline(y=target_value, color='red', linestyle='--', linewidth=2, label=f'atlas_value = {target_value}') + # ax.text(0, target_value + (max(data)-min(data))*0.01, f'{target_value}', color='red', ha='center',size=16) + + data = np.array(data) + data_df = pd.DataFrame({'test_acc': data}) + sns.violinplot(y='test_acc', data=data_df, inner=None, color='skyblue', ax=ax) + median = np.median(data) + ax.axhline(median, color='gray', linestyle='--', label=f'Median: {median:.1f}') + if np.isnan(target_value): + target_value = -0.01 + percentile = (np.sum(data < float(target_value)) / len(data)) * 100 + ax.scatter(0, float(target_value), color='red', s=100, zorder=5, + label=f'Specific Value: {target_value}\n({percentile:.1f} percentile)') + ax.set_title(str(title)) + ax.set_ylabel('test_acc') + ax.title.set_size(16) + ax.yaxis.label.set_size(14) + ax.tick_params(axis='both', which='major', labelsize=10) + ax.legend() + + +def get_runs(conf_data, query_dataset, method): + cache_file = SIMILARITYDIR / "cache/sweep_cache.json" + step_str = conf_data[conf_data["dataset_id"] == query_dataset][method].iloc[0] + step2_str = step_str.split("step2:")[1].split("|")[0] + _, _, sweep_id = spilt_web(step2_str) + if os.path.exists(cache_file): + with open(cache_file) as f: + sweep_cache = json.load(f) + else: + sweep_cache = {} + # print(sweep_id) + if sweep_id in sweep_cache: + return sweep_cache[sweep_id] + + sweep = wandb.Api(timeout=1000).sweep(f"{entity}/{project}/{sweep_id}") + runs = [] + for run in sweep.runs: + if "test_acc" in run.summary: + runs.append(run.summary["test_acc"]) + else: + runs.append(-0.01) + + sweep_cache[sweep_id] = runs + with open(cache_file, 'w') as f: + json.dump(sweep_cache, f) + return runs + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument("--tissue", type=str, default="blood") + parser.add_argument("--reduce_error", action="store_true") + parser.add_argument("--in_query", action="store_true") + args = parser.parse_args() + tissue = args.tissue + reduce_error = args.reduce_error + in_query = args.in_query + set_seed(42) + # conf_data = pd.read_csv(f"results/{tissue}_result.csv", index_col=0) + conf_data = pd.read_excel(SIMILARITYDIR / "data/Cell Type Annotation Atlas.xlsx", sheet_name=tissue) + query_datasets = list(conf_data[conf_data["queryed"] == True]["dataset_id"]) + + methods = ["cta_actinn", "cta_celltypist", "cta_scdeepsort", "cta_singlecellnet"] + with open( + SIMILARITYDIR / + f"data/similarity_weights_results/{'reduce_error_' if reduce_error else ''}{'in_query_' if in_query else ''}sim_dict.json", + encoding='utf-8') as f: + sim_dict = json.load(f) + feature_name = sim_dict[tissue]["feature_name"] + """Visualization script for comparing model performance across different datasets + and methods. + + This script loads experiment results from wandb and compares them with atlas-based + predictions, generating violin plots to visualize the distribution of accuracies. + + """ + # ans_all=defaultdict(dict) + # for query_dataset in query_datasets: + # for method in methods: + # sweep_record=ground_truth_conf.loc[query_dataset,method] + # ans_all[query_dataset][method]=get_runs(sweep_record) + # with open("runs.json","w") as f: + # json.dump(ans_all,f) + + # with open("runs.json") as f: + # runs = json.load(f) + plt.style.use("default") + import json + with open(SIMILARITYDIR / "configs/exclude_dataset.json", encoding='utf-8') as f: + exclude_dataset_json = json.load(f) + exclude_dataset = exclude_dataset_json[tissue] if tissue in exclude_dataset_json else [] + # Generate visualization for each dataset + for query_dataset in query_datasets: + if query_dataset in exclude_dataset: + continue + fig, axes = plt.subplots(2, 2, figsize=(15, 10)) + axes = axes.flatten() + # Create subplot for each method + for i, method in enumerate(methods): + target_value, atlas_dataset = get_atlas_ans(query_dataset, method) + vis(get_runs(conf_data, query_dataset, method), target_value, f"{atlas_dataset}_{method}", axes[i]) + plt.tight_layout() + result_path = SIMILARITYDIR / f"data/imgs/{'reduce_error/' if reduce_error else ''}{'in_query/' if in_query else ''}{tissue}/{query_dataset}.png" + os.makedirs(os.path.dirname(result_path), exist_ok=True) + plt.savefig(result_path, dpi=300) + plt.show() diff --git a/examples/atlas/setup_run.py b/examples/atlas/setup_run.py new file mode 100644 index 00000000..06217714 --- /dev/null +++ b/examples/atlas/setup_run.py @@ -0,0 +1,86 @@ +import argparse +import os +import shutil +import sys + +import pandas as pd +import yaml + +from dance.settings import DANCEDIR +from dance.utils import logger + + +def load_commands(config_path): + """Load YAML configuration file containing command templates for different + algorithms.""" + with open(config_path, encoding='utf-8') as f: + return yaml.safe_load(f) + + +def load_run_configs(run_config_path): + """Load CSV file containing run configurations for different experiments.""" + return pd.read_csv(run_config_path) + + +def main(): + parser = argparse.ArgumentParser(description='Setup run parameters') + parser.add_argument('--config', type=str, default="config/run_config.csv", help='Run configuration CSV file') + + args = parser.parse_args() + + # Load configuration files + run_configs_df = load_run_configs(args.config) + commands_config = load_commands("config/commands.yaml") + + # Process each run configuration + for _, run in run_configs_df.iterrows(): + # Extract parameters for current run + algorithm_name = run['algorithm_name'] + dataset_id = run['dataset_id'] + species = run['species'] + tissue = run['tissue'] + filetype = run['filetype'] + count = run['count'] + device = run['device'] + + # Setup directory structure for the algorithm configuration + template_path = os.path.join("config/atlas_template_yamls", + f"{algorithm_name}/pipeline_params_tuning_config.yaml") + config_dir = f"{DANCEDIR}/examples/tuning/{algorithm_name}/{dataset_id}" + + # Create configuration directory if it doesn't exist + try: + os.makedirs(config_dir, exist_ok=False) + except FileExistsError: + logger.warning(f"Error: Directory {config_dir} already exists. Please remove it before running again.") + continue + + config_filename = f"pipeline_params_tuning_config.yaml" + config_path = os.path.join(config_dir, config_filename) + + # Copy configuration file + shutil.copy(template_path, config_path) + print(f"Template copied to {config_path}") + + # Validate algorithm exists in commands configuration + if algorithm_name not in commands_config.get("algorithms", {}): + print(f"Error: Command not found for algorithm '{algorithm_name}'. Please check commands.yaml file.") + continue + + # Format command template with run parameters + command_template = commands_config["algorithms"][algorithm_name]["command"] + run_command = command_template.format(dataset_id=dataset_id, species=species, tissue=tissue, filetype=filetype, + count=count, device=device) + + # Append generated command to run script + run_sh_path = f"{DANCEDIR}/examples/tuning/{algorithm_name}/run.sh" + with open(run_sh_path, "a", encoding='utf-8') as run_script: + run_script.write(f"{run_command}\n") + + print(f"Run command appended to {run_sh_path}: {run_command}") + + print("All run configurations have been processed.") + + +if __name__ == "__main__": + main() diff --git a/examples/atlas/sweep_results/Blood_ans.csv b/examples/atlas/sweep_results/Blood_ans.csv new file mode 100644 index 00000000..b65f532f --- /dev/null +++ b/examples/atlas/sweep_results/Blood_ans.csv @@ -0,0 +1,5066 @@ +Dataset_id,cta_celltypist,cta_celltypist_best_yaml,cta_celltypist_best_res,cta_celltypist_run_stats,cta_celltypist_check,cta_celltypist_step2_best_yaml,cta_celltypist_step2_best_res,cta_scdeepsort,cta_scdeepsort_best_yaml,cta_scdeepsort_best_res,cta_scdeepsort_run_stats,cta_scdeepsort_check,cta_scdeepsort_step2_best_yaml,cta_scdeepsort_step2_best_res,cta_singlecellnet,cta_singlecellnet_best_yaml,cta_singlecellnet_best_res,cta_singlecellnet_run_stats,cta_singlecellnet_check,cta_singlecellnet_step2_best_yaml,cta_singlecellnet_step2_best_res,cta_actinn,cta_actinn_best_yaml,cta_actinn_best_res,cta_actinn_run_stats,cta_actinn_check,cta_actinn_step2_best_yaml,cta_actinn_step2_best_res +84230ea4-998d-4aa8-8456-81dd54ce23af,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4lhkspy4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/v3i9xvkp,https://wandb.ai/xzy11632/dance-dev/sweeps/4kznqqwz,https://wandb.ai/xzy11632/dance-dev/sweeps/ntv3k0kl","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - min_counts + - max_counts + - max_cells + min_counts: 28 + min_cells: 0.01009194186360022 + max_counts: 0.9387079584289736 + max_cells: 0.9674538063359476 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 4 + gmean_eps: 1 + n_genes: 2153 + n_cells: 100 + bin_size: 778 + bw_adjust: 4.348275785008059 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 4617 + n_bins: 12 + flavor: seurat +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7798573970794678,all_total_runs:510|all_finished_runs:358|step2_total_runs:450|step2_finished_runs:352|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:70.20%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7673797011375427,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sjqz38be|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9nzex39q,https://wandb.ai/xzy11632/dance-dev/sweeps/w8vhof6g,https://wandb.ai/xzy11632/dance-dev/sweeps/hy70jugh","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7860962748527527,all_total_runs:210|all_finished_runs:153|step2_total_runs:150|step2_finished_runs:115|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:72.86%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7860962748527527,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8vsayaln|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ur4raslu,https://wandb.ai/xzy11632/dance-dev/sweeps/ou3vw3yu,https://wandb.ai/xzy11632/dance-dev/sweeps/ukajfztu","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 2.1103297221164885 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 898 + n_bins: 10 + flavor: seurat +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7709447415329769,all_total_runs:150|all_finished_runs:112|step2_total_runs:90|step2_finished_runs:73|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7700534759358288,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/iprfvp38|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sfsccz7u,https://wandb.ai/xzy11632/dance-dev/sweeps/sauccnk6,https://wandb.ai/xzy11632/dance-dev/sweeps/rxsuxkxm","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7584670186042786,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7584670186042786 +d3566d6a-a455-4a15-980f-45eb29114cab,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/68dze8s6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9p2fidft,https://wandb.ai/xzy11632/dance-dev/sweeps/gfb4afks,https://wandb.ai/xzy11632/dance-dev/sweeps/rfgdltml","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.372288316488266,all_total_runs:510|all_finished_runs:399|step2_total_runs:450|step2_finished_runs:357|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:78.24%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.372288316488266,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/osyfv0bk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sni6qvye,https://wandb.ai/xzy11632/dance-dev/sweeps/zqf37ih0,https://wandb.ai/xzy11632/dance-dev/sweeps/9vy9sc81","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 7305 + top: true + mode: sum +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 188 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3771868348121643,all_total_runs:210|all_finished_runs:169|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:80.48%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3764870464801788,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9naq6ehz|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nesd5di9,https://wandb.ai/xzy11632/dance-dev/sweeps/6zjwdysj,https://wandb.ai/xzy11632/dance-dev/sweeps/isr4y4r3","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3631910426871938,all_total_runs:150|all_finished_runs:130|step2_total_runs:90|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:86.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3631910426871938,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/pyjligel|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/m0a71zdj,https://wandb.ai/xzy11632/dance-dev/sweeps/kd7wlkd6,https://wandb.ai/xzy11632/dance-dev/sweeps/490xe7ht","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3596920967102051,all_total_runs:600|all_finished_runs:453|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:75.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3596920967102051 +71be997d-ff75-41b9-8a9f-1288c865f921,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/3hrf2wbb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/d6vpumby,https://wandb.ai/xzy11632/dance-dev/sweeps/4ewws3pm,https://wandb.ai/xzy11632/dance-dev/sweeps/iuubdwht","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4636363685131073,all_total_runs:510|all_finished_runs:417|step2_total_runs:450|step2_finished_runs:357|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.76%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4636363685131073,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ofw1llkf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uge2k7vi,https://wandb.ai/xzy11632/dance-dev/sweeps/qn85rgjd,https://wandb.ai/xzy11632/dance-dev/sweeps/kcp8pt1y","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4272727370262146,all_total_runs:168|all_finished_runs:103|step2_total_runs:150|step2_finished_runs:103|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:61.31%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4272727370262146,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6x20gszq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zt8h2u2q,https://wandb.ai/xzy11632/dance-dev/sweeps/6u6zlhu5,https://wandb.ai/xzy11632/dance-dev/sweeps/mclm6mgq","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4545454545454546,all_total_runs:150|all_finished_runs:81|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:54.00%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4545454545454546,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/owszihkr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/f49c7zeb,https://wandb.ai/xzy11632/dance-dev/sweeps/3l7yyix3,https://wandb.ai/xzy11632/dance-dev/sweeps/3hwiq1ug","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4636363685131073,all_total_runs:600|all_finished_runs:448|step2_total_runs:540|step2_finished_runs:390|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4636363685131073 +a5d95a42-0137-496f-8a60-101e17f263c8,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vp004sgu|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ndsnj28d,https://wandb.ai/xzy11632/dance-dev/sweeps/zyn1nzj3,https://wandb.ai/xzy11632/dance-dev/sweeps/g578uurw","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4339622557163238,all_total_runs:510|all_finished_runs:355|step2_total_runs:450|step2_finished_runs:322|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:69.61%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4339622557163238,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ynoophp8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/h79evwjy,https://wandb.ai/xzy11632/dance-dev/sweeps/tp2bv4au,https://wandb.ai/xzy11632/dance-dev/sweeps/otko3ek6","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4452830255031585,all_total_runs:196|all_finished_runs:134|step2_total_runs:150|step2_finished_runs:96|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:68.37%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4452830255031585,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/l3suyx48|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9tktvcgh,https://wandb.ai/xzy11632/dance-dev/sweeps/6ss7fdt3,https://wandb.ai/xzy11632/dance-dev/sweeps/3gob5ntf","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 10 + max_val: 95 + mode: var +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 2851 + span: 0.16719280450405202 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4113207547169811,all_total_runs:150|all_finished_runs:88|step2_total_runs:90|step2_finished_runs:50|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:58.67%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3962264150943397,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/d0ek9vox|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/67vmsyf0,https://wandb.ai/xzy11632/dance-dev/sweeps/2wfapfkk,https://wandb.ai/xzy11632/dance-dev/sweeps/jo1a0k7p","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 4.550146760679212 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: CellPCA + params: + out: feature.cell + log_level: INFO + n_components: 840 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4377358555793762,all_total_runs:600|all_finished_runs:419|step2_total_runs:540|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:69.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4226415157318115 +c7775e88-49bf-4ba2-a03b-93f00447c958,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/y14kg9m4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zxn6dvhn,https://wandb.ai/xzy11632/dance-dev/sweeps/sw3khaut,https://wandb.ai/xzy11632/dance-dev/sweeps/9h4fnk3e","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1835000067949295,all_total_runs:510|all_finished_runs:415|step2_total_runs:450|step2_finished_runs:357|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:81.37%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1835000067949295,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/a37nb7n4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/krzjdm8h,https://wandb.ai/xzy11632/dance-dev/sweeps/kzfqbn9t,https://wandb.ai/xzy11632/dance-dev/sweeps/gtf2j5hu","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_cells + - max_counts + - min_counts + min_counts: 202 + min_cells: 0.03326649451848795 + max_counts: 0.91293116819139 + max_cells: 0.9561302093475796 +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: 0.3 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 9344 + span: 0.16241092053064884 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 593 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1944999992847442,all_total_runs:210|all_finished_runs:163|step2_total_runs:150|step2_finished_runs:108|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:77.62%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1940000057220459,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/67nc05qo|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/968h8p8g,https://wandb.ai/xzy11632/dance-dev/sweeps/fuzr2xth,https://wandb.ai/xzy11632/dance-dev/sweeps/u6dg202m","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.206,all_total_runs:150|all_finished_runs:106|step2_total_runs:90|step2_finished_runs:52|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:70.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.206,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/y31tzbnv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/d9z4c1q0,https://wandb.ai/xzy11632/dance-dev/sweeps/x570y2uo,https://wandb.ai/xzy11632/dance-dev/sweeps/0f3z54y5","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2060000002384185,all_total_runs:600|all_finished_runs:429|step2_total_runs:540|step2_finished_runs:370|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:71.50%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2060000002384185 +456e8b9b-f872-488b-871d-94534090a865,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wri3w9ug|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9c166tcq,https://wandb.ai/xzy11632/dance-dev/sweeps/0j1n56kx,https://wandb.ai/xzy11632/dance-dev/sweeps/3761sh9x","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2010000050067901,all_total_runs:510|all_finished_runs:384|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:4|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:75.29%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2010000050067901,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/51cpr0d9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/95hn1egh,https://wandb.ai/xzy11632/dance-dev/sweeps/peld3u5u,https://wandb.ai/xzy11632/dance-dev/sweeps/on2ik08p","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 95 + mode: sum +- type: normalize + target: Log1P + params: + base: 9.417934904058548 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 9808 + span: 0.19479949862140847 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 505 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2339999973773956,all_total_runs:210|all_finished_runs:175|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:83.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2335000038146973,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lv0fx66b|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8ddug6xp,https://wandb.ai/xzy11632/dance-dev/sweeps/idxr1y9z,https://wandb.ai/xzy11632/dance-dev/sweeps/0iz6wobo","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_cells + - max_counts + - min_counts + min_counts: 466 + min_cells: 0.0660564715580836 + max_counts: 0.9574165855780944 + max_cells: 0.956786246060403 +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000 + max_fraction: 0.05 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 2925 + span: 0.4795559241062898 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2295,all_total_runs:150|all_finished_runs:109|step2_total_runs:90|step2_finished_runs:69|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:72.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.229,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/w9issa4d|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/b06p6hx8,https://wandb.ai/xzy11632/dance-dev/sweeps/1i8tao7g,https://wandb.ai/xzy11632/dance-dev/sweeps/5l53xzqj","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2345000058412552,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2345000058412552 +738942eb-ac72-44ff-a64b-8943b5ecd8d9,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/pk55qst3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ikkth34p,https://wandb.ai/xzy11632/dance-dev/sweeps/33eivzhs,https://wandb.ai/xzy11632/dance-dev/sweeps/0iyvi4uj","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - min_counts + - min_cells + - max_counts + min_counts: 78 + min_cells: 0.010918863730631823 + max_counts: 0.9529126141448788 + max_cells: 0.9571952580883056 +- type: normalize + target: NormalizeTotal + params: + target_sum: 100000 + max_fraction: 0.5 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 8304 + top: false + mode: var +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3030000030994415,all_total_runs:510|all_finished_runs:378|step2_total_runs:450|step2_finished_runs:356|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:74.12%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.289000004529953,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xo0nl62w|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8mbj6ni4,https://wandb.ai/xzy11632/dance-dev/sweeps/z5plqd2c,https://wandb.ai/xzy11632/dance-dev/sweeps/8yrbdg1z","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3260000050067901,all_total_runs:210|all_finished_runs:164|step2_total_runs:150|step2_finished_runs:104|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.10%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3260000050067901,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/538iyppx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fj7pyf1f,https://wandb.ai/xzy11632/dance-dev/sweeps/es7cum5d,https://wandb.ai/xzy11632/dance-dev/sweeps/o5ozuhv2","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.338,all_total_runs:150|all_finished_runs:105|step2_total_runs:90|step2_finished_runs:49|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:70.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.338,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/tsfqsce4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qlbcth45,https://wandb.ai/xzy11632/dance-dev/sweeps/qsdgy6a1,https://wandb.ai/xzy11632/dance-dev/sweeps/uzqb64rs","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3355000019073486,all_total_runs:600|all_finished_runs:448|step2_total_runs:540|step2_finished_runs:388|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3355000019073486 +01209dce-3575-4bed-b1df-129f57fbc031,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sthk65mb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zncxm6s3,https://wandb.ai/xzy11632/dance-dev/sweeps/3fzlad77,https://wandb.ai/xzy11632/dance-dev/sweeps/knpn4gwt","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3400000035762787,all_total_runs:510|all_finished_runs:393|step2_total_runs:450|step2_finished_runs:335|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.06%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3400000035762787,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cjdtc2ag|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fzjbv8p0,https://wandb.ai/xzy11632/dance-dev/sweeps/gtz5viph,https://wandb.ai/xzy11632/dance-dev/sweeps/4l2hy0fx","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3709999918937683,all_total_runs:210|all_finished_runs:165|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:78.57%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3709999918937683,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ejo14a25|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7quft9nf,https://wandb.ai/xzy11632/dance-dev/sweeps/ae8qn2uv,https://wandb.ai/xzy11632/dance-dev/sweeps/btsw2f0d","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 8 + max_val: 97 + mode: rv +- type: normalize + target: NormalizeTotal + params: + target_sum: null + max_fraction: 0.05 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3558 + span: 0.5301735158318089 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3635,all_total_runs:150|all_finished_runs:106|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:70.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3585,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0tgasshy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fniezkvz,https://wandb.ai/xzy11632/dance-dev/sweeps/i0zfkgym,https://wandb.ai/xzy11632/dance-dev/sweeps/r0wmw7m2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3709999918937683,all_total_runs:600|all_finished_runs:477|step2_total_runs:540|step2_finished_runs:429|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:79.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3709999918937683 +055ca631-6ffb-40de-815e-b931e10718c0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/dooszu50|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ot9m5uei,https://wandb.ai/xzy11632/dance-dev/sweeps/latzm9d1,https://wandb.ai/xzy11632/dance-dev/sweeps/tqrr3dft","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1969999969005584,all_total_runs:510|all_finished_runs:401|step2_total_runs:450|step2_finished_runs:351|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:12|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.63%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1969999969005584,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/51smdbay|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mhvqib1h,https://wandb.ai/xzy11632/dance-dev/sweeps/qpmixdis,https://wandb.ai/xzy11632/dance-dev/sweeps/j2p0o87d","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 2.12228660428801 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 4984 + n_bins: 29 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 872 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2179999947547913,all_total_runs:210|all_finished_runs:175|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:83.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2125000059604644,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bhbayrqz|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/g75vkdn5,https://wandb.ai/xzy11632/dance-dev/sweeps/0hn8a45n,https://wandb.ai/xzy11632/dance-dev/sweeps/jf6af7rq","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2105,all_total_runs:150|all_finished_runs:85|step2_total_runs:90|step2_finished_runs:63|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:56.67%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2105,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5nt4yy2y|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sz5w37yv,https://wandb.ai/xzy11632/dance-dev/sweeps/2ijkutql,https://wandb.ai/xzy11632/dance-dev/sweeps/m082jfv6","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2234999984502792,all_total_runs:600|all_finished_runs:487|step2_total_runs:540|step2_finished_runs:428|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:81.17%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2234999984502792 +2a498ace-872a-4935-984b-1afa70fd9886,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bq07gszd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bktx311f,https://wandb.ai/xzy11632/dance-dev/sweeps/5mdhsnx2,https://wandb.ai/xzy11632/dance-dev/sweeps/fcfzcmn5","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000000 + max_fraction: 0.05 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 1587 + top: true + mode: cv +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 291 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.19200000166893,all_total_runs:510|all_finished_runs:390|step2_total_runs:450|step2_finished_runs:350|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:76.47%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1815000027418137,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/51z2kmba|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/exnltfk3,https://wandb.ai/xzy11632/dance-dev/sweeps/l5tne1kz,https://wandb.ai/xzy11632/dance-dev/sweeps/5v2hyx8m","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2105000019073486,all_total_runs:210|all_finished_runs:170|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:80.95%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2105000019073486,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mmgjtqss|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tqhl4chp,https://wandb.ai/xzy11632/dance-dev/sweeps/y6bpyb1x,https://wandb.ai/xzy11632/dance-dev/sweeps/q2ypjc9v","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.188,all_total_runs:150|all_finished_runs:93|step2_total_runs:90|step2_finished_runs:55|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:62.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.188,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/b9mqelgd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3v1qtxjw,https://wandb.ai/xzy11632/dance-dev/sweeps/ww8lnegz,https://wandb.ai/xzy11632/dance-dev/sweeps/4o928ijc","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1949999928474426,all_total_runs:600|all_finished_runs:477|step2_total_runs:540|step2_finished_runs:427|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:79.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1949999928474426 +2adb1f8a-a6b1-4909-8ee8-484814e2d4bf,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0rvmzkia|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/e9ndxdji,https://wandb.ai/xzy11632/dance-dev/sweeps/6lndzud2,https://wandb.ai/xzy11632/dance-dev/sweeps/kboc5b0g","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.24699999392032623,all_total_runs:493|all_finished_runs:376|step2_total_runs:450|step2_finished_runs:336|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:76.27%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.24699999392032623,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ydgm0lth|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/26noy2pa,https://wandb.ai/xzy11632/dance-dev/sweeps/2f5d1v5q,https://wandb.ai/xzy11632/dance-dev/sweeps/tzq3n1vg","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2874999940395355,all_total_runs:196|all_finished_runs:151|step2_total_runs:150|step2_finished_runs:114|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:77.04%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2874999940395355,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/imy288nn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jojuh4cm,https://wandb.ai/xzy11632/dance-dev/sweeps/apstw73v,https://wandb.ai/xzy11632/dance-dev/sweeps/zt8o67pt","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 5.900654074287924 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 1878 + span: 0.5494886821562931 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2645,all_total_runs:150|all_finished_runs:120|step2_total_runs:90|step2_finished_runs:60|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2635,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/965m42b6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2yalgnau,https://wandb.ai/xzy11632/dance-dev/sweeps/8t32838i,https://wandb.ai/xzy11632/dance-dev/sweeps/vudu58gr","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.289000004529953,all_total_runs:600|all_finished_runs:497|step2_total_runs:540|step2_finished_runs:439|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.289000004529953 +3faad104-2ab8-4434-816d-474d8d2641db,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fizus47n|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/opykbimx,https://wandb.ai/xzy11632/dance-dev/sweeps/i46fxdho,https://wandb.ai/xzy11632/dance-dev/sweeps/0rpl7b1w","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2220000028610229,all_total_runs:510|all_finished_runs:408|step2_total_runs:450|step2_finished_runs:350|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2220000028610229,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/j9vqmqzc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/78oimcb2,https://wandb.ai/xzy11632/dance-dev/sweeps/p4bv7omo,https://wandb.ai/xzy11632/dance-dev/sweeps/v818bxqg","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 95 + mode: cv +- type: normalize + target: Log1P + params: + base: 3.32067047306569 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 9665 + n_bins: 29 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 106 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2440000027418137,all_total_runs:210|all_finished_runs:158|step2_total_runs:150|step2_finished_runs:98|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:75.24%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2399999946355819,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nv6zfs1k|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/k2bjzwih,https://wandb.ai/xzy11632/dance-dev/sweeps/5k184qsp","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2265,all_total_runs:130|all_finished_runs:86|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:1|finished_rate:66.15%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2265,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ho5r2gc4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kcxv2i8c,https://wandb.ai/xzy11632/dance-dev/sweeps/8wib619r,https://wandb.ai/xzy11632/dance-dev/sweeps/wbcfkea5","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2384999990463256,all_total_runs:600|all_finished_runs:496|step2_total_runs:540|step2_finished_runs:436|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2384999990463256 +4c4cd77c-8fee-4836-9145-16562a8782fe,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lsbn6s01|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mtt6b779,https://wandb.ai/xzy11632/dance-dev/sweeps/t8f6umf8,https://wandb.ai/xzy11632/dance-dev/sweeps/v0irrjjj","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2649999856948852,all_total_runs:510|all_finished_runs:397|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:77.84%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2649999856948852,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9despcsl|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ezmsqc0q,https://wandb.ai/xzy11632/dance-dev/sweeps/wplvjtme,https://wandb.ai/xzy11632/dance-dev/sweeps/c3we0q6d","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2730000019073486,all_total_runs:210|all_finished_runs:165|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:10|finished_rate:78.57%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2730000019073486,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5u442qtc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nc8wlcyj,https://wandb.ai/xzy11632/dance-dev/sweeps/b5p8yi0r,https://wandb.ai/xzy11632/dance-dev/sweeps/xxykd7zs","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2665,all_total_runs:150|all_finished_runs:115|step2_total_runs:90|step2_finished_runs:69|step3_0_total_runs:20|step3_0_finished_runs:10|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:76.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2665,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ntxr7kaq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/t1j3nvy8,https://wandb.ai/xzy11632/dance-dev/sweeps/dsrncm3q,https://wandb.ai/xzy11632/dance-dev/sweeps/cmgewe21","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.262499988079071,all_total_runs:600|all_finished_runs:457|step2_total_runs:540|step2_finished_runs:429|step3_0_total_runs:20|step3_0_finished_runs:11|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:76.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.262499988079071 +ae29ebd0-1973-40a4-a6af-d15a5f77a80f,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nwvswg5l|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ffiy65ls,https://wandb.ai/xzy11632/dance-dev/sweeps/schg2dj5,https://wandb.ai/xzy11632/dance-dev/sweeps/uqfhre10","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 5 + max_val: 99 + mode: sum +- type: normalize + target: Log1P + params: + base: 1.609807780270743 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 8845 + top: false + mode: cv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2949999868869781,all_total_runs:510|all_finished_runs:395|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:77.45%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.273499995470047,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/58nyk24l|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lv24d8vj,https://wandb.ai/xzy11632/dance-dev/sweeps/ad02sli6,https://wandb.ai/xzy11632/dance-dev/sweeps/735gpode","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3179999887943268,all_total_runs:210|all_finished_runs:180|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.71%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3179999887943268,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/dtc8yp5z|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5wofz01y,https://wandb.ai/xzy11632/dance-dev/sweeps/8jj7lzqj,https://wandb.ai/xzy11632/dance-dev/sweeps/a8dk5vim","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3285,all_total_runs:150|all_finished_runs:109|step2_total_runs:90|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:72.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3285,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bglgtsrn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qu77rzjo,https://wandb.ai/xzy11632/dance-dev/sweeps/z0ttosa9,https://wandb.ai/xzy11632/dance-dev/sweeps/sswf0xb6","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3100000023841858,all_total_runs:600|all_finished_runs:463|step2_total_runs:540|step2_finished_runs:432|step3_0_total_runs:20|step3_0_finished_runs:8|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:77.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3100000023841858 +bc260987-8ee5-4b6e-8773-72805166b3f7,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gwouj5my|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qr8r4tiu,https://wandb.ai/xzy11632/dance-dev/sweeps/5gbsuftg,https://wandb.ai/xzy11632/dance-dev/sweeps/brg0f6tx","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3030000030994415,all_total_runs:510|all_finished_runs:377|step2_total_runs:450|step2_finished_runs:358|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:73.92%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3030000030994415,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bjkz4jyd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/u1a19m75,https://wandb.ai/xzy11632/dance-dev/sweeps/gfs40k7c,https://wandb.ai/xzy11632/dance-dev/sweeps/nrb4cgnm","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3285000026226043,all_total_runs:210|all_finished_runs:142|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:5|finished_rate:67.62%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3285000026226043,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rgunr4aw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hkf9thi8,https://wandb.ai/xzy11632/dance-dev/sweeps/nk9nrwre,https://wandb.ai/xzy11632/dance-dev/sweeps/gknsa1zr","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_counts + - min_cells + - max_cells + min_counts: 206 + min_cells: 0.06718147092429105 + max_counts: 0.9659618346147154 + max_cells: 0.9947187299102788 +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 623 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.339,all_total_runs:150|all_finished_runs:106|step2_total_runs:90|step2_finished_runs:53|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:70.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.333,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/onzh0v98|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sd51005s,https://wandb.ai/xzy11632/dance-dev/sweeps/ecwgn3b9,https://wandb.ai/xzy11632/dance-dev/sweeps/jhqkmls9","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3429999947547912,all_total_runs:600|all_finished_runs:491|step2_total_runs:540|step2_finished_runs:438|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3429999947547912 +bc2a7b3d-f04e-477e-96c9-9d5367d5425c,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8b6rksvv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/79j345m5,https://wandb.ai/xzy11632/dance-dev/sweeps/b7oac1ul,https://wandb.ai/xzy11632/dance-dev/sweeps/zjfaokju","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.221000000834465,all_total_runs:510|all_finished_runs:371|step2_total_runs:450|step2_finished_runs:353|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:72.75%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.221000000834465,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gih5b907|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3h8b4ia7,https://wandb.ai/xzy11632/dance-dev/sweeps/nqd9ry7o,https://wandb.ai/xzy11632/dance-dev/sweeps/vkrxl804","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.3 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 2457 + span: 0.4560040203055745 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 963 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2440000027418137,all_total_runs:210|all_finished_runs:160|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:6|finished_rate:76.19%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2384999990463256,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/x4x6dq9v|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/naq94shp,https://wandb.ai/xzy11632/dance-dev/sweeps/zzrqkpla","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.242,all_total_runs:130|all_finished_runs:84|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:1|finished_rate:64.62%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.242,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jhrb659k|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4414dhzk,https://wandb.ai/xzy11632/dance-dev/sweeps/annv74ih,https://wandb.ai/xzy11632/dance-dev/sweeps/sebccxo2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2284999936819076,all_total_runs:600|all_finished_runs:464|step2_total_runs:540|step2_finished_runs:433|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:11|step3_2_total_runs:20|step3_2_finished_runs:7|finished_rate:77.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2284999936819076 +d9b4bc69-ed90-4f5f-99b2-61b0681ba436,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jr5laoce|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/g2zr0j9a,https://wandb.ai/xzy11632/dance-dev/sweeps/qw5dtkuz,https://wandb.ai/xzy11632/dance-dev/sweeps/j6qftai2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3714999854564667,all_total_runs:510|all_finished_runs:278|step2_total_runs:450|step2_finished_runs:278|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:54.51%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3714999854564667,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/en37dusf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mc3gybd1,https://wandb.ai/xzy11632/dance-dev/sweeps/mo1fgrq0,https://wandb.ai/xzy11632/dance-dev/sweeps/algcvv9n","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4535000026226044,all_total_runs:210|all_finished_runs:163|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:77.62%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4535000026226044,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wtafbrz1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/z6kwq1p8,https://wandb.ai/xzy11632/dance-dev/sweeps/6aybiwne,https://wandb.ai/xzy11632/dance-dev/sweeps/wttjwc6j","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.452,all_total_runs:150|all_finished_runs:75|step2_total_runs:90|step2_finished_runs:71|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:50.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.452,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/m6m2bupx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/l1zrtkhn,https://wandb.ai/xzy11632/dance-dev/sweeps/ht752ldv,https://wandb.ai/xzy11632/dance-dev/sweeps/bdlp03ds","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4325000047683716,all_total_runs:600|all_finished_runs:464|step2_total_runs:540|step2_finished_runs:425|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:77.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4325000047683716 +fe52003e-1460-4a65-a213-2bb1a508332f,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lx05p3vr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/iuazawqt,https://wandb.ai/xzy11632/dance-dev/sweeps/s9ckkiye,https://wandb.ai/xzy11632/dance-dev/sweeps/kval7p9y","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9113029837608336,all_total_runs:510|all_finished_runs:347|step2_total_runs:450|step2_finished_runs:329|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:68.04%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9113029837608336,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4oz0cf4p|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2da7462h,https://wandb.ai/xzy11632/dance-dev/sweeps/heevau0y,https://wandb.ai/xzy11632/dance-dev/sweeps/x6elpm0s","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9113029837608336,all_total_runs:168|all_finished_runs:118|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:70.24%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9113029837608336,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/kdroab03|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/03u2wz8j,https://wandb.ai/xzy11632/dance-dev/sweeps/axsgwcx0,https://wandb.ai/xzy11632/dance-dev/sweeps/j8ds8gtj","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.923861852433281,all_total_runs:150|all_finished_runs:107|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:71.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.923861852433281,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lfanvedj|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zwqjgnrk,https://wandb.ai/xzy11632/dance-dev/sweeps/x274423x,https://wandb.ai/xzy11632/dance-dev/sweeps/di5fcyua","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9215070605278016,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9215070605278016 +c2a461b1-0c15-4047-9fcb-1f966fe55100,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/igxg3cvm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0fxcrj2d,https://wandb.ai/xzy11632/dance-dev/sweeps/ldrt5co9,https://wandb.ai/xzy11632/dance-dev/sweeps/f375yojf","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 7 + max_val: 98 + mode: cv +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.5 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 7024 + top: true + mode: cv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2565000057220459,all_total_runs:510|all_finished_runs:382|step2_total_runs:450|step2_finished_runs:322|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.90%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2524999976158142,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/com9229b|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ix6500p3,https://wandb.ai/xzy11632/dance-dev/sweeps/ui6izi4v,https://wandb.ai/xzy11632/dance-dev/sweeps/ensewqbq","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2714999914169311,all_total_runs:210|all_finished_runs:143|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:68.10%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2714999914169311,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/y431lfy9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dq1c78iq,https://wandb.ai/xzy11632/dance-dev/sweeps/4n2extwx,https://wandb.ai/xzy11632/dance-dev/sweeps/pl4hig09","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.284,all_total_runs:150|all_finished_runs:126|step2_total_runs:90|step2_finished_runs:66|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.284,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/kk54kotc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fzgwbupw,https://wandb.ai/xzy11632/dance-dev/sweeps/2ut6s0zd,https://wandb.ai/xzy11632/dance-dev/sweeps/it9r1cru","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2879999876022339,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2879999876022339 +b0e547f0-462b-4f81-b31b-5b0a5d96f537,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mz273ff5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/gm5ga5mm,https://wandb.ai/xzy11632/dance-dev/sweeps/gh2p49n8,https://wandb.ai/xzy11632/dance-dev/sweeps/2w6dihtz","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 5 + max_val: 99 + mode: cv +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000000 + max_fraction: 0.05 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 227 + top: false + mode: rv +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 872 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1655000001192093,all_total_runs:493|all_finished_runs:400|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.14%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.15150000154972076,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7s03jiel|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dvxln80t,https://wandb.ai/xzy11632/dance-dev/sweeps/xcsvburm,https://wandb.ai/xzy11632/dance-dev/sweeps/3rm9yv2h","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: 0.3 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 9151 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 773 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1739999949932098,all_total_runs:210|all_finished_runs:162|step2_total_runs:150|step2_finished_runs:112|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:77.14%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1724999994039535,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/06p1lum5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dh1b7ovm,https://wandb.ai/xzy11632/dance-dev/sweeps/bjql1aor","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.169,all_total_runs:130|all_finished_runs:71|step2_total_runs:90|step2_finished_runs:58|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:13|finished_rate:54.62%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.169,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ypvuawcw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jw4epusa,https://wandb.ai/xzy11632/dance-dev/sweeps/6svq2ooy,https://wandb.ai/xzy11632/dance-dev/sweeps/rga0qr47","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 2 + max_val: 95 + mode: rv +- type: normalize + target: NormalizeTotal + params: + target_sum: 100000 + max_fraction: 0.01 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 230 + top: true + mode: rv +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 842 + feat_norm_mode: minmax +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1675000041723251,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1665000021457672 +d7d7e89c-c93a-422d-8958-9b4a90b69558,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bvgjtmzk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4lc9v41j,https://wandb.ai/xzy11632/dance-dev/sweeps/qgpqm3rx,https://wandb.ai/xzy11632/dance-dev/sweeps/l6uoduzp","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.16099999845027924,all_total_runs:493|all_finished_runs:331|step2_total_runs:450|step2_finished_runs:327|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:4|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:67.14%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.16099999845027924,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/viqji691|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/djfq0kbd,https://wandb.ai/xzy11632/dance-dev/sweeps/07jhuvad,https://wandb.ai/xzy11632/dance-dev/sweeps/um5kl8ak","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 6 + max_val: 99 + mode: rv +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 2010 + n_bins: 28 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 719 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1879999935626983,all_total_runs:210|all_finished_runs:165|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:7|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:78.57%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.176499992609024,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/r5o2z89s|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zdzqqtvz,https://wandb.ai/xzy11632/dance-dev/sweeps/xp9872vg,https://wandb.ai/xzy11632/dance-dev/sweeps/74ynsvg4","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1715,all_total_runs:150|all_finished_runs:94|step2_total_runs:90|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:62.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1715,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/khimppcz|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7dum9r3k,https://wandb.ai/xzy11632/dance-dev/sweeps/ecn9djtg,https://wandb.ai/xzy11632/dance-dev/sweeps/ncce9e88","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1655000001192093,all_total_runs:601|all_finished_runs:508|step2_total_runs:540|step2_finished_runs:449|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:21|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:84.53%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1655000001192093 +471647b3-04fe-4c76-8372-3264feb950e8,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/294cixrl|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/82nqs7xy,https://wandb.ai/xzy11632/dance-dev/sweeps/sr152dog,https://wandb.ai/xzy11632/dance-dev/sweeps/9db3oova","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 96 + mode: cv +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 6 + gmean_eps: 1 + n_genes: 2483 + n_cells: null + bin_size: 600 + bw_adjust: 2.93757162686828 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 5146 + span: 0.3488075399257312 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4626086950302124,all_total_runs:510|all_finished_runs:328|step2_total_runs:450|step2_finished_runs:323|step3_0_total_runs:20|step3_0_finished_runs:3|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:64.31%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4539130330085754,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/b2sjyq38|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mmw9arqn,https://wandb.ai/xzy11632/dance-dev/sweeps/j3manvbb,https://wandb.ai/xzy11632/dance-dev/sweeps/p3ar3r8e","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4626086950302124,all_total_runs:210|all_finished_runs:132|step2_total_runs:150|step2_finished_runs:95|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:62.86%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4626086950302124,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xsnur0f9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2r2wyqzg,https://wandb.ai/xzy11632/dance-dev/sweeps/fmc6g0fd,https://wandb.ai/xzy11632/dance-dev/sweeps/03yxho1k","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4460869565217391,all_total_runs:150|all_finished_runs:95|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:63.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4460869565217391,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8o3jnu7v|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jlyqtiff,https://wandb.ai/xzy11632/dance-dev/sweeps/vax5rga7,https://wandb.ai/xzy11632/dance-dev/sweeps/14jfmmg9","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4365217387676239,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4365217387676239 +8a554710-08bc-4005-87cd-da9675bdc2e7,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/uukbxis0|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pyigoma7,https://wandb.ai/xzy11632/dance-dev/sweeps/6d5lmjn3,https://wandb.ai/xzy11632/dance-dev/sweeps/hpbmdmp5","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8536009192466736,all_total_runs:511|all_finished_runs:361|step2_total_runs:451|step2_finished_runs:339|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:70.65%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8536009192466736,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nqd73gpc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0vkv2rcm,https://wandb.ai/xzy11632/dance-dev/sweeps/guwhe3e7,https://wandb.ai/xzy11632/dance-dev/sweeps/p9citqd9","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8547815680503845,all_total_runs:210|all_finished_runs:174|step2_total_runs:150|step2_finished_runs:114|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.86%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8547815680503845,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ehzrgrvs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fun57502,https://wandb.ai/xzy11632/dance-dev/sweeps/vt0nrjd6,https://wandb.ai/xzy11632/dance-dev/sweeps/iagsk9eg","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8429752066115702,all_total_runs:150|all_finished_runs:90|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:60.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8429752066115702,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/olvgy5r3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hq27jio9,https://wandb.ai/xzy11632/dance-dev/sweeps/pcdnersx,https://wandb.ai/xzy11632/dance-dev/sweeps/jdcr8j28","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8453364968299866,all_total_runs:586|all_finished_runs:467|step2_total_runs:540|step2_finished_runs:427|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:79.69%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8453364968299866 +eeacb0c1-2217-4cf6-b8ce-1f0fedf1b569,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8ixv1rhg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/r9jacav6,https://wandb.ai/xzy11632/dance-dev/sweeps/q6cmvwu6,https://wandb.ai/xzy11632/dance-dev/sweeps/t5aju4tb","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4641327559947967,all_total_runs:510|all_finished_runs:337|step2_total_runs:450|step2_finished_runs:334|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:66.08%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4641327559947967,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7bo3ceh1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dtijfdv0,https://wandb.ai/xzy11632/dance-dev/sweeps/hdzrhugh,https://wandb.ai/xzy11632/dance-dev/sweeps/41dsr5zv","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 2.104951608085805 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3803 + top: true + mode: cv +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 127 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5342612266540527,all_total_runs:210|all_finished_runs:180|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.71%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.533725917339325,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/c3yy5fd3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dr1ls28c,https://wandb.ai/xzy11632/dance-dev/sweeps/7rl62qzb,https://wandb.ai/xzy11632/dance-dev/sweeps/33lvyrau","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5187366167023555,all_total_runs:150|all_finished_runs:79|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:52.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5187366167023555,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rf2i7twp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/85j5c24x,https://wandb.ai/xzy11632/dance-dev/sweeps/kwna8mqg,https://wandb.ai/xzy11632/dance-dev/sweeps/8tvxcuym","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5251606106758118,all_total_runs:600|all_finished_runs:492|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5251606106758118 diff --git a/examples/atlas/sweep_results/Brain_ans.csv b/examples/atlas/sweep_results/Brain_ans.csv new file mode 100644 index 00000000..56278b4e --- /dev/null +++ b/examples/atlas/sweep_results/Brain_ans.csv @@ -0,0 +1,5833 @@ +Dataset_id,cta_scdeepsort,cta_scdeepsort_best_yaml,cta_scdeepsort_best_res,cta_scdeepsort_run_stats,cta_scdeepsort_check,cta_scdeepsort_step2_best_yaml,cta_scdeepsort_step2_best_res,cta_celltypist,cta_celltypist_best_yaml,cta_celltypist_best_res,cta_celltypist_run_stats,cta_celltypist_check,cta_celltypist_step2_best_yaml,cta_celltypist_step2_best_res,cta_singlecellnet,cta_singlecellnet_best_yaml,cta_singlecellnet_best_res,cta_singlecellnet_run_stats,cta_singlecellnet_check,cta_singlecellnet_step2_best_yaml,cta_singlecellnet_step2_best_res,cta_actinn,cta_actinn_best_yaml,cta_actinn_best_res,cta_actinn_run_stats,cta_actinn_check,cta_actinn_step2_best_yaml,cta_actinn_step2_best_res +0bc7235a-ae5a-479d-a487-510435377e55,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8iryrobo|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ki8v82q5,https://wandb.ai/xzy11632/dance-dev/sweeps/v6ql1ykl,https://wandb.ai/xzy11632/dance-dev/sweeps/mvwab59k","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5544999837875366,all_total_runs:182|all_finished_runs:124|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:4|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:68.13%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5544999837875366,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q8thzcku|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/67icoeh5,https://wandb.ai/xzy11632/dance-dev/sweeps/2yzyyprb,https://wandb.ai/xzy11632/dance-dev/sweeps/l4guxas3","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000000 + max_fraction: 0.05 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 559 + top: true + mode: cv +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 151 + feat_norm_mode: minmax +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5099999904632568,all_total_runs:510|all_finished_runs:369|step2_total_runs:450|step2_finished_runs:348|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:72.35%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.48350000381469727,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xuu3n6fc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fin2t33m,https://wandb.ai/xzy11632/dance-dev/sweeps/77fw5o6f,https://wandb.ai/xzy11632/dance-dev/sweeps/aqsvve2s","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5315,all_total_runs:150|all_finished_runs:61|step2_total_runs:90|step2_finished_runs:61|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:40.67%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5315,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/oxjgrsrd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/w5pscp3d,https://wandb.ai/xzy11632/dance-dev/sweeps/s6b7bfmw,https://wandb.ai/xzy11632/dance-dev/sweeps/x51l7r3s","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5509999990463257,all_total_runs:600|all_finished_runs:504|step2_total_runs:540|step2_finished_runs:445|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5509999990463257 +2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Brain),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/888d5wod|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uiwmt8u5,https://wandb.ai/xzy11632/dance-dev/sweeps/rfx86so6,https://wandb.ai/xzy11632/dance-dev/sweeps/5ik43ov8","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 379 + n_bins: 22 + flavor: seurat +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 268 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3714999854564667,all_total_runs:210|all_finished_runs:175|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:83.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3675000071525574,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0fw2so56|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mmr1g5de,https://wandb.ai/xzy11632/dance-dev/sweeps/7izot7qs,https://wandb.ai/xzy11632/dance-dev/sweeps/jlmorjb4","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.32350000739097595,all_total_runs:510|all_finished_runs:391|step2_total_runs:450|step2_finished_runs:349|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:76.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.32350000739097595,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/o748tsyg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/py2yh3r8,https://wandb.ai/xzy11632/dance-dev/sweeps/cdz2iob0,https://wandb.ai/xzy11632/dance-dev/sweeps/ax6j7ylt","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3795,all_total_runs:150|all_finished_runs:97|step2_total_runs:90|step2_finished_runs:60|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:64.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3795,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q84d43mh|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7kx3k7oq,https://wandb.ai/xzy11632/dance-dev/sweeps/euoz4xtn,https://wandb.ai/xzy11632/dance-dev/sweeps/2mr5ac2i","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.382999986410141,all_total_runs:600|all_finished_runs:506|step2_total_runs:540|step2_finished_runs:446|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.382999986410141 +9c63201d-bfd9-41a8-bbbc-18d947556f3d,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bon88ucg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ml42ca0j,https://wandb.ai/xzy11632/dance-dev/sweeps/nsx84eyz,https://wandb.ai/xzy11632/dance-dev/sweeps/3k71zgrp","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 2467 + n_bins: 23 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 490 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5460000038146973,all_total_runs:215|all_finished_runs:165|step2_total_runs:150|step2_finished_runs:110|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:26|step3_1_finished_runs:20|step3_2_total_runs:19|step3_2_finished_runs:15|finished_rate:76.74%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5440000295639038,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/tjo2gadd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0h9izpy1,https://wandb.ai/xzy11632/dance-dev/sweeps/i8ghsgev,https://wandb.ai/xzy11632/dance-dev/sweeps/h1l9teot","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5149999856948853,all_total_runs:510|all_finished_runs:353|step2_total_runs:450|step2_finished_runs:336|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:69.22%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5149999856948853,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/w0h5fqbq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pw550ttt,https://wandb.ai/xzy11632/dance-dev/sweeps/0zjzlktf,https://wandb.ai/xzy11632/dance-dev/sweeps/mzcibev2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5295,all_total_runs:150|all_finished_runs:118|step2_total_runs:90|step2_finished_runs:58|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5295,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/updcwamn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8ohu0gf1,https://wandb.ai/xzy11632/dance-dev/sweeps/90jvnxg4,https://wandb.ai/xzy11632/dance-dev/sweeps/wuc8ylei","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5335000157356262,all_total_runs:600|all_finished_runs:503|step2_total_runs:540|step2_finished_runs:444|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5335000157356262 +52f18bc3-52d9-487b-bf8f-f0b7aa684b09,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bzh51eku|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/t7mnkajx,https://wandb.ai/xzy11632/dance-dev/sweeps/4n8979b9,https://wandb.ai/xzy11632/dance-dev/sweeps/pfvyypow","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - max_counts + - min_counts + - min_cells + min_counts: 417 + min_cells: 0.0672634037707255 + max_counts: 0.9623011565598958 + max_cells: 0.9539584138468586 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.1 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 9466 + span: 0.3327063122842796 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 985 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5895000100135803,all_total_runs:196|all_finished_runs:140|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:4|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:71.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5889999866485596,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5awnfxur|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3bspph5d,https://wandb.ai/xzy11632/dance-dev/sweeps/4wkwaao0,https://wandb.ai/xzy11632/dance-dev/sweeps/gosfxkg9","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5485000014305115,all_total_runs:476|all_finished_runs:348|step2_total_runs:450|step2_finished_runs:348|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:73.11%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5485000014305115,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/obu7ohqs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tuwhe23l,https://wandb.ai/xzy11632/dance-dev/sweeps/mje7v676,https://wandb.ai/xzy11632/dance-dev/sweeps/30rb0den","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 9.81581694983002 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 8533 + span: 0.5476309362757072 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5825,all_total_runs:150|all_finished_runs:121|step2_total_runs:90|step2_finished_runs:63|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:80.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.582,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/h5sox1qq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tkk37137,https://wandb.ai/xzy11632/dance-dev/sweeps/8kuofdmo,https://wandb.ai/xzy11632/dance-dev/sweeps/v8plc2lh","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5895000100135803,all_total_runs:600|all_finished_runs:499|step2_total_runs:540|step2_finished_runs:439|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5895000100135803 +56c4912d-2bae-4b64-98f2-af8a84389208,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zfh6jo5f|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/j4yerlyf,https://wandb.ai/xzy11632/dance-dev/sweeps/cupn87u2,https://wandb.ai/xzy11632/dance-dev/sweeps/k4amkwmq","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3580000102519989,all_total_runs:210|all_finished_runs:145|step2_total_runs:150|step2_finished_runs:106|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:8|finished_rate:69.05%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3580000102519989,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/om1u72x5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bfpl63bz,https://wandb.ai/xzy11632/dance-dev/sweeps/h86ptqve,https://wandb.ai/xzy11632/dance-dev/sweeps/hoc145hn","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 100000 + max_fraction: 0.5 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 226 + top: false + mode: rv +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 992 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.35499998927116394,all_total_runs:510|all_finished_runs:396|step2_total_runs:450|step2_finished_runs:337|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.65%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.34049999713897705,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hpa8itbf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yxhw6hrg,https://wandb.ai/xzy11632/dance-dev/sweeps/ogwvhde7,https://wandb.ai/xzy11632/dance-dev/sweeps/1mzn11g0","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.373,all_total_runs:150|all_finished_runs:92|step2_total_runs:90|step2_finished_runs:71|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:61.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.373,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0xq25wc4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/vmop7pif,https://wandb.ai/xzy11632/dance-dev/sweeps/8tn7yvjs,https://wandb.ai/xzy11632/dance-dev/sweeps/1dpu33ih","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3544999957084656,all_total_runs:600|all_finished_runs:502|step2_total_runs:540|step2_finished_runs:443|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3544999957084656 +43b7e156-65b3-4a7b-8c7a-08528e4b21d0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/i9nym2ro|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ugip15uh,https://wandb.ai/xzy11632/dance-dev/sweeps/azouushu,https://wandb.ai/xzy11632/dance-dev/sweeps/fdz2z220","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8740000128746033,all_total_runs:210|all_finished_runs:141|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:5|step3_1_total_runs:20|step3_1_finished_runs:5|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:67.14%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8740000128746033,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/njrfx2sd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/d0qeq1ft,https://wandb.ai/xzy11632/dance-dev/sweeps/ao28i16e,https://wandb.ai/xzy11632/dance-dev/sweeps/1tkopoue","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 9 + max_val: 99 + mode: var +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: + min: 1 + max: 10 + gmean_eps: + min: 1 + max: 10 + n_genes: + min: 1000 + max: 3000 + n_cells: + values: + - null + - 1 + - 10 + - 100 + bin_size: + min: 300 + max: 800 + bw_adjust: + min: 1.0 + max: 5.0 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: + min_disp: + min: 0.05 + max: 0.5 + max_disp: + min: 1.0 + max: 100.0 + min_mean: + min: 0.0 + max: 0.0125 + max_mean: + min: 3.0 + max: 20.0 + n_bins: + min: 10 + max: 30 + flavor: + values: + - seurat + - cell_ranger +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: + min: 100 + max: 1000 + feat_norm_mode: + values: + - null + - normalize + - standardize + - minmax + - l2 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8744999766349792,all_total_runs:510|all_finished_runs:389|step2_total_runs:450|step2_finished_runs:329|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:76.27%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8654999732971191,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/887k1rjt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/oioj5d4q,https://wandb.ai/xzy11632/dance-dev/sweeps/i59rya2f,https://wandb.ai/xzy11632/dance-dev/sweeps/j210fgqq","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.873,all_total_runs:150|all_finished_runs:125|step2_total_runs:90|step2_finished_runs:68|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.873,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1t63xurp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uvq676zh,https://wandb.ai/xzy11632/dance-dev/sweeps/mfu80ue4,https://wandb.ai/xzy11632/dance-dev/sweeps/czug79hi","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8619999885559082,all_total_runs:600|all_finished_runs:500|step2_total_runs:540|step2_finished_runs:441|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8619999885559082 +07760522-707a-4a1c-8891-dbd1226d6b27,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/flsm88dc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ggwltzko,https://wandb.ai/xzy11632/dance-dev/sweeps/6o4yy577,https://wandb.ai/xzy11632/dance-dev/sweeps/rq6r99by","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:182|all_finished_runs:93|step2_total_runs:150|step2_finished_runs:85|step3_0_total_runs:20|step3_0_finished_runs:8|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:51.10%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/kygmspb8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lgj6yg3p,https://wandb.ai/xzy11632/dance-dev/sweeps/2kgqnf6r,https://wandb.ai/xzy11632/dance-dev/sweeps/j7yqtdud","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:15|step2_total_runs:90|step2_finished_runs:7|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:10.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/d0dp8leo|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/clti5xmd,https://wandb.ai/xzy11632/dance-dev/sweeps/gwwbfyoy,https://wandb.ai/xzy11632/dance-dev/sweeps/bji8pgf5","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:487|step2_total_runs:540|step2_finished_runs:435|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:81.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0 +146216e1-ec30-4fee-a1fb-25defe801e2d,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wbnner7m|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5ljivap3,https://wandb.ai/xzy11632/dance-dev/sweeps/omevjf6c,https://wandb.ai/xzy11632/dance-dev/sweeps/czvtu1mx","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:168|all_finished_runs:107|step2_total_runs:150|step2_finished_runs:107|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:63.69%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/pwpb4rfm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/smon44r5,https://wandb.ai/xzy11632/dance-dev/sweeps/rzc9i7hm,https://wandb.ai/xzy11632/dance-dev/sweeps/hdlybnl7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:18|step2_total_runs:90|step2_finished_runs:14|step3_0_total_runs:20|step3_0_finished_runs:4|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:12.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/94jlkvhd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pwo0mfuv,https://wandb.ai/xzy11632/dance-dev/sweeps/d1zcq1f3,https://wandb.ai/xzy11632/dance-dev/sweeps/45ment3z","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:487|step2_total_runs:540|step2_finished_runs:436|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:81.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0 +22658f4f-9268-41ad-8828-cc53f4baa9fa,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/t0uj441u|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bhl2shvy,https://wandb.ai/xzy11632/dance-dev/sweeps/ce1n3vno,https://wandb.ai/xzy11632/dance-dev/sweeps/u9cpiusu","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7710000276565552,all_total_runs:182|all_finished_runs:122|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:67.03%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7710000276565552,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/aio76f5y|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4igc6uwy,https://wandb.ai/xzy11632/dance-dev/sweeps/c21dzyzr,https://wandb.ai/xzy11632/dance-dev/sweeps/tesqknws","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7515000104904175,all_total_runs:510|all_finished_runs:323|step2_total_runs:450|step2_finished_runs:321|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:63.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7515000104904175,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vo5e6hw9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5w7eenvp,https://wandb.ai/xzy11632/dance-dev/sweeps/jz7dz1rv,https://wandb.ai/xzy11632/dance-dev/sweeps/zaq3sba8","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7735,all_total_runs:150|all_finished_runs:126|step2_total_runs:90|step2_finished_runs:70|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:84.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7735,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/iimj1dz0|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yrrc1i9f,https://wandb.ai/xzy11632/dance-dev/sweeps/pqzc3r5k,https://wandb.ai/xzy11632/dance-dev/sweeps/fdwokoxq","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7609999775886536,all_total_runs:600|all_finished_runs:509|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7609999775886536 +595c9010-99ec-462d-b6a1-2b2fe5407871,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/t969ysm5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lkr2r2zq,https://wandb.ai/xzy11632/dance-dev/sweeps/kpnyhd83,https://wandb.ai/xzy11632/dance-dev/sweeps/tzy3vv3w","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7954999804496765,all_total_runs:179|all_finished_runs:124|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:17|step3_0_finished_runs:4|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:69.27%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7954999804496765,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9kbd9qot|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qx1jjjzk,https://wandb.ai/xzy11632/dance-dev/sweeps/o52320x4,https://wandb.ai/xzy11632/dance-dev/sweeps/ti1xb207","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 6 + max_val: 97 + mode: sum +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 6 + gmean_eps: 1 + n_genes: 2719 + n_cells: null + bin_size: 341 + bw_adjust: 4.188156564910177 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 4529 + n_bins: 28 + flavor: seurat +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 127 + feat_norm_mode: l2 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7764999866485596,all_total_runs:510|all_finished_runs:344|step2_total_runs:450|step2_finished_runs:340|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:67.45%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7699999809265137,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nxmpirmv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uav0gqma,https://wandb.ai/xzy11632/dance-dev/sweeps/0c6gmy6y,https://wandb.ai/xzy11632/dance-dev/sweeps/gm2eowtj","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7595,all_total_runs:150|all_finished_runs:68|step2_total_runs:90|step2_finished_runs:68|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:45.33%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7595,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/crxrjodt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/s31c4wq8,https://wandb.ai/xzy11632/dance-dev/sweeps/ard4f4u9,https://wandb.ai/xzy11632/dance-dev/sweeps/6mriem5a","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7795000076293945,all_total_runs:600|all_finished_runs:488|step2_total_runs:540|step2_finished_runs:437|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:81.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7795000076293945 +700aed19-c16e-4ba8-9191-07da098a8626,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9vvinymt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/z0f6156l,https://wandb.ai/xzy11632/dance-dev/sweeps/fmt50h6n,https://wandb.ai/xzy11632/dance-dev/sweeps/pbhkpdsh","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:194|all_finished_runs:145|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:18|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:74.74%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/veqwly0p|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/m5no45rs,https://wandb.ai/xzy11632/dance-dev/sweeps/s3krb2sa,https://wandb.ai/xzy11632/dance-dev/sweeps/3js0dhw4","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:13|step2_total_runs:90|step2_finished_runs:6|step3_0_total_runs:20|step3_0_finished_runs:6|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:8.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/15mt3eq3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3pcc3teq,https://wandb.ai/xzy11632/dance-dev/sweeps/vsssu6xu,https://wandb.ai/xzy11632/dance-dev/sweeps/k69a11h0","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:487|step2_total_runs:540|step2_finished_runs:438|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:81.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0 +70e4f35b-c98c-45a1-9aa9-2053b07315dd,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/17rooerg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/k5eks81i,https://wandb.ai/xzy11632/dance-dev/sweeps/tjht44xq,https://wandb.ai/xzy11632/dance-dev/sweeps/jv70jolu","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_counts + - min_counts + - max_cells + min_counts: 396 + min_cells: 0.08114426717926743 + max_counts: 0.90410781757729 + max_cells: 0.9639650300380824 +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 2843 + span: 0.22156016971664047 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 421 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4954999983310699,all_total_runs:182|all_finished_runs:128|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:8|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:70.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4950000047683716,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/y71ibr35|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8m159qsq,https://wandb.ai/xzy11632/dance-dev/sweeps/dl6qvpyt,https://wandb.ai/xzy11632/dance-dev/sweeps/2xcjlwtg","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 3 + max_val: 95 + mode: rv +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: + min: 1 + max: 10 + gmean_eps: + min: 1 + max: 10 + n_genes: + min: 1000 + max: 3000 + n_cells: + values: + - null + - 1 + - 10 + - 100 + bin_size: + min: 300 + max: 800 + bw_adjust: + min: 1.0 + max: 5.0 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: + min_disp: + min: 0.05 + max: 0.5 + max_disp: + min: 1.0 + max: 100.0 + min_mean: + min: 0.0 + max: 0.0125 + max_mean: + min: 3.0 + max: 20.0 + n_bins: + min: 10 + max: 30 + flavor: + values: + - seurat + - cell_ranger +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: + min: 100 + max: 1000 + feat_norm_mode: + values: + - null + - normalize + - standardize + - minmax + - l2 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4715000092983246,all_total_runs:486|all_finished_runs:323|step2_total_runs:450|step2_finished_runs:309|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:4|step3_1_finished_runs:3|step3_2_total_runs:12|step3_2_finished_runs:11|finished_rate:66.46%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4169999957084656,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1dxe2l0w|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ab7lhlo3,https://wandb.ai/xzy11632/dance-dev/sweeps/7yjr744v,https://wandb.ai/xzy11632/dance-dev/sweeps/4u07d9ec","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - min_cells + - max_cells + - min_counts + min_counts: 64 + min_cells: 0.09731136945676208 + max_counts: 0.9966478293559916 + max_cells: 0.9887500429224624 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.1 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 8255 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4845,all_total_runs:150|all_finished_runs:116|step2_total_runs:90|step2_finished_runs:61|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:77.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.484,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/grhvlnli|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pr5mnq0v,https://wandb.ai/xzy11632/dance-dev/sweeps/160tm6oy,https://wandb.ai/xzy11632/dance-dev/sweeps/o05jmzta","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4884999990463257,all_total_runs:600|all_finished_runs:502|step2_total_runs:540|step2_finished_runs:442|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4884999990463257 +72822932-10f6-466f-baf3-a2c1d89364bc,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hkkcbz82|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cmx0xd8z,https://wandb.ai/xzy11632/dance-dev/sweeps/x6c34300,https://wandb.ai/xzy11632/dance-dev/sweeps/5l0emjk0","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 5.2193874739513255 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 153 + top: false + mode: var +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 327 + feat_norm_mode: normalize +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3400000035762787,all_total_runs:196|all_finished_runs:144|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:6|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:73.47%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3395000100135803,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fqlyzkgn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xii6bzr5,https://wandb.ai/xzy11632/dance-dev/sweeps/vi11qjbr,https://wandb.ai/xzy11632/dance-dev/sweeps/bkatxi6c","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_cells + - max_counts + min_counts: 73 + min_cells: 0.06861965374324884 + max_counts: 0.9403196748011254 + max_cells: 0.9891061058649674 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 8 + gmean_eps: 1 + n_genes: 1598 + n_cells: 10 + bin_size: 613 + bw_adjust: 2.3827652126906504 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 9314 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.31200000643730164,all_total_runs:510|all_finished_runs:346|step2_total_runs:450|step2_finished_runs:343|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:67.84%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2800000011920929,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/66gvcj96|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dfkmrl1i,https://wandb.ai/xzy11632/dance-dev/sweeps/ciietvtw,https://wandb.ai/xzy11632/dance-dev/sweeps/f1mqyetb","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_cells + - min_cells + - max_counts + min_counts: 309 + min_cells: 0.03282765645433316 + max_counts: 0.9979696820991064 + max_cells: 0.9842200110060252 +- type: normalize + target: NormalizeTotal + params: + target_sum: null + max_fraction: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 858 + span: 0.1494170169182795 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3445,all_total_runs:150|all_finished_runs:104|step2_total_runs:90|step2_finished_runs:69|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:69.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3435,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1ztr9p35|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/z8modqe0,https://wandb.ai/xzy11632/dance-dev/sweeps/tdgslsq6,https://wandb.ai/xzy11632/dance-dev/sweeps/5ir3n8zd","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - max_counts + - min_cells + - min_counts + min_counts: 40 + min_cells: 0.08125217299144956 + max_counts: 0.9080661177583162 + max_cells: 0.9518281878428064 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 1510 + n_bins: 15 + flavor: cell_ranger +- type: feature.cell + target: CellPCA + params: + out: feature.cell + log_level: INFO + n_components: 110 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3415000140666961,all_total_runs:600|all_finished_runs:483|step2_total_runs:540|step2_finished_runs:423|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3409999907016754 +9372df2d-13d6-4fac-980b-919a5b7eb483,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nmy20c1k|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/vk37x3sb,https://wandb.ai/xzy11632/dance-dev/sweeps/2ygn08c2,https://wandb.ai/xzy11632/dance-dev/sweeps/0omklbn8","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4934999942779541,all_total_runs:210|all_finished_runs:164|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:9|finished_rate:78.10%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4934999942779541,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/p5149kgi|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0r0wmg1f,https://wandb.ai/xzy11632/dance-dev/sweeps/549m8ddo,https://wandb.ai/xzy11632/dance-dev/sweeps/envt6ozk","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4639999866485596,all_total_runs:510|all_finished_runs:363|step2_total_runs:450|step2_finished_runs:342|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:71.18%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4639999866485596,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vugxebv6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/iqwj2j8c,https://wandb.ai/xzy11632/dance-dev/sweeps/tta7mfwk,https://wandb.ai/xzy11632/dance-dev/sweeps/zmiplrsx","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 96 + mode: rv +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: 0.3 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5035,all_total_runs:150|all_finished_runs:83|step2_total_runs:90|step2_finished_runs:63|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:55.33%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ixh7uwhg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9ichlmte,https://wandb.ai/xzy11632/dance-dev/sweeps/akgvfhvf,https://wandb.ai/xzy11632/dance-dev/sweeps/0yr2q39w","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - min_cells + - max_cells + - min_counts + min_counts: 490 + min_cells: 0.0799339187017819 + max_counts: 0.9194196815998212 + max_cells: 0.9645400767614664 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 9664 + span: 0.1714636071756561 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 279 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5130000114440918,all_total_runs:600|all_finished_runs:486|step2_total_runs:540|step2_finished_runs:434|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:81.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5120000243186951 +94c41723-b2c4-4b59-a49a-64c9b851903e,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/uc3r74ot|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/s3l0vrwm,https://wandb.ai/xzy11632/dance-dev/sweeps/9vj7bbi4,https://wandb.ai/xzy11632/dance-dev/sweeps/mwg2kekc","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5055000185966492,all_total_runs:182|all_finished_runs:121|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:66.48%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5055000185966492,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fxkuovhw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5je4ee5m,https://wandb.ai/xzy11632/dance-dev/sweeps/u8uc0m16,https://wandb.ai/xzy11632/dance-dev/sweeps/ljbofqhi","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.45100000500679016,all_total_runs:459|all_finished_runs:372|step2_total_runs:450|step2_finished_runs:372|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:81.05%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.45100000500679016,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ol3ztzsp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4y8mkdbc,https://wandb.ai/xzy11632/dance-dev/sweeps/227yfu9d,https://wandb.ai/xzy11632/dance-dev/sweeps/p7ic9i6t","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_counts + - min_counts + - max_cells + min_counts: 464 + min_cells: 0.08771271564181772 + max_counts: 0.9772928029677204 + max_cells: 0.9973074494435608 +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.1 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 4103 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.521,all_total_runs:150|all_finished_runs:91|step2_total_runs:90|step2_finished_runs:58|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:60.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.52,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4bmyn7k4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ylbgm0wn,https://wandb.ai/xzy11632/dance-dev/sweeps/4fpuzvk1,https://wandb.ai/xzy11632/dance-dev/sweeps/3pqtwqki","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5214999914169312,all_total_runs:600|all_finished_runs:508|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5214999914169312 +9813a1d4-d107-459e-9b2e-7687be935f69,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/piw9m0r4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/83fzgznu,https://wandb.ai/xzy11632/dance-dev/sweeps/k12d4bb4,https://wandb.ai/xzy11632/dance-dev/sweeps/elc05kea","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:168|all_finished_runs:21|step2_total_runs:150|step2_finished_runs:21|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:12.50%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/uot5zwd7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ic3r42l1,https://wandb.ai/xzy11632/dance-dev/sweeps/6uyjhppn,https://wandb.ai/xzy11632/dance-dev/sweeps/vsm4o34t","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:12|step2_total_runs:90|step2_finished_runs:6|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:4|finished_rate:8.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lqheset7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xxs7x3pm,https://wandb.ai/xzy11632/dance-dev/sweeps/zlciejor,https://wandb.ai/xzy11632/dance-dev/sweeps/x840lvth","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:478|step2_total_runs:540|step2_finished_runs:430|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:79.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0 +c893ddc3-f25b-45e2-8c9e-155918b4261c,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ojpcn5g1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/z9bpiv2r,https://wandb.ai/xzy11632/dance-dev/sweeps/d3yy3133,https://wandb.ai/xzy11632/dance-dev/sweeps/pbn9c42i","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6389999985694885,all_total_runs:210|all_finished_runs:135|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:4|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:64.29%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6389999985694885,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/w1v0bvs3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8s7p9moq,https://wandb.ai/xzy11632/dance-dev/sweeps/on8m4hqo,https://wandb.ai/xzy11632/dance-dev/sweeps/ssor6fhj","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6100000143051147,all_total_runs:493|all_finished_runs:322|step2_total_runs:450|step2_finished_runs:321|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:65.31%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6100000143051147,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/m9ewkyjd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yvjbuz2i,https://wandb.ai/xzy11632/dance-dev/sweeps/83qmid0p,https://wandb.ai/xzy11632/dance-dev/sweeps/wncozogi","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6525,all_total_runs:150|all_finished_runs:109|step2_total_runs:90|step2_finished_runs:53|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:72.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6525,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sj7b58nh|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nwnyv0md,https://wandb.ai/xzy11632/dance-dev/sweeps/63eiq8x8","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.640999972820282,all_total_runs:580|all_finished_runs:460|step2_total_runs:540|step2_finished_runs:420|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|finished_rate:79.31%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.640999972820282 +e8681d74-ac9e-4be5-be14-1cf1bbd54dd7,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/pnrn8w7g|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bpgm4640,https://wandb.ai/xzy11632/dance-dev/sweeps/8y4as678,https://wandb.ai/xzy11632/dance-dev/sweeps/9s7cwjsk","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8090000152587891,all_total_runs:196|all_finished_runs:140|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:71.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8090000152587891,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gbqweu7x|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jjy9qrix,https://wandb.ai/xzy11632/dance-dev/sweeps/joj9iz08,https://wandb.ai/xzy11632/dance-dev/sweeps/foxi84ed","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7944999933242798,all_total_runs:510|all_finished_runs:338|step2_total_runs:450|step2_finished_runs:335|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:66.27%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7944999933242798,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/k94ikq6w|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2sifydjq,https://wandb.ai/xzy11632/dance-dev/sweeps/muqarbip,https://wandb.ai/xzy11632/dance-dev/sweeps/p255tp2y","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8025,all_total_runs:150|all_finished_runs:96|step2_total_runs:90|step2_finished_runs:59|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:64.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8025,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7v3lwalo|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kw2ikhb8,https://wandb.ai/xzy11632/dance-dev/sweeps/0m9yh1l4,https://wandb.ai/xzy11632/dance-dev/sweeps/6qay03k2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7954999804496765,all_total_runs:600|all_finished_runs:505|step2_total_runs:540|step2_finished_runs:446|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7954999804496765 +364348b4-bc34-4fe1-a851-60d99e36cafa,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rtybof1t|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8i4spm76,https://wandb.ai/xzy11632/dance-dev/sweeps/s2fldxlp,https://wandb.ai/xzy11632/dance-dev/sweeps/ew7a4p33","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4740000069141388,all_total_runs:182|all_finished_runs:132|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:12|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:72.53%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4740000069141388,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vwy5n0wm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/07fioida,https://wandb.ai/xzy11632/dance-dev/sweeps/xufvszgy,https://wandb.ai/xzy11632/dance-dev/sweeps/0yezlkrd","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.45500001311302185,all_total_runs:493|all_finished_runs:322|step2_total_runs:450|step2_finished_runs:301|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:65.31%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.45500001311302185,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9ulcm4zs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lc65vlu9,https://wandb.ai/xzy11632/dance-dev/sweeps/102sw7wh,https://wandb.ai/xzy11632/dance-dev/sweeps/xg2gclj5","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4675,all_total_runs:150|all_finished_runs:98|step2_total_runs:90|step2_finished_runs:62|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:65.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4675,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gsqa6qn6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hp6az7jq,https://wandb.ai/xzy11632/dance-dev/sweeps/9i3b010j,https://wandb.ai/xzy11632/dance-dev/sweeps/ysm8mfqg","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 5 + max_val: 97 + mode: rv +- type: normalize + target: NormalizeTotal + params: + target_sum: 10000 + max_fraction: 0.05 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 532 + feat_norm_mode: minmax +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4720000028610229,all_total_runs:600|all_finished_runs:484|step2_total_runs:540|step2_finished_runs:425|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:80.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4715000092983246 +93cb76aa-a84b-4a92-8e6c-66a914e26d4c,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/aqfmsmpx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sxj7ndgn,https://wandb.ai/xzy11632/dance-dev/sweeps/kf6pxhij,https://wandb.ai/xzy11632/dance-dev/sweeps/kfpas6cb","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5115000009536743,all_total_runs:168|all_finished_runs:120|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:71.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5115000009536743,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7d180py8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yskxemo0,https://wandb.ai/xzy11632/dance-dev/sweeps/0t8yh7s0,https://wandb.ai/xzy11632/dance-dev/sweeps/7s7n24pt","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 8 + gmean_eps: 1 + n_genes: 1777 + n_cells: null + bin_size: 339 + bw_adjust: 3.3713229453448954 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 8640 + n_bins: 17 + flavor: cell_ranger +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5084999799728394,all_total_runs:510|all_finished_runs:319|step2_total_runs:450|step2_finished_runs:297|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:62.55%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4819999933242798,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ipf0tqke|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3gh8isu6,https://wandb.ai/xzy11632/dance-dev/sweeps/j5574zjm,https://wandb.ai/xzy11632/dance-dev/sweeps/70m1w1tx","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5005,all_total_runs:150|all_finished_runs:98|step2_total_runs:90|step2_finished_runs:67|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:13|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:65.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5005,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6mib6vb3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rrbcza8h,https://wandb.ai/xzy11632/dance-dev/sweeps/84l9elo3,https://wandb.ai/xzy11632/dance-dev/sweeps/j16ha10r","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5139999985694885,all_total_runs:587|all_finished_runs:458|step2_total_runs:540|step2_finished_runs:424|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:21|step3_2_finished_runs:14|finished_rate:78.02%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5139999985694885 +d5452b83-7c3d-4d7c-ab7a-c7fece7196c5,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rl05x7ci|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2zrcomei,https://wandb.ai/xzy11632/dance-dev/sweeps/bt85t5r6,https://wandb.ai/xzy11632/dance-dev/sweeps/pt4fsfec","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5748762488365173,all_total_runs:196|all_finished_runs:142|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:9|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:72.45%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5748762488365173,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/996q4lqs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/itvecyve,https://wandb.ai/xzy11632/dance-dev/sweeps/b8xy9cpt,https://wandb.ai/xzy11632/dance-dev/sweeps/4vxpqar7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_counts + - min_counts + - max_cells + min_counts: 250 + min_cells: 0.0855746910666821 + max_counts: 0.9536696418259212 + max_cells: 0.9763833874910646 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 2 + gmean_eps: 1 + n_genes: 2008 + n_cells: null + bin_size: 501 + bw_adjust: 1.1228665082399538 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 9677 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5736386179924011,all_total_runs:493|all_finished_runs:342|step2_total_runs:450|step2_finished_runs:339|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:69.37%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5693069100379944,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qegua12o|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/na4v8g99,https://wandb.ai/xzy11632/dance-dev/sweeps/f9oyzlth,https://wandb.ai/xzy11632/dance-dev/sweeps/2sb4k5ve","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5983910891089109,all_total_runs:150|all_finished_runs:111|step2_total_runs:90|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:74.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5983910891089109,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/58chvobl|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qnjsie2l,https://wandb.ai/xzy11632/dance-dev/sweeps/nvedfna7,https://wandb.ai/xzy11632/dance-dev/sweeps/h3mv5jvv","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5866336822509766,all_total_runs:600|all_finished_runs:455|step2_total_runs:540|step2_finished_runs:434|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:75.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5866336822509766 +774c18c5-efa1-4dc5-9e5e-2c824bab2e34,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2b6ovf5e|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/p16tpv7x,https://wandb.ai/xzy11632/dance-dev/sweeps/3sk7tq5f,https://wandb.ai/xzy11632/dance-dev/sweeps/c2j4hpev","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5355648398399353,all_total_runs:196|all_finished_runs:127|step2_total_runs:150|step2_finished_runs:107|step3_0_total_runs:20|step3_0_finished_runs:7|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:64.80%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5355648398399353,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fj389gc1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ubgfkhxk,https://wandb.ai/xzy11632/dance-dev/sweeps/oqrx2u9d,https://wandb.ai/xzy11632/dance-dev/sweeps/f59m8oby","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 2 + max_val: 99 + mode: var +- type: normalize + target: Log1P + params: + base: 1.0584452177046255 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 8584 + span: 0.3285327702328724 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.525801956653595,all_total_runs:493|all_finished_runs:327|step2_total_runs:450|step2_finished_runs:289|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:66.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5118549466133118,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ayv8er0u|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/iz7l716f,https://wandb.ai/xzy11632/dance-dev/sweeps/au13vzvx,https://wandb.ai/xzy11632/dance-dev/sweeps/89kft6qm","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4825662482566248,all_total_runs:150|all_finished_runs:103|step2_total_runs:90|step2_finished_runs:48|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:68.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4825662482566248,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/n18bq62d|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/m9mopes9,https://wandb.ai/xzy11632/dance-dev/sweeps/xyehmf38,https://wandb.ai/xzy11632/dance-dev/sweeps/edu8cxmh","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5299860239028931,all_total_runs:600|all_finished_runs:449|step2_total_runs:540|step2_finished_runs:389|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5299860239028931 +3d044b52-140a-4528-bf0d-a2dbef9e1f40,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/32erao2o|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/d907a0yd,https://wandb.ai/xzy11632/dance-dev/sweeps/goiqwztt,https://wandb.ai/xzy11632/dance-dev/sweeps/ihj7vn5a","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4431818127632141,all_total_runs:210|all_finished_runs:176|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.81%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4431818127632141,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9hu1w69n|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uirvntb0,https://wandb.ai/xzy11632/dance-dev/sweeps/vkaj6z6p,https://wandb.ai/xzy11632/dance-dev/sweeps/tyw2zheq","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4393939375877381,all_total_runs:476|all_finished_runs:323|step2_total_runs:450|step2_finished_runs:303|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:67.86%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4393939375877381,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/miscnge3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/23lpopcy,https://wandb.ai/xzy11632/dance-dev/sweeps/b41qby5x,https://wandb.ai/xzy11632/dance-dev/sweeps/tyxa0naz","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 9.242037197483024 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 107 + span: 0.4291184002623445 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4090909090909091,all_total_runs:150|all_finished_runs:112|step2_total_runs:90|step2_finished_runs:60|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:74.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4053030303030303,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ar7vpgcg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lekzswh7,https://wandb.ai/xzy11632/dance-dev/sweeps/8hdww3lf,https://wandb.ai/xzy11632/dance-dev/sweeps/96ciucvt","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3901515007019043,all_total_runs:600|all_finished_runs:482|step2_total_runs:540|step2_finished_runs:431|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:80.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3901515007019043 +f6d9f2ad-5ec7-4d53-b7f0-ceb0e7bcd181,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/kvawc25y|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9sheweny,https://wandb.ai/xzy11632/dance-dev/sweeps/b0rongi3,https://wandb.ai/xzy11632/dance-dev/sweeps/ekmf487e","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - min_cells + - min_counts + - max_cells + min_counts: 263 + min_cells: 0.09338611959221152 + max_counts: 0.9103664063089278 + max_cells: 0.9776450063364456 +- type: normalize + target: Log1P + params: + base: 9.78567214435452 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: + min_disp: 0.42152838507294543 + max_disp: 90.25784555274645 + min_mean: 0.003754725333592855 + max_mean: 13.674551723139253 + n_bins: 13 + flavor: seurat +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 484 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5167151093482971,all_total_runs:210|all_finished_runs:176|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.81%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5130813717842102,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qphd8ocy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/x4rsitxd,https://wandb.ai/xzy11632/dance-dev/sweeps/4f2tamuu,https://wandb.ai/xzy11632/dance-dev/sweeps/y585p279","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5130813717842102,all_total_runs:510|all_finished_runs:400|step2_total_runs:450|step2_finished_runs:342|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.43%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5130813717842102,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6dd8f769|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rzk9xa5x,https://wandb.ai/xzy11632/dance-dev/sweeps/onruvxox","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - max_counts + - min_counts + - min_cells + min_counts: 500 + min_cells: 0.06393007765980539 + max_counts: 0.976667396355037 + max_cells: 0.9642353149258592 +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000 + max_fraction: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 7772 + span: 0.4864283691327307 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5188953488372093,all_total_runs:130|all_finished_runs:89|step2_total_runs:90|step2_finished_runs:54|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:17|finished_rate:68.46%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5159883720930233,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/c6dubcot|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6h51vv85,https://wandb.ai/xzy11632/dance-dev/sweeps/3wbf935e,https://wandb.ai/xzy11632/dance-dev/sweeps/eaxe9v47","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5254360437393188,all_total_runs:600|all_finished_runs:495|step2_total_runs:540|step2_finished_runs:435|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5254360437393188 +f64e1be1-de15-4d27-8da4-82225cd4c035,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4voqq7a0|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6para2wq,https://wandb.ai/xzy11632/dance-dev/sweeps/cabldqak,https://wandb.ai/xzy11632/dance-dev/sweeps/s2xpuetf","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6637080907821655,all_total_runs:196|all_finished_runs:147|step2_total_runs:150|step2_finished_runs:117|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:75.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6637080907821655,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xzxk78ak|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/n3z93yct,https://wandb.ai/xzy11632/dance-dev/sweeps/4arisd9h,https://wandb.ai/xzy11632/dance-dev/sweeps/u8gs5iqg","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 2921 + top: true + mode: cv +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 237 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6538461446762085,all_total_runs:493|all_finished_runs:370|step2_total_runs:450|step2_finished_runs:349|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:75.05%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.64891517162323,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bti6u79m|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nr43xqu5,https://wandb.ai/xzy11632/dance-dev/sweeps/ol7bbm2a,https://wandb.ai/xzy11632/dance-dev/sweeps/hvb1fsf0","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6617357001972387,all_total_runs:150|all_finished_runs:97|step2_total_runs:90|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:64.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6617357001972387,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/983ind0g|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jcaz6527,https://wandb.ai/xzy11632/dance-dev/sweeps/wfvyft6a,https://wandb.ai/xzy11632/dance-dev/sweeps/c947lcfl","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6814595460891724,all_total_runs:600|all_finished_runs:473|step2_total_runs:540|step2_finished_runs:423|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:78.83%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6814595460891724 +576f193c-75d0-4a11-bd25-8676587e6dc2,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zmxfvz4r|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5pamm1zp,https://wandb.ai/xzy11632/dance-dev/sweeps/a0z7ol9w,https://wandb.ai/xzy11632/dance-dev/sweeps/e3io8n98","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5260545611381531,all_total_runs:210|all_finished_runs:146|step2_total_runs:150|step2_finished_runs:95|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:69.52%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5260545611381531,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5wuups73|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6py3oklg,https://wandb.ai/xzy11632/dance-dev/sweeps/dktteowl,https://wandb.ai/xzy11632/dance-dev/sweeps/smtg82tq","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.47394540905952454,all_total_runs:476|all_finished_runs:347|step2_total_runs:450|step2_finished_runs:347|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:72.90%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.47394540905952454,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zzzd70pb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jykr43e9,https://wandb.ai/xzy11632/dance-dev/sweeps/gyjktfxe,https://wandb.ai/xzy11632/dance-dev/sweeps/s06xv871","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5268817204301075,all_total_runs:150|all_finished_runs:74|step2_total_runs:90|step2_finished_runs:73|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:49.33%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5268817204301075,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hczkf4io|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6hi8qvm1,https://wandb.ai/xzy11632/dance-dev/sweeps/lgckqg0v,https://wandb.ai/xzy11632/dance-dev/sweeps/t06qe0t3","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5136476159095764,all_total_runs:600|all_finished_runs:493|step2_total_runs:540|step2_finished_runs:433|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.17%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5136476159095764 +ed11cc3e-2947-407c-883c-c53b043917c3,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/933n8vho|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wsvx4b09,https://wandb.ai/xzy11632/dance-dev/sweeps/onnj2wg3,https://wandb.ai/xzy11632/dance-dev/sweeps/lgf5xaby","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4857142865657806,all_total_runs:182|all_finished_runs:130|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:11|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:71.43%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4857142865657806,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9sbul8yi|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/csltl4qv,https://wandb.ai/xzy11632/dance-dev/sweeps/vevuukvb,https://wandb.ai/xzy11632/dance-dev/sweeps/yky0bz21","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.46880465745925903,all_total_runs:493|all_finished_runs:368|step2_total_runs:450|step2_finished_runs:345|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.65%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.46880465745925903,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/d2u4p3ti|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mbb5jpgc,https://wandb.ai/xzy11632/dance-dev/sweeps/1anx19g8,https://wandb.ai/xzy11632/dance-dev/sweeps/igfltnzc","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4921282798833819,all_total_runs:150|all_finished_runs:133|step2_total_runs:90|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:88.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4921282798833819,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/3yr6bmem|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2jjcov9j,https://wandb.ai/xzy11632/dance-dev/sweeps/frj335ws,https://wandb.ai/xzy11632/dance-dev/sweeps/e0ceayft","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5026239156723022,all_total_runs:600|all_finished_runs:485|step2_total_runs:540|step2_finished_runs:425|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5026239156723022 +421e5f54-5de7-425f-b399-34ead0651ce1,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2v3pfqs3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/exctgkg7,https://wandb.ai/xzy11632/dance-dev/sweeps/0ilextij,https://wandb.ai/xzy11632/dance-dev/sweeps/hxwj0qn7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.92849999666214,all_total_runs:208|all_finished_runs:120|step2_total_runs:150|step2_finished_runs:104|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:19|step3_1_finished_runs:7|step3_2_total_runs:19|step3_2_finished_runs:8|finished_rate:57.69%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.92849999666214,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/u41n43km|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cidz8sry,https://wandb.ai/xzy11632/dance-dev/sweeps/xv6wv8e5,https://wandb.ai/xzy11632/dance-dev/sweeps/g8l71hnl","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.92849999666214,all_total_runs:510|all_finished_runs:383|step2_total_runs:450|step2_finished_runs:325|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:75.10%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.92849999666214,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fdskrg67|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/v4hxj53u,https://wandb.ai/xzy11632/dance-dev/sweeps/59sb97va,https://wandb.ai/xzy11632/dance-dev/sweeps/69x4485s","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9265,all_total_runs:150|all_finished_runs:101|step2_total_runs:90|step2_finished_runs:61|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:67.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9265,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mtgx8qhv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wllx4ks3,https://wandb.ai/xzy11632/dance-dev/sweeps/u1ypef2p,https://wandb.ai/xzy11632/dance-dev/sweeps/hsa4s4fk","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9419999718666076,all_total_runs:600|all_finished_runs:498|step2_total_runs:540|step2_finished_runs:443|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:83.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9419999718666076 diff --git a/examples/atlas/sweep_results/Heart_ans.csv b/examples/atlas/sweep_results/Heart_ans.csv new file mode 100644 index 00000000..d09699b0 --- /dev/null +++ b/examples/atlas/sweep_results/Heart_ans.csv @@ -0,0 +1,4771 @@ +Dataset_id,cta_scdeepsort,cta_scdeepsort_best_yaml,cta_scdeepsort_best_res,cta_scdeepsort_run_stats,cta_scdeepsort_check,cta_scdeepsort_step2_best_yaml,cta_scdeepsort_step2_best_res,cta_actinn,cta_actinn_best_yaml,cta_actinn_best_res,cta_actinn_run_stats,cta_actinn_check,cta_actinn_step2_best_yaml,cta_actinn_step2_best_res,cta_celltypist,cta_celltypist_best_yaml,cta_celltypist_best_res,cta_celltypist_run_stats,cta_celltypist_check,cta_celltypist_step2_best_yaml,cta_celltypist_step2_best_res,cta_singlecellnet,cta_singlecellnet_best_yaml,cta_singlecellnet_best_res,cta_singlecellnet_run_stats,cta_singlecellnet_check,cta_singlecellnet_step2_best_yaml,cta_singlecellnet_step2_best_res +5a11f879-d1ef-458a-910c-9b0bdfca5ebf,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/c1y9hl9c|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9gz3pmi2,https://wandb.ai/xzy11632/dance-dev/sweeps/pwb5373a,https://wandb.ai/xzy11632/dance-dev/sweeps/4kab8419","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9506173133850098,all_total_runs:210|all_finished_runs:120|step2_total_runs:150|step2_finished_runs:103|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:57.14%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9506173133850098,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/uvd74lau|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/j8nt0tvf,https://wandb.ai/xzy11632/dance-dev/sweeps/30givefv,https://wandb.ai/xzy11632/dance-dev/sweeps/ce943o71","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9365079402923584,all_total_runs:600|all_finished_runs:432|step2_total_runs:540|step2_finished_runs:395|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:72.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9365079402923584,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bzv8jp6b|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hcdwfsqe,https://wandb.ai/xzy11632/dance-dev/sweeps/hr9dvt9y,https://wandb.ai/xzy11632/dance-dev/sweeps/vw8htm3n","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.948853611946106,all_total_runs:510|all_finished_runs:363|step2_total_runs:450|step2_finished_runs:303|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:71.18%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.948853611946106,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9wl63ncu|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tyhv65th,https://wandb.ai/xzy11632/dance-dev/sweeps/0d2njqgp,https://wandb.ai/xzy11632/dance-dev/sweeps/nmhbwu4c","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9435626102292768,all_total_runs:150|all_finished_runs:102|step2_total_runs:90|step2_finished_runs:62|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:68.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9435626102292768 +1c739a3e-c3f5-49d5-98e0-73975e751201,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/pe7wrxhx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bjghjlj5,https://wandb.ai/xzy11632/dance-dev/sweeps/wahyq279,https://wandb.ai/xzy11632/dance-dev/sweeps/33b4rte8","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 2560 + span: 0.1528448051259105 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 479 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3375000059604645,all_total_runs:210|all_finished_runs:155|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:5|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:73.81%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3370000123977661,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nc4mh2qv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/l6b41sk3,https://wandb.ai/xzy11632/dance-dev/sweeps/2n26rwm1,https://wandb.ai/xzy11632/dance-dev/sweeps/bs2h91ra","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 10 + max_val: 98 + mode: var +- type: normalize + target: Log1P + params: + base: 9.926418705617555 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 546 + top: true + mode: cv +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 733 + feat_norm_mode: null +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3294999897480011,all_total_runs:600|all_finished_runs:436|step2_total_runs:540|step2_finished_runs:389|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:72.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3285000026226043,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/z2v6lwrl|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zebalczl,https://wandb.ai/xzy11632/dance-dev/sweeps/av6xm0h7,https://wandb.ai/xzy11632/dance-dev/sweeps/lx1ky4rl","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_cells + - max_counts + - min_cells + min_counts: 226 + min_cells: 0.047663500071270286 + max_counts: 0.9287568186013924 + max_cells: 0.991629947014312 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 10 + gmean_eps: 1 + n_genes: 1261 + n_cells: 100 + bin_size: 528 + bw_adjust: 1.8575579429886373 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 7844 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.304500013589859,all_total_runs:510|all_finished_runs:397|step2_total_runs:450|step2_finished_runs:356|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:77.84%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2845000028610229,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cz5nv4k7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7y02zy49,https://wandb.ai/xzy11632/dance-dev/sweeps/2osv7399,https://wandb.ai/xzy11632/dance-dev/sweeps/zo9ku2lg","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.353,all_total_runs:150|all_finished_runs:106|step2_total_runs:90|step2_finished_runs:63|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:70.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.353 +4ed927e9-c099-49af-b8ce-a2652d069333,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gl8a9d5v|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nrpkd1s1,https://wandb.ai/xzy11632/dance-dev/sweeps/i4ot3t4a,https://wandb.ai/xzy11632/dance-dev/sweeps/1off7yhe","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 98 + mode: cv +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.5 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 6023 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 894 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2824999988079071,all_total_runs:210|all_finished_runs:160|step2_total_runs:150|step2_finished_runs:113|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:76.19%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2770000100135803,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hw7iu7r7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nq363zvg,https://wandb.ai/xzy11632/dance-dev/sweeps/q9ttsvw9,https://wandb.ai/xzy11632/dance-dev/sweeps/tb6ulcb5","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2605000138282776,all_total_runs:586|all_finished_runs:422|step2_total_runs:540|step2_finished_runs:391|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:12|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:72.01%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2605000138282776,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lxi0z80g|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/spk2mp9z,https://wandb.ai/xzy11632/dance-dev/sweeps/xwvu3aat,https://wandb.ai/xzy11632/dance-dev/sweeps/ssfi4ars","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 6.02274143830023 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 8532 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.248999997973442,all_total_runs:510|all_finished_runs:369|step2_total_runs:450|step2_finished_runs:329|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:72.35%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2469999939203262,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/98f9waz4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pnvn9x31,https://wandb.ai/xzy11632/dance-dev/sweeps/ptnisndu,https://wandb.ai/xzy11632/dance-dev/sweeps/b5708jv5","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_counts + - min_cells + - max_cells + min_counts: 74 + min_cells: 0.09669474709406638 + max_counts: 0.960778034561404 + max_cells: 0.9605326701065215 +- type: normalize + target: Log1P + params: + base: 4.732515014862363 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 8735 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2755,all_total_runs:150|all_finished_runs:103|step2_total_runs:90|step2_finished_runs:59|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:5|finished_rate:68.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.27 +83b5e943-a1d5-4164-b3f2-f7a37f01b524,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ozba1990|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/338v3aw4,https://wandb.ai/xzy11632/dance-dev/sweeps/ptrrovoq,https://wandb.ai/xzy11632/dance-dev/sweeps/uln7yltc","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:210|all_finished_runs:156|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:15|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:74.29%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8jryp9lp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ukwfwav1,https://wandb.ai/xzy11632/dance-dev/sweeps/fufwxjwm,https://wandb.ai/xzy11632/dance-dev/sweeps/f601wnp4","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:465|step2_total_runs:540|step2_finished_runs:413|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:77.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/y0qtxk9j|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bl395yon,https://wandb.ai/xzy11632/dance-dev/sweeps/adza96q3,https://wandb.ai/xzy11632/dance-dev/sweeps/g9bz7g6m","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:3|step2_total_runs:90|step2_finished_runs:3|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:2.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0 +97a17473-e2b1-4f31-a544-44a60773e2dd,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5n3rvy41|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/863btck9,https://wandb.ai/xzy11632/dance-dev/sweeps/2eikroc1,https://wandb.ai/xzy11632/dance-dev/sweeps/ga9o1zyj","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:196|all_finished_runs:127|step2_total_runs:150|step2_finished_runs:107|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:7|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:64.80%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/twupybq1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fhdtfxvs,https://wandb.ai/xzy11632/dance-dev/sweeps/p0i060ck,https://wandb.ai/xzy11632/dance-dev/sweeps/rdft757u","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:404|step2_total_runs:540|step2_finished_runs:373|step3_0_total_runs:20|step3_0_finished_runs:15|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:7|finished_rate:67.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jfnzokgb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ca7a5g7f,https://wandb.ai/xzy11632/dance-dev/sweeps/h30t1cml,https://wandb.ai/xzy11632/dance-dev/sweeps/mnapim92","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:89|step2_total_runs:90|step2_finished_runs:40|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:59.33%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0 +572f3f3e-d3e4-4d13-8e2b-88215e508481,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gaurbw0r|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5luhlhr8,https://wandb.ai/xzy11632/dance-dev/sweeps/6cvflsss,https://wandb.ai/xzy11632/dance-dev/sweeps/tdxjnsvf","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.5 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9960 + top: true + mode: rv +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 280 + feat_norm_mode: normalize +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4004999995231629,all_total_runs:210|all_finished_runs:178|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.76%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3995000123977661,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/dllmfk0t|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pdu1htvk,https://wandb.ai/xzy11632/dance-dev/sweeps/9mfsvnog,https://wandb.ai/xzy11632/dance-dev/sweeps/fohrpha2","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3944999873638153,all_total_runs:558|all_finished_runs:349|step2_total_runs:540|step2_finished_runs:349|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:62.54%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3944999873638153,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/usfsqcao|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fn99c0s6,https://wandb.ai/xzy11632/dance-dev/sweeps/uff7y5g5,https://wandb.ai/xzy11632/dance-dev/sweeps/vgjmwbae","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 9 + max_val: 96 + mode: rv +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.3 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 5189 + n_bins: 22 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 211 + feat_norm_mode: null +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.38749998807907104,all_total_runs:493|all_finished_runs:360|step2_total_runs:450|step2_finished_runs:339|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:73.02%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.34200000762939453,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/uwriv450|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9hfqgivj,https://wandb.ai/xzy11632/dance-dev/sweeps/hp8z8z34,https://wandb.ai/xzy11632/dance-dev/sweeps/ejfw0jpu","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - min_counts + - max_counts + - min_cells + min_counts: 346 + min_cells: 0.0694734963763344 + max_counts: 0.9289519358097762 + max_cells: 0.9793397916743596 +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.5 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.386,all_total_runs:150|all_finished_runs:102|step2_total_runs:90|step2_finished_runs:62|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:68.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.367 +1009f384-b12d-448e-ba9f-1b7d2ecfbb4e,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/amviyxfs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ix2rrweg,https://wandb.ai/xzy11632/dance-dev/sweeps/xapwqo4n,https://wandb.ai/xzy11632/dance-dev/sweeps/f4x92sq0","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:196|all_finished_runs:159|step2_total_runs:150|step2_finished_runs:127|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:81.12%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gwh6la6w|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3vsbqktb,https://wandb.ai/xzy11632/dance-dev/sweeps/xt9unkek,https://wandb.ai/xzy11632/dance-dev/sweeps/kb3pvbli","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:558|all_finished_runs:201|step2_total_runs:540|step2_finished_runs:201|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:36.02%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lzcg95em|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/h2e64eqv,https://wandb.ai/xzy11632/dance-dev/sweeps/d6xyx3c4,https://wandb.ai/xzy11632/dance-dev/sweeps/rqto6ulw","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9949558638083228,all_total_runs:150|all_finished_runs:6|step2_total_runs:90|step2_finished_runs:1|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:4|finished_rate:4.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9949558638083228 +1062c0f2-2a44-4cf9-a7c8-b5ed58b4728d,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6dw5iyg7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/06k4gi1t,https://wandb.ai/xzy11632/dance-dev/sweeps/le8r1zi4,https://wandb.ai/xzy11632/dance-dev/sweeps/ocpspe17","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:210|all_finished_runs:172|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:81.90%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jkth4zsc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/1ashimrr,https://wandb.ai/xzy11632/dance-dev/sweeps/njjv7gqk,https://wandb.ai/xzy11632/dance-dev/sweeps/gmq97c11","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:558|all_finished_runs:143|step2_total_runs:540|step2_finished_runs:143|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:25.63%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7oxzs0b8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/25fynzcw,https://wandb.ai/xzy11632/dance-dev/sweeps/jjxwb24d,https://wandb.ai/xzy11632/dance-dev/sweeps/4kpasu1p","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:7|step2_total_runs:90|step2_finished_runs:2|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:4.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0 +1252c5fb-945f-42d6-b1a8-8a3bd864384b,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sno8i9gr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/emiq1b6f,https://wandb.ai/xzy11632/dance-dev/sweeps/gsm0u3kf,https://wandb.ai/xzy11632/dance-dev/sweeps/ciumcc4l","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:182|all_finished_runs:144|step2_total_runs:150|step2_finished_runs:131|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:79.12%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gxfub92q|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zwovjdz3,https://wandb.ai/xzy11632/dance-dev/sweeps/euthmoud,https://wandb.ai/xzy11632/dance-dev/sweeps/xiyyfe6c","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:558|all_finished_runs:168|step2_total_runs:540|step2_finished_runs:168|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:30.11%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gw31w8jw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/byh0a3yl,https://wandb.ai/xzy11632/dance-dev/sweeps/44fxvkm1,https://wandb.ai/xzy11632/dance-dev/sweeps/qwzcemto","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:10|step2_total_runs:90|step2_finished_runs:5|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:6.67%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0 +9434b020-de42-43eb-bcc4-542b2be69015,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qfzblohn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fs7r3zpn,https://wandb.ai/xzy11632/dance-dev/sweeps/cdk9uk18,https://wandb.ai/xzy11632/dance-dev/sweeps/0zjjl1n1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9725000262260436,all_total_runs:196|all_finished_runs:156|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:79.59%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9725000262260436,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ljcbdxpa|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cd3jmhod,https://wandb.ai/xzy11632/dance-dev/sweeps/iuk576pz,https://wandb.ai/xzy11632/dance-dev/sweeps/xgyejfld","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - max_cells + - min_cells + - min_counts + min_counts: 464 + min_cells: 0.03355997076275901 + max_counts: 0.9675911149628488 + max_cells: 0.956159811249128 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 4104 + span: 0.5225329617640444 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 662 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9670000076293944,all_total_runs:600|all_finished_runs:419|step2_total_runs:540|step2_finished_runs:371|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:12|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:69.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9664999842643738,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/scbko4h4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/aym16539,https://wandb.ai/xzy11632/dance-dev/sweeps/4cex2w1l,https://wandb.ai/xzy11632/dance-dev/sweeps/al84eum0","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9725000262260436,all_total_runs:493|all_finished_runs:382|step2_total_runs:450|step2_finished_runs:345|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:77.48%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9725000262260436,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cyx8x2ef|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cm2y2e85,https://wandb.ai/xzy11632/dance-dev/sweeps/znjdtv6p,https://wandb.ai/xzy11632/dance-dev/sweeps/46gbjbvk","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9405,all_total_runs:150|all_finished_runs:89|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:59.33%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9405 +a68b64d8-aee3-4947-81b7-36b8fe5a44d2,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9nsespwt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fckv2ie6,https://wandb.ai/xzy11632/dance-dev/sweeps/23djawcn,https://wandb.ai/xzy11632/dance-dev/sweeps/nt9416y1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6399999856948853,all_total_runs:210|all_finished_runs:127|step2_total_runs:150|step2_finished_runs:108|step3_0_total_runs:20|step3_0_finished_runs:15|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:4|finished_rate:60.48%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6399999856948853,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xkh6yuxk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/spekwsdz,https://wandb.ai/xzy11632/dance-dev/sweeps/6dh4dpk0,https://wandb.ai/xzy11632/dance-dev/sweeps/i3do9zdc","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6345000267028809,all_total_runs:586|all_finished_runs:411|step2_total_runs:540|step2_finished_runs:371|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:70.14%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6345000267028809,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1128huxa|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/98s1vpgx,https://wandb.ai/xzy11632/dance-dev/sweeps/dkxsnzmu,https://wandb.ai/xzy11632/dance-dev/sweeps/kf6fvur7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - min_cells + - max_counts + - min_counts + min_counts: 357 + min_cells: 0.0763522329602772 + max_counts: 0.987479403102362 + max_cells: 0.9701675498579886 +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 290 + top: true + mode: cv +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 203 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.637499988079071,all_total_runs:510|all_finished_runs:367|step2_total_runs:450|step2_finished_runs:307|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:71.96%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6359999775886536,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/evq18crq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hlqtxu6d,https://wandb.ai/xzy11632/dance-dev/sweeps/ijgh3h21,https://wandb.ai/xzy11632/dance-dev/sweeps/pwgh6hr9","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6355,all_total_runs:150|all_finished_runs:86|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:57.33%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6355 +bdf69f8d-5a96-4d6f-a9f5-9ee0e33597b7,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/frisdu4r|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/q0fywjox,https://wandb.ai/xzy11632/dance-dev/sweeps/dz23lu62,https://wandb.ai/xzy11632/dance-dev/sweeps/g0d29txd","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:196|all_finished_runs:140|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:5|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:71.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ker3hse1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/u2lungmk,https://wandb.ai/xzy11632/dance-dev/sweeps/dj0siwoj,https://wandb.ai/xzy11632/dance-dev/sweeps/drz0g4vw","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:413|step2_total_runs:540|step2_finished_runs:363|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:12|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:68.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ff1dw1c2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/97hw5ggv,https://wandb.ai/xzy11632/dance-dev/sweeps/dfg3m7qm,https://wandb.ai/xzy11632/dance-dev/sweeps/91mz09o5","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:18|step2_total_runs:90|step2_finished_runs:4|step3_0_total_runs:20|step3_0_finished_runs:9|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:12.00%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0 +c5d88abe-f23a-45fa-a534-788985e93dad,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/n20e9pvs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ahwfxqzw,https://wandb.ai/xzy11632/dance-dev/sweeps/kxkron6u,https://wandb.ai/xzy11632/dance-dev/sweeps/87hdz0un","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8317757248878479,all_total_runs:210|all_finished_runs:148|step2_total_runs:150|step2_finished_runs:114|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:6|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:70.48%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8317757248878479,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/varlsjin|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/59ahqx3h,https://wandb.ai/xzy11632/dance-dev/sweeps/gbsb3rwm,https://wandb.ai/xzy11632/dance-dev/sweeps/tn2ract9","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.822429895401001,all_total_runs:586|all_finished_runs:433|step2_total_runs:540|step2_finished_runs:393|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:73.89%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.822429895401001,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/i94przah|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7ruaq9f1,https://wandb.ai/xzy11632/dance-dev/sweeps/o1o45k7l,https://wandb.ai/xzy11632/dance-dev/sweeps/lnl0snl5","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.836448609828949,all_total_runs:494|all_finished_runs:375|step2_total_runs:450|step2_finished_runs:334|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:4|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:75.91%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.836448609828949,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/x92janfg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cs9lr34q,https://wandb.ai/xzy11632/dance-dev/sweeps/b6e4q5lc,https://wandb.ai/xzy11632/dance-dev/sweeps/nbea554w","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8271028037383178,all_total_runs:150|all_finished_runs:98|step2_total_runs:90|step2_finished_runs:58|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:65.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8271028037383178 +d4e69e01-3ba2-4d6b-a15d-e7048f78f22e,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/dtijolpo|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kq7ng1ob,https://wandb.ai/xzy11632/dance-dev/sweeps/ynfxrozp,https://wandb.ai/xzy11632/dance-dev/sweeps/z56oz4tj","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - min_counts + - max_counts + - min_cells + min_counts: 65 + min_cells: 0.03832924256867298 + max_counts: 0.984514560421666 + max_cells: 0.9614458802125864 +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 4223 + span: 0.5672352308267095 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 569 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2565000057220459,all_total_runs:210|all_finished_runs:154|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:8|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:73.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2560000121593475,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7a6dob4a|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/oi1v8899,https://wandb.ai/xzy11632/dance-dev/sweeps/2uaewfha,https://wandb.ai/xzy11632/dance-dev/sweeps/6dyddwas","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2540000081062317,all_total_runs:600|all_finished_runs:500|step2_total_runs:540|step2_finished_runs:443|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:83.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2540000081062317,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/t0kyb9nc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/px7yqntj,https://wandb.ai/xzy11632/dance-dev/sweeps/a1ye7fv1,https://wandb.ai/xzy11632/dance-dev/sweeps/vx4ibf72","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 6889 + top: true + mode: var +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 107 + feat_norm_mode: l2 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.25,all_total_runs:493|all_finished_runs:389|step2_total_runs:450|step2_finished_runs:349|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:78.90%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2195000052452087,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6wmjqpgy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/n2e1k541,https://wandb.ai/xzy11632/dance-dev/sweeps/sa9ksi62,https://wandb.ai/xzy11632/dance-dev/sweeps/6j62a8fd","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2405,all_total_runs:150|all_finished_runs:126|step2_total_runs:90|step2_finished_runs:66|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2405 +d567b692-c374-4628-a508-8008f6778f22,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6j8pm34t|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qx2374ds,https://wandb.ai/xzy11632/dance-dev/sweeps/o4kcwds1,https://wandb.ai/xzy11632/dance-dev/sweeps/xo5xdpan","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2924999892711639,all_total_runs:210|all_finished_runs:158|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:6|finished_rate:75.24%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2924999892711639,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hg8lr90w|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bytbzr48,https://wandb.ai/xzy11632/dance-dev/sweeps/f12fqnz0,https://wandb.ai/xzy11632/dance-dev/sweeps/e7224vbc","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3075000047683716,all_total_runs:600|all_finished_runs:497|step2_total_runs:540|step2_finished_runs:443|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:82.83%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3075000047683716,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4raopmgl|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tj8oqma7,https://wandb.ai/xzy11632/dance-dev/sweeps/j7f8tlxr,https://wandb.ai/xzy11632/dance-dev/sweeps/vo4w0lty","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 10000 + max_fraction: 1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 399 + top: false + mode: rv +- type: feature.cell + target: CellSVD + params: + out: feature.cell + log_level: INFO + n_components: 846 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.265500009059906,all_total_runs:510|all_finished_runs:410|step2_total_runs:450|step2_finished_runs:350|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.39%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.26100000739097595,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gyyf7mvs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uhzoul7q,https://wandb.ai/xzy11632/dance-dev/sweeps/gvcfxbmn,https://wandb.ai/xzy11632/dance-dev/sweeps/aenj1m4d","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 1941 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.276,all_total_runs:150|all_finished_runs:90|step2_total_runs:90|step2_finished_runs:66|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:60.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2745 +e6a11140-2545-46bc-929e-da243eed2cae,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/c2luijzg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ohzu189d,https://wandb.ai/xzy11632/dance-dev/sweeps/xk206l8b,https://wandb.ai/xzy11632/dance-dev/sweeps/j5aozig6","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6290000081062317,all_total_runs:196|all_finished_runs:120|step2_total_runs:150|step2_finished_runs:106|step3_0_total_runs:20|step3_0_finished_runs:7|step3_1_total_runs:20|step3_1_finished_runs:7|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:61.22%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6290000081062317,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ugaq0qoa|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ce8bglci,https://wandb.ai/xzy11632/dance-dev/sweeps/7rk5gmih,https://wandb.ai/xzy11632/dance-dev/sweeps/r3xtjpfd","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6230000257492065,all_total_runs:600|all_finished_runs:478|step2_total_runs:540|step2_finished_runs:418|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:79.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6230000257492065,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hyf9hn73|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lmvwaqis,https://wandb.ai/xzy11632/dance-dev/sweeps/bfgvyy1a,https://wandb.ai/xzy11632/dance-dev/sweeps/e30as1qf","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_cells + - min_cells + - max_counts + min_counts: 324 + min_cells: 0.0994897883945216 + max_counts: 0.9671792921176364 + max_cells: 0.952327145046576 +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 3947 +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 392 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6265000104904175,all_total_runs:510|all_finished_runs:388|step2_total_runs:450|step2_finished_runs:328|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:76.08%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.625,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/w5rpqy3q|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ntx4v8m0,https://wandb.ai/xzy11632/dance-dev/sweeps/qcc4kp5w,https://wandb.ai/xzy11632/dance-dev/sweeps/wzg4qmk6","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 5497 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6275,all_total_runs:150|all_finished_runs:126|step2_total_runs:90|step2_finished_runs:70|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:84.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6265 +f15e263b-6544-46cb-a46e-e33ab7ce8347,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5myhddto|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sy7is0by,https://wandb.ai/xzy11632/dance-dev/sweeps/hhagx1i4,https://wandb.ai/xzy11632/dance-dev/sweeps/3xb10het","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3880000114440918,all_total_runs:196|all_finished_runs:154|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:78.57%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3880000114440918,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lhd5hw1j|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hkqqu13y,https://wandb.ai/xzy11632/dance-dev/sweeps/l8tuzebe,https://wandb.ai/xzy11632/dance-dev/sweeps/94g5yum1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3880000114440918,all_total_runs:600|all_finished_runs:499|step2_total_runs:540|step2_finished_runs:442|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:83.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3880000114440918,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/datmwta4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ri7gpq3f,https://wandb.ai/xzy11632/dance-dev/sweeps/6apaq3my,https://wandb.ai/xzy11632/dance-dev/sweeps/crgctmfi","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.32499998807907104,all_total_runs:453|all_finished_runs:348|step2_total_runs:450|step2_finished_runs:348|step3_0_total_runs:1|step3_0_finished_runs:0|step3_1_total_runs:1|step3_1_finished_runs:0|step3_2_total_runs:1|step3_2_finished_runs:0|finished_rate:76.82%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.32499998807907104,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/k6sheszo|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/s5sq7wq1,https://wandb.ai/xzy11632/dance-dev/sweeps/v5th243l,https://wandb.ai/xzy11632/dance-dev/sweeps/8mczjqow","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3775,all_total_runs:150|all_finished_runs:75|step2_total_runs:90|step2_finished_runs:70|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:50.00%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3775 +f75f2ff4-2884-4c2d-b375-70de37a34507,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/as6ivetf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/icsk75i5,https://wandb.ai/xzy11632/dance-dev/sweeps/vtlcraw8,https://wandb.ai/xzy11632/dance-dev/sweeps/qjov7ai7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:182|all_finished_runs:129|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:11|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:70.88%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5ueqmi7v|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/1qtlda25,https://wandb.ai/xzy11632/dance-dev/sweeps/ir5rr5hz,https://wandb.ai/xzy11632/dance-dev/sweeps/krbtx7e0","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:490|step2_total_runs:540|step2_finished_runs:442|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:81.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/azji707t|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wkrd46cp,https://wandb.ai/xzy11632/dance-dev/sweeps/snjn7ct3,https://wandb.ai/xzy11632/dance-dev/sweeps/m3aqfp6h","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:27|step2_total_runs:90|step2_finished_runs:6|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:6|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:18.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0 +f7995301-7551-4e1d-8396-ffe3c9497ace,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/on56q36a|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/1z4xejov,https://wandb.ai/xzy11632/dance-dev/sweeps/dmtgt30u,https://wandb.ai/xzy11632/dance-dev/sweeps/jra56t1o","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:210|all_finished_runs:149|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:12|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:70.95%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jv6l7zfb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/1sctem2k,https://wandb.ai/xzy11632/dance-dev/sweeps/p40vryym,https://wandb.ai/xzy11632/dance-dev/sweeps/g0mqq7jx","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:489|step2_total_runs:540|step2_finished_runs:439|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:81.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,,,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/syusb3sn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rkq3icqq,https://wandb.ai/xzy11632/dance-dev/sweeps/x0txps05,https://wandb.ai/xzy11632/dance-dev/sweeps/3avow7ff","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:17|step2_total_runs:90|step2_finished_runs:7|step3_0_total_runs:20|step3_0_finished_runs:5|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:4|finished_rate:11.33%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0 +fa27492b-82ff-4ab7-ac61-0e2b184eee67,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ypo5xler|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/75anan67,https://wandb.ai/xzy11632/dance-dev/sweeps/js80dvkm,https://wandb.ai/xzy11632/dance-dev/sweeps/uqz1gvwh","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6775000095367432,all_total_runs:210|all_finished_runs:188|step2_total_runs:150|step2_finished_runs:128|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:89.52%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6775000095367432,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/53f85d2t|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mx5wisvh,https://wandb.ai/xzy11632/dance-dev/sweeps/3hgvwcnm,https://wandb.ai/xzy11632/dance-dev/sweeps/d3hegirq","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6725000143051147,all_total_runs:600|all_finished_runs:511|step2_total_runs:540|step2_finished_runs:453|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:85.17%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6725000143051147,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cnp2of1r|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/vqejchrw,https://wandb.ai/xzy11632/dance-dev/sweeps/ppkzgb1v,https://wandb.ai/xzy11632/dance-dev/sweeps/31caw0fv","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6654999852180481,all_total_runs:453|all_finished_runs:369|step2_total_runs:450|step2_finished_runs:369|step3_0_total_runs:1|step3_0_finished_runs:0|step3_1_total_runs:1|step3_1_finished_runs:0|step3_2_total_runs:1|step3_2_finished_runs:0|finished_rate:81.46%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6654999852180481,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/webizoum|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tmwothqs,https://wandb.ai/xzy11632/dance-dev/sweeps/53ld9d93,https://wandb.ai/xzy11632/dance-dev/sweeps/xbnf6ce4","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.687,all_total_runs:150|all_finished_runs:125|step2_total_runs:90|step2_finished_runs:67|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:83.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.687 +2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Heart),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nrlo0chb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/itw8aeyv,https://wandb.ai/xzy11632/dance-dev/sweeps/gpjulqb6,https://wandb.ai/xzy11632/dance-dev/sweeps/c1at5qua","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 10 + max_val: 99 + mode: rv +- type: normalize + target: Log1P + params: + base: 9.18544800269841 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: + min_disp: 0.4075238200301367 + max_disp: 41.50678547261833 + min_mean: 0.00843552051034461 + max_mean: 8.182103499798425 + n_bins: 29 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 745 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3445000052452087,all_total_runs:210|all_finished_runs:180|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.71%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3434999883174896,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9gykotmw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/erompt6i,https://wandb.ai/xzy11632/dance-dev/sweeps/egu5uugr,https://wandb.ai/xzy11632/dance-dev/sweeps/mld787ay","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3395000100135803,all_total_runs:600|all_finished_runs:501|step2_total_runs:540|step2_finished_runs:442|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3395000100135803,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/3qs9s7s9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/m84q60x9,https://wandb.ai/xzy11632/dance-dev/sweeps/wu90yl9e,https://wandb.ai/xzy11632/dance-dev/sweeps/t9t6we7t","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.29750001430511475,all_total_runs:459|all_finished_runs:352|step2_total_runs:450|step2_finished_runs:352|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:76.69%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.29750001430511475,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qckzvsgm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/q0dzg8at,https://wandb.ai/xzy11632/dance-dev/sweeps/d1jd1aip,https://wandb.ai/xzy11632/dance-dev/sweeps/0riym8d4","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 5.353035738226729 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3613 + span: 0.5980502565579662 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3535,all_total_runs:150|all_finished_runs:135|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:90.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.351 +65badd7a-9262-4fd1-9ce2-eb5dc0ca8039,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/s66g7ypd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kuznrzx4,https://wandb.ai/xzy11632/dance-dev/sweeps/t9vtfezo,https://wandb.ai/xzy11632/dance-dev/sweeps/adq7j7mn","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 7.954575208692654 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 1124 + top: false + mode: sum +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 224 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3549999892711639,all_total_runs:210|all_finished_runs:172|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:81.90%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3535000085830688,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/iyzgg8qc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2g6gclgm,https://wandb.ai/xzy11632/dance-dev/sweeps/v8ut5hbp,https://wandb.ai/xzy11632/dance-dev/sweeps/j0a5a1y8","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3695000112056732,all_total_runs:600|all_finished_runs:497|step2_total_runs:540|step2_finished_runs:441|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:82.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3695000112056732,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/n9pv9var|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uox7hj7b,https://wandb.ai/xzy11632/dance-dev/sweeps/lghef4b7,https://wandb.ai/xzy11632/dance-dev/sweeps/16q0x97m","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 6 + max_val: 96 + mode: rv +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.3 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 8619 + top: false + mode: cv +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 703 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.34549999237060547,all_total_runs:510|all_finished_runs:405|step2_total_runs:450|step2_finished_runs:346|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:79.41%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3075000047683716,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vxnzgy15|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3xj9qbbu,https://wandb.ai/xzy11632/dance-dev/sweeps/d6z821hx,https://wandb.ai/xzy11632/dance-dev/sweeps/0lbam9m7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_counts + - max_cells + - min_counts + min_counts: 255 + min_cells: 0.05512632013510902 + max_counts: 0.9512421884020308 + max_cells: 0.9944368835063409 +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.7 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 5517 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3475,all_total_runs:150|all_finished_runs:85|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:56.67%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3465 +f7c1c579-2dc0-47e2-ba19-8165c5a0e353,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/j4vz4ws5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tecc0rt6,https://wandb.ai/xzy11632/dance-dev/sweeps/jtni6g54,https://wandb.ai/xzy11632/dance-dev/sweeps/uu6v00z6","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 9 + max_val: 95 + mode: rv +- type: normalize + target: Log1P + params: + base: 6.969521165170953 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 2223 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 167 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6460000276565552,all_total_runs:210|all_finished_runs:170|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:80.95%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6455000042915344,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5o741t7i|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/63x9jmta,https://wandb.ai/xzy11632/dance-dev/sweeps/rlwzwx5n,https://wandb.ai/xzy11632/dance-dev/sweeps/jvvacpgh","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6570000052452087,all_total_runs:600|all_finished_runs:503|step2_total_runs:540|step2_finished_runs:443|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6570000052452087,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8zlw0izq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/js85xigg,https://wandb.ai/xzy11632/dance-dev/sweeps/li8w1754,https://wandb.ai/xzy11632/dance-dev/sweeps/p4u94ygt","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6359999775886536,all_total_runs:476|all_finished_runs:354|step2_total_runs:450|step2_finished_runs:353|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:74.37%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6359999775886536,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hibrhoos|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2ljc12im,https://wandb.ai/xzy11632/dance-dev/sweeps/uokkhdx4,https://wandb.ai/xzy11632/dance-dev/sweeps/saiqel71","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.1 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 9652 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6575,all_total_runs:150|all_finished_runs:114|step2_total_runs:90|step2_finished_runs:62|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:76.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.657 +ed852810-a003-4386-9846-1638362cee39,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/b47t3rbw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xf8y2bet,https://wandb.ai/xzy11632/dance-dev/sweeps/60mja5m8,https://wandb.ai/xzy11632/dance-dev/sweeps/y27ceukr","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3409999907016754,all_total_runs:210|all_finished_runs:162|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:13|step3_2_total_runs:20|step3_2_finished_runs:10|finished_rate:77.14%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3409999907016754,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2r7es2cd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5ppq5ml0,https://wandb.ai/xzy11632/dance-dev/sweeps/2or6v893,https://wandb.ai/xzy11632/dance-dev/sweeps/490783q6","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3425000011920929,all_total_runs:600|all_finished_runs:498|step2_total_runs:540|step2_finished_runs:440|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3425000011920929,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q0fadl6x|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/f6na6k1n,https://wandb.ai/xzy11632/dance-dev/sweeps/1hwk0ec1,https://wandb.ai/xzy11632/dance-dev/sweeps/g73ajpao","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_counts + - min_cells + - max_cells + min_counts: 413 + min_cells: 0.07306060707222754 + max_counts: 0.9906711226720064 + max_cells: 0.9967104990967668 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 4 + gmean_eps: 1 + n_genes: 2400 + n_cells: null + bin_size: 538 + bw_adjust: 2.433119961706298 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9618 + top: true + mode: var +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3149999976158142,all_total_runs:510|all_finished_runs:340|step2_total_runs:450|step2_finished_runs:337|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:66.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3084999918937683,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ogkykku8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/i14mq3cb,https://wandb.ai/xzy11632/dance-dev/sweeps/3px9dsp3,https://wandb.ai/xzy11632/dance-dev/sweeps/iat7lp6o","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.329,all_total_runs:150|all_finished_runs:105|step2_total_runs:90|step2_finished_runs:66|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:70.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.329 diff --git a/examples/atlas/sweep_results/Intestine_ans.csv b/examples/atlas/sweep_results/Intestine_ans.csv new file mode 100644 index 00000000..4d0160e7 --- /dev/null +++ b/examples/atlas/sweep_results/Intestine_ans.csv @@ -0,0 +1,1258 @@ +Dataset_id,cta_scdeepsort,cta_scdeepsort_best_yaml,cta_scdeepsort_best_res,cta_scdeepsort_run_stats,cta_scdeepsort_check,cta_scdeepsort_step2_best_yaml,cta_scdeepsort_step2_best_res,cta_singlecellnet,cta_singlecellnet_best_yaml,cta_singlecellnet_best_res,cta_singlecellnet_run_stats,cta_singlecellnet_check,cta_singlecellnet_step2_best_yaml,cta_singlecellnet_step2_best_res,cta_actinn,cta_actinn_best_yaml,cta_actinn_best_res,cta_actinn_run_stats,cta_actinn_check,cta_actinn_step2_best_yaml,cta_actinn_step2_best_res,cta_celltypist,cta_celltypist_best_yaml,cta_celltypist_best_res,cta_celltypist_run_stats,cta_celltypist_check,cta_celltypist_step2_best_yaml,cta_celltypist_step2_best_res +2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Intestine),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mvhlvdxl|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0zk0bilm,https://wandb.ai/xzy11632/dance-dev/sweeps/z9xnldun,https://wandb.ai/xzy11632/dance-dev/sweeps/xctbkm4s","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 8722 + top: true + mode: sum +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 170 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4494999945163727,all_total_runs:210|all_finished_runs:148|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:70.48%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4469999969005584,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/yjg75eb2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6n6m09lu,https://wandb.ai/xzy11632/dance-dev/sweeps/5o2qlh8l,https://wandb.ai/xzy11632/dance-dev/sweeps/is374gfu","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4595,all_total_runs:150|all_finished_runs:87|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:58.00%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4595,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/w85f0jr1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yvez2as1,https://wandb.ai/xzy11632/dance-dev/sweeps/3r5lt9pe,https://wandb.ai/xzy11632/dance-dev/sweeps/78288m6z","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4645000100135803,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4645000100135803,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cal53l43|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6qn8k6fz,https://wandb.ai/xzy11632/dance-dev/sweeps/bk4iumv7,https://wandb.ai/xzy11632/dance-dev/sweeps/ogwnnypr","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.44999998807907104,all_total_runs:510|all_finished_runs:408|step2_total_runs:450|step2_finished_runs:349|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.44999998807907104 +f7c1c579-2dc0-47e2-ba19-8165c5a0e353(Intestine),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/dedm26ib|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/765195mr,https://wandb.ai/xzy11632/dance-dev/sweeps/4f58apli,https://wandb.ai/xzy11632/dance-dev/sweeps/fvoqt6jw","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 7 + max_val: 96 + mode: cv +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.3 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 8455 + top: false + mode: cv +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 747 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4900000095367432,all_total_runs:210|all_finished_runs:166|step2_total_runs:150|step2_finished_runs:113|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:79.05%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4889999926090241,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/kxkmzv41|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rwswn0ja,https://wandb.ai/xzy11632/dance-dev/sweeps/cayifo99,https://wandb.ai/xzy11632/dance-dev/sweeps/y40of4uy","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.496,all_total_runs:150|all_finished_runs:87|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:3|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:58.00%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.496,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1h4jwpys|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/iz2i7d43,https://wandb.ai/xzy11632/dance-dev/sweeps/zcebhj28,https://wandb.ai/xzy11632/dance-dev/sweeps/p4bod1sy","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.481000006198883,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.481000006198883,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/968ejhzy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4mpkufxm,https://wandb.ai/xzy11632/dance-dev/sweeps/68q8gvfj,https://wandb.ai/xzy11632/dance-dev/sweeps/f094n1hy","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4474999904632568,all_total_runs:476|all_finished_runs:361|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:75.84%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4474999904632568 +e40c6272-af77-4a10-9385-62a398884f27,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2ygbd0g1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wa5xd2jo,https://wandb.ai/xzy11632/dance-dev/sweeps/njbvga25,https://wandb.ai/xzy11632/dance-dev/sweeps/1ueyprxc","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - max_cells + - min_counts + - min_cells + min_counts: 329 + min_cells: 0.006752469050480836 + max_counts: 0.9772984468022424 + max_cells: 0.97184145489983 +- type: normalize + target: Log1P + params: + base: 1.6360071938209937 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3958 + n_bins: 13 + flavor: seurat +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 500 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3653995394706726,all_total_runs:196|all_finished_runs:125|step2_total_runs:150|step2_finished_runs:86|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:63.78%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3622963428497314,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lydev3fk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/q4cn3mtb,https://wandb.ai/xzy11632/dance-dev/sweeps/3rx39oxw,https://wandb.ai/xzy11632/dance-dev/sweeps/xhgs2c15","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 10 + max_val: 99 + mode: cv +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3840186190845617,all_total_runs:150|all_finished_runs:92|step2_total_runs:90|step2_finished_runs:58|step3_0_total_runs:20|step3_0_finished_runs:4|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:61.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3770364623739333,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8izf00fq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/60jnxyqe,https://wandb.ai/xzy11632/dance-dev/sweeps/oi5dwmnr,https://wandb.ai/xzy11632/dance-dev/sweeps/omvup8nd","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3941039443016052,all_total_runs:600|all_finished_runs:491|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3941039443016052,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/o6y5gglv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7g1mezgk,https://wandb.ai/xzy11632/dance-dev/sweeps/rqw2mq80,https://wandb.ai/xzy11632/dance-dev/sweeps/h31q7gkk","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.35065943002700806,all_total_runs:476|all_finished_runs:359|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:75.42%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.35065943002700806 +6a270451-b4d9-43e0-aa89-e33aac1ac74b,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hpjhyj9q|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wyv5vmis,https://wandb.ai/xzy11632/dance-dev/sweeps/8qobi3e5,https://wandb.ai/xzy11632/dance-dev/sweeps/jkwnilze","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - min_counts + - min_cells + - max_cells + min_counts: 135 + min_cells: 0.0762385917181959 + max_counts: 0.9889394686374898 + max_cells: 0.9923759873179532 +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 4877 + span: 0.12580818609215275 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 996 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.450367659330368,all_total_runs:196|all_finished_runs:157|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.10%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4485294222831726,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2w7qh6m9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/orery7et,https://wandb.ai/xzy11632/dance-dev/sweeps/w60mlkdg,https://wandb.ai/xzy11632/dance-dev/sweeps/gmdyzho8","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 3 + gmean_eps: 1 + n_genes: 2584 + n_cells: null + bin_size: 380 + bw_adjust: 4.122403001571971 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 9393 + n_bins: 15 + flavor: cell_ranger +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4522058823529412,all_total_runs:150|all_finished_runs:98|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:65.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4448529411764705,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/h9h46fsq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fh35mitj,https://wandb.ai/xzy11632/dance-dev/sweeps/lzx18s0e,https://wandb.ai/xzy11632/dance-dev/sweeps/tvi3f3a1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_cells + - max_counts + min_counts: 431 + min_cells: 0.09906132245998966 + max_counts: 0.923950882549364 + max_cells: 0.981253017438922 +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 2113 + n_bins: 15 + flavor: seurat +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 885 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4375,all_total_runs:600|all_finished_runs:509|step2_total_runs:540|step2_finished_runs:449|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4319852888584137,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/y7qskew9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/w5f3puka,https://wandb.ai/xzy11632/dance-dev/sweeps/ys90com4,https://wandb.ai/xzy11632/dance-dev/sweeps/xpfyrv5k","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.41360294818878174,all_total_runs:493|all_finished_runs:400|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.14%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.41360294818878174 +fa27492b-82ff-4ab7-ac61-0e2b184eee67(Intestine),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/n6knsnsf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6opqehxd,https://wandb.ai/xzy11632/dance-dev/sweeps/2xlryh6l,https://wandb.ai/xzy11632/dance-dev/sweeps/lz3o81dv","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 1 + max_val: 96 + mode: var +- type: normalize + target: Log1P + params: + base: 3.4792913454298 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 7286 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 770 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.512499988079071,all_total_runs:196|all_finished_runs:147|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:75.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5109999775886536,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jocmyjw4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zo3i9mg9,https://wandb.ai/xzy11632/dance-dev/sweeps/cx6569af,https://wandb.ai/xzy11632/dance-dev/sweeps/o8jyq6rr","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.506,all_total_runs:150|all_finished_runs:95|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:3|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:63.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.506,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vg93532i|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/42fh6nzf,https://wandb.ai/xzy11632/dance-dev/sweeps/659h8tiv,https://wandb.ai/xzy11632/dance-dev/sweeps/asrfudv3","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5304999947547913,all_total_runs:600|all_finished_runs:510|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5304999947547913,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1gc9d2ad|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yq6minkn,https://wandb.ai/xzy11632/dance-dev/sweeps/tjw6o4v5,https://wandb.ai/xzy11632/dance-dev/sweeps/0bads4k9","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4715000092983246,all_total_runs:510|all_finished_runs:364|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:71.37%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4715000092983246 +d6dfdef1-406d-4efb-808c-3c5eddbfe0cb,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vim4nmzr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tp4lwwq5,https://wandb.ai/xzy11632/dance-dev/sweeps/amhduqwq,https://wandb.ai/xzy11632/dance-dev/sweeps/fmj9uxc4","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5648086071014404,all_total_runs:210|all_finished_runs:133|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:11|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:63.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5648086071014404,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/f0izdcdt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cp84ljtg,https://wandb.ai/xzy11632/dance-dev/sweeps/6tb70g8g,https://wandb.ai/xzy11632/dance-dev/sweeps/oa5ayktp","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5601074546675622,all_total_runs:150|all_finished_runs:76|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:50.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5601074546675622,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/w4ju135u|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8plcumyk,https://wandb.ai/xzy11632/dance-dev/sweeps/67bwy8sx,https://wandb.ai/xzy11632/dance-dev/sweeps/ltrjfmqu","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.580926775932312,all_total_runs:600|all_finished_runs:473|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.580926775932312,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2efkko22|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5tshgz51,https://wandb.ai/xzy11632/dance-dev/sweeps/xj7266k8,https://wandb.ai/xzy11632/dance-dev/sweeps/hyob32ut","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 99 + mode: var +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 1 + gmean_eps: 1 + n_genes: 2453 + n_cells: null + bin_size: 401 + bw_adjust: 3.4304615240549303 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 6303 + top: true + mode: sum +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.557421088218689,all_total_runs:493|all_finished_runs:362|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:73.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5298858284950256 diff --git a/examples/atlas/sweep_results/Kidney_ans.csv b/examples/atlas/sweep_results/Kidney_ans.csv new file mode 100644 index 00000000..1f9d473c --- /dev/null +++ b/examples/atlas/sweep_results/Kidney_ans.csv @@ -0,0 +1,4224 @@ +Dataset_id,cta_scdeepsort,cta_scdeepsort_best_yaml,cta_scdeepsort_best_res,cta_scdeepsort_run_stats,cta_scdeepsort_check,cta_scdeepsort_step2_best_yaml,cta_scdeepsort_step2_best_res,cta_singlecellnet,cta_singlecellnet_best_yaml,cta_singlecellnet_best_res,cta_singlecellnet_run_stats,cta_singlecellnet_check,cta_singlecellnet_step2_best_yaml,cta_singlecellnet_step2_best_res,cta_actinn,cta_actinn_best_yaml,cta_actinn_best_res,cta_actinn_run_stats,cta_actinn_check,cta_actinn_step2_best_yaml,cta_actinn_step2_best_res,cta_celltypist,cta_celltypist_best_yaml,cta_celltypist_best_res,cta_celltypist_run_stats,cta_celltypist_check,cta_celltypist_step2_best_yaml,cta_celltypist_step2_best_res +a51c6ece-5731-4128-8c1e-5060e80c69e4,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/whvpjn2p|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rq2xo8wj,https://wandb.ai/xzy11632/dance-dev/sweeps/jwo7gft3,https://wandb.ai/xzy11632/dance-dev/sweeps/dbka8jop","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2730000019073486,all_total_runs:196|all_finished_runs:144|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:6|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:73.47%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2730000019073486,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/l0ayhmzb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tus9enye,https://wandb.ai/xzy11632/dance-dev/sweeps/72p9xtzb,https://wandb.ai/xzy11632/dance-dev/sweeps/6djo4d5d","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2725,all_total_runs:150|all_finished_runs:94|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:62.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2725,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/80xdc1ba|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sny3930k,https://wandb.ai/xzy11632/dance-dev/sweeps/volqelag,https://wandb.ai/xzy11632/dance-dev/sweeps/5jxnqx6h","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2770000100135803,all_total_runs:600|all_finished_runs:447|step2_total_runs:540|step2_finished_runs:401|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:74.50%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2770000100135803,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rl1d9a6f|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ml9ih0o4,https://wandb.ai/xzy11632/dance-dev/sweeps/ze74pmm9,https://wandb.ai/xzy11632/dance-dev/sweeps/8mgnvsae","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2630000114440918,all_total_runs:493|all_finished_runs:360|step2_total_runs:450|step2_finished_runs:357|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:73.02%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2630000114440918 +fa27492b-82ff-4ab7-ac61-0e2b184eee67(Kidney),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/r1y7gnbt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8z8b7s39,https://wandb.ai/xzy11632/dance-dev/sweeps/xv3zpnqo,https://wandb.ai/xzy11632/dance-dev/sweeps/9rlhjyjr","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5799999833106995,all_total_runs:210|all_finished_runs:170|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:80.95%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5799999833106995,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q6fawkyp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ygkup2y2,https://wandb.ai/xzy11632/dance-dev/sweeps/2fu1tsj8,https://wandb.ai/xzy11632/dance-dev/sweeps/fu62rjas","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5945,all_total_runs:150|all_finished_runs:66|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:44.00%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5945,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9toa84vc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/t5uul8vm,https://wandb.ai/xzy11632/dance-dev/sweeps/1mgc0dge,https://wandb.ai/xzy11632/dance-dev/sweeps/azn53fsv","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.578499972820282,all_total_runs:600|all_finished_runs:439|step2_total_runs:540|step2_finished_runs:387|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:73.17%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.578499972820282,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cycuwjwr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/oi569cof,https://wandb.ai/xzy11632/dance-dev/sweeps/xbw7b98v,https://wandb.ai/xzy11632/dance-dev/sweeps/agfkdw1i","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5335000157356262,all_total_runs:476|all_finished_runs:325|step2_total_runs:450|step2_finished_runs:325|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:68.28%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5335000157356262 +f7c1c579-2dc0-47e2-ba19-8165c5a0e353(Kidney),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/a6rgr8w4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ssb28ejh,https://wandb.ai/xzy11632/dance-dev/sweeps/thvgw7zh,https://wandb.ai/xzy11632/dance-dev/sweeps/0a06jn63","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5964999794960022,all_total_runs:196|all_finished_runs:141|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:6|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:71.94%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5964999794960022,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wm8pq6ig|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/csv3mlbn,https://wandb.ai/xzy11632/dance-dev/sweeps/885assxx,https://wandb.ai/xzy11632/dance-dev/sweeps/fgeio7m9","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5705,all_total_runs:150|all_finished_runs:68|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:45.33%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.5705,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/e43anxgn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3stmar8u,https://wandb.ai/xzy11632/dance-dev/sweeps/s2cpm80t,https://wandb.ai/xzy11632/dance-dev/sweeps/u3ugwnhn","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5914999842643738,all_total_runs:600|all_finished_runs:438|step2_total_runs:540|step2_finished_runs:391|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:73.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5914999842643738,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8kh86ent|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/s95wr9an,https://wandb.ai/xzy11632/dance-dev/sweeps/vc4fkvqd,https://wandb.ai/xzy11632/dance-dev/sweeps/9cswqwn1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5565000176429749,all_total_runs:476|all_finished_runs:363|step2_total_runs:450|step2_finished_runs:344|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:76.26%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5565000176429749 +105c7dad-0468-4628-a5be-2bb42c6a8ae4,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hbvj1oip|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xq06tu32,https://wandb.ai/xzy11632/dance-dev/sweeps/yiz263kv,https://wandb.ai/xzy11632/dance-dev/sweeps/b9zvve4u","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7020000219345093,all_total_runs:210|all_finished_runs:170|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:15|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:80.95%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.7020000219345093,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bwld9xlk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6sopj3bj,https://wandb.ai/xzy11632/dance-dev/sweeps/6xqavd24,https://wandb.ai/xzy11632/dance-dev/sweeps/528j1po3","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6975,all_total_runs:150|all_finished_runs:93|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:62.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6975,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/avkuxvpt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jdctlnyj,https://wandb.ai/xzy11632/dance-dev/sweeps/2i0dhz25,https://wandb.ai/xzy11632/dance-dev/sweeps/esaiggjt","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7124999761581421,all_total_runs:600|all_finished_runs:440|step2_total_runs:540|step2_finished_runs:392|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:73.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.7124999761581421,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ifoggvrj|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ux35adas,https://wandb.ai/xzy11632/dance-dev/sweeps/3eqw1s6m,https://wandb.ai/xzy11632/dance-dev/sweeps/g8eti0ga","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_counts + - max_cells + - min_cells + min_counts: 484 + min_cells: 0.0607859528781899 + max_counts: 0.9489684352815044 + max_cells: 0.9997931464413096 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 4 + gmean_eps: 1 + n_genes: 2675 + n_cells: 100 + bin_size: 687 + bw_adjust: 3.3573035291211055 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 6238 + n_bins: 28 + flavor: cell_ranger +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6995000243186951,all_total_runs:476|all_finished_runs:340|step2_total_runs:450|step2_finished_runs:339|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:71.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6965000033378601 +5af90777-6760-4003-9dba-8f945fec6fdf,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ltca3oim|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9oulbho9,https://wandb.ai/xzy11632/dance-dev/sweeps/ko18r05s,https://wandb.ai/xzy11632/dance-dev/sweeps/zg1qkqy0","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_cells + - min_cells + - max_counts + min_counts: 269 + min_cells: 0.04017237612650692 + max_counts: 0.981578887268918 + max_cells: 0.9529854552953828 +- type: normalize + target: Log1P + params: + base: 1.0126842046864493 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3607 + n_bins: 30 + flavor: seurat +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 423 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2815000116825104,all_total_runs:210|all_finished_runs:162|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:77.14%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2809999883174896,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jnktyajr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5eigq4mq,https://wandb.ai/xzy11632/dance-dev/sweeps/b5lw76u0,https://wandb.ai/xzy11632/dance-dev/sweeps/bfchr0lr","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2625,all_total_runs:151|all_finished_runs:89|step2_total_runs:90|step2_finished_runs:67|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:21|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:58.94%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2625,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/x43ntzx4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/irntnkow,https://wandb.ai/xzy11632/dance-dev/sweeps/9tdspve1,https://wandb.ai/xzy11632/dance-dev/sweeps/5yvw6kpr","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2994999885559082,all_total_runs:586|all_finished_runs:420|step2_total_runs:540|step2_finished_runs:386|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:71.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2994999885559082,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/t28984so|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zp5tc3mj,https://wandb.ai/xzy11632/dance-dev/sweeps/j4r41ulh,https://wandb.ai/xzy11632/dance-dev/sweeps/bgn8k0bo","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 100000 + max_fraction: 0.7 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 159 + top: true + mode: cv +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 878 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2759999930858612,all_total_runs:477|all_finished_runs:372|step2_total_runs:450|step2_finished_runs:353|step3_0_total_runs:4|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:77.99%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.273499995470047 +dea717d4-7bc0-4e46-950f-fd7e1cc8df7d,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cdcv6mna|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ne54nu6k,https://wandb.ai/xzy11632/dance-dev/sweeps/0z8zj8do,https://wandb.ai/xzy11632/dance-dev/sweeps/bi91nl8w","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 4264 + n_bins: 16 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 909 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.25,all_total_runs:196|all_finished_runs:143|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:5|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:72.96%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2495000064373016,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ubj3byxy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/vj3djhsu,https://wandb.ai/xzy11632/dance-dev/sweeps/sfz5a11n,https://wandb.ai/xzy11632/dance-dev/sweeps/7k9birau","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.229,all_total_runs:150|all_finished_runs:99|step2_total_runs:90|step2_finished_runs:61|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:66.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.229,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/51phjfg4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rb2c4x3n,https://wandb.ai/xzy11632/dance-dev/sweeps/4m4fq5j5,https://wandb.ai/xzy11632/dance-dev/sweeps/pqqd7mez","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 6 + max_val: 99 + mode: rv +- type: normalize + target: Log1P + params: + base: 7.449177659482961 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 5312 + top: true + mode: var +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 375 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2224999964237213,all_total_runs:600|all_finished_runs:457|step2_total_runs:540|step2_finished_runs:400|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:76.17%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.221000000834465,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/kp7sqzxs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jpbtevry,https://wandb.ai/xzy11632/dance-dev/sweeps/rsajt836,https://wandb.ai/xzy11632/dance-dev/sweeps/u5gqonzj","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.22699999809265137,all_total_runs:510|all_finished_runs:398|step2_total_runs:450|step2_finished_runs:341|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.04%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.22699999809265137 +9df60c57-fdf3-4e93-828e-fe9303f20438,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/m28fu5e4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rd136al3,https://wandb.ai/xzy11632/dance-dev/sweeps/o1v4t50e,https://wandb.ai/xzy11632/dance-dev/sweeps/j5ef3unu","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 5123 + span: 0.4427554467674908 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 204 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2639999985694885,all_total_runs:210|all_finished_runs:151|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:6|step3_1_total_runs:20|step3_1_finished_runs:11|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:71.90%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2615000009536743,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mb2cyn4c|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uha7jepq,https://wandb.ai/xzy11632/dance-dev/sweeps/nq1sd8jx,https://wandb.ai/xzy11632/dance-dev/sweeps/fhvkz6ju","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2735,all_total_runs:150|all_finished_runs:122|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2735,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ku1n6b7v|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ng92wwrv,https://wandb.ai/xzy11632/dance-dev/sweeps/67oq9j9d,https://wandb.ai/xzy11632/dance-dev/sweeps/4holfqbm","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 5.085645037530894 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 8932 + top: false + mode: rv +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 108 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2764999866485595,all_total_runs:600|all_finished_runs:443|step2_total_runs:540|step2_finished_runs:403|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:7|finished_rate:73.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2754999995231628,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/c0t2tf8r|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nychgnxo,https://wandb.ai/xzy11632/dance-dev/sweeps/393j00a1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - min_counts + - min_cells + - max_cells + min_counts: 219 + min_cells: 0.008850691529276644 + max_counts: 0.9795338990303774 + max_cells: 0.9567690816372924 +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000000 + max_fraction: 1 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 3599 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2434999942779541,all_total_runs:490|all_finished_runs:362|step2_total_runs:450|step2_finished_runs:341|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|finished_rate:73.88%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2300000041723251 +be39785b-67cb-4177-be19-a40ee3747e45,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1a0xicia|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/h2asuybg,https://wandb.ai/xzy11632/dance-dev/sweeps/8uxvnhwl,https://wandb.ai/xzy11632/dance-dev/sweeps/ph5yhz9y","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4384999871253967,all_total_runs:212|all_finished_runs:167|step2_total_runs:151|step2_finished_runs:120|step3_0_total_runs:21|step3_0_finished_runs:11|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:78.77%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4384999871253967,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xl2nwacs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qhr4km04,https://wandb.ai/xzy11632/dance-dev/sweeps/7vqnpicq,https://wandb.ai/xzy11632/dance-dev/sweeps/t8ovlamf","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.451,all_total_runs:150|all_finished_runs:76|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:50.67%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.451,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bueblvgh|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qxcu5gfb,https://wandb.ai/xzy11632/dance-dev/sweeps/dl2izc9t,https://wandb.ai/xzy11632/dance-dev/sweeps/11iznmvf","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4440000057220459,all_total_runs:600|all_finished_runs:445|step2_total_runs:540|step2_finished_runs:400|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:8|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:74.17%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4440000057220459,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/byfq8l0c|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yipzivr0,https://wandb.ai/xzy11632/dance-dev/sweeps/ct2q8ugk,https://wandb.ai/xzy11632/dance-dev/sweeps/kgcii9t1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - max_cells + - min_counts + - min_cells + min_counts: 262 + min_cells: 0.045810219418494585 + max_counts: 0.9299449037823952 + max_cells: 0.9514680959952552 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 2 + gmean_eps: 1 + n_genes: 1262 + n_cells: null + bin_size: 534 + bw_adjust: 1.2324527099911573 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 8628 + n_bins: 18 + flavor: cell_ranger +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.42899999022483826,all_total_runs:510|all_finished_runs:360|step2_total_runs:450|step2_finished_runs:338|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:70.59%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.382999986410141 +32b9bdce-2481-4c85-ba1b-6ad5fcea844c,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8arpp0bg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kutscmkt,https://wandb.ai/xzy11632/dance-dev/sweeps/d1iadk7m,https://wandb.ai/xzy11632/dance-dev/sweeps/87cnxjeb","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2354999929666519,all_total_runs:210|all_finished_runs:159|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:75.71%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2354999929666519,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/abphixpv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/46zj4ous,https://wandb.ai/xzy11632/dance-dev/sweeps/ql3ox0ee,https://wandb.ai/xzy11632/dance-dev/sweeps/oaiwrhfs","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_counts + - max_cells + - min_counts + min_counts: 132 + min_cells: 0.045921635815448794 + max_counts: 0.9851254486346562 + max_cells: 0.9786632198872888 +- type: normalize + target: Log1P + params: + base: 4.927714595143703 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.249,all_total_runs:150|all_finished_runs:116|step2_total_runs:90|step2_finished_runs:63|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.247,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ch3i3tkk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/3ra9d12m,https://wandb.ai/xzy11632/dance-dev/sweeps/0yy5nksn,https://wandb.ai/xzy11632/dance-dev/sweeps/0dpb06b7","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2370000034570694,all_total_runs:600|all_finished_runs:501|step2_total_runs:540|step2_finished_runs:441|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.50%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2370000034570694,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wimg2shl|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4y52ea9r,https://wandb.ai/xzy11632/dance-dev/sweeps/i3uqbr79,https://wandb.ai/xzy11632/dance-dev/sweeps/rfefu9nm","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2055000066757202,all_total_runs:493|all_finished_runs:356|step2_total_runs:450|step2_finished_runs:335|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:72.21%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2055000066757202 +0b4a15a7-4e9e-4555-9733-2423e5c66469,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sk7ynfj9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/64bshk8k,https://wandb.ai/xzy11632/dance-dev/sweeps/y9l1vpb7,https://wandb.ai/xzy11632/dance-dev/sweeps/v6t2nb4k","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2294999957084656,all_total_runs:196|all_finished_runs:151|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:13|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:77.04%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2294999957084656,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/s6rn5ps8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mg255re6,https://wandb.ai/xzy11632/dance-dev/sweeps/45j03ilz,https://wandb.ai/xzy11632/dance-dev/sweeps/701eayg8","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_cells + - max_counts + - min_counts + min_counts: 263 + min_cells: 0.023032742875690015 + max_counts: 0.9761189040538616 + max_cells: 0.9659085418084716 +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.5 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 4654 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2395,all_total_runs:150|all_finished_runs:99|step2_total_runs:90|step2_finished_runs:61|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:66.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2355,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/b17chya1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2knyp5e6,https://wandb.ai/xzy11632/dance-dev/sweeps/fpvymfqu,https://wandb.ai/xzy11632/dance-dev/sweeps/7yvf6lid","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2485000044107437,all_total_runs:600|all_finished_runs:470|step2_total_runs:540|step2_finished_runs:416|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:78.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2485000044107437,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nyj1bpi3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/m9go9yqe,https://wandb.ai/xzy11632/dance-dev/sweeps/z7jtisk2,https://wandb.ai/xzy11632/dance-dev/sweeps/t16m4wm2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - max_counts + - min_counts + - min_cells + min_counts: 195 + min_cells: 0.05756089036439415 + max_counts: 0.981004319592022 + max_cells: 0.9809071900458808 +- type: normalize + target: NormalizeTotal + params: + target_sum: 10000 + max_fraction: 0.5 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 6616 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.20499999821186063,all_total_runs:493|all_finished_runs:400|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.14%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.19949999451637268 +53d208b0-2cfd-4366-9866-c3c6114081bc,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qc59eog9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/539khgz0,https://wandb.ai/xzy11632/dance-dev/sweeps/afbpb46d,https://wandb.ai/xzy11632/dance-dev/sweeps/mn356re7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8755832314491272,all_total_runs:210|all_finished_runs:155|step2_total_runs:150|step2_finished_runs:113|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:11|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:73.81%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8755832314491272,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/onc0rdcc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fle277i2,https://wandb.ai/xzy11632/dance-dev/sweeps/v1vpz6gs,https://wandb.ai/xzy11632/dance-dev/sweeps/jo5s8o6z","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8657335406946605,all_total_runs:150|all_finished_runs:105|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:70.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8657335406946605,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/p6h1i8ws|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/fhzengv5,https://wandb.ai/xzy11632/dance-dev/sweeps/23unbp67,https://wandb.ai/xzy11632/dance-dev/sweeps/9j9n7dtn","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8750647902488708,all_total_runs:600|all_finished_runs:449|step2_total_runs:540|step2_finished_runs:400|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:74.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8750647902488708,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/23fzd0cr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ltc7pxdm,https://wandb.ai/xzy11632/dance-dev/sweeps/lnn8aqay,https://wandb.ai/xzy11632/dance-dev/sweeps/vhcg91li","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - max_cells + - min_counts + - min_cells + min_counts: 417 + min_cells: 0.017197474107088717 + max_counts: 0.9777114640222584 + max_cells: 0.9742742842857086 +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9921 + top: false + mode: rv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8745464086532593,all_total_runs:510|all_finished_runs:402|step2_total_runs:450|step2_finished_runs:342|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.82%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.870917558670044 +6a30bf44-c490-41ac-965b-0bb58432b10a,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nbuoq984|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/v8k3ecyi,https://wandb.ai/xzy11632/dance-dev/sweeps/i30iteaa,https://wandb.ai/xzy11632/dance-dev/sweeps/wc6rut0d","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2222222238779068,all_total_runs:215|all_finished_runs:170|step2_total_runs:150|step2_finished_runs:126|step3_0_total_runs:25|step3_0_finished_runs:24|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:79.07%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2222222238779068,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ulj3xxmi|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/22ifljz1,https://wandb.ai/xzy11632/dance-dev/sweeps/jqzc266f","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1666666666666666,all_total_runs:130|all_finished_runs:99|step2_total_runs:90|step2_finished_runs:62|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|finished_rate:76.15%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1666666666666666,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0vjmseqv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tjum1tpz,https://wandb.ai/xzy11632/dance-dev/sweeps/buc7ui45,https://wandb.ai/xzy11632/dance-dev/sweeps/dsbpgsg6","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5,all_total_runs:572|all_finished_runs:443|step2_total_runs:540|step2_finished_runs:441|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:77.45%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hn06vbc0|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/f0pf2vll,https://wandb.ai/xzy11632/dance-dev/sweeps/yd0s5ou6,https://wandb.ai/xzy11632/dance-dev/sweeps/8spua97g","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_cells + - max_counts + - min_counts + min_counts: 255 + min_cells: 0.01511082364107167 + max_counts: 0.9497483701603496 + max_cells: 0.9750075182668252 +- type: normalize + target: Log1P + params: + base: 8.039331292267493 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9640 + top: true + mode: var +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 768 + feat_norm_mode: l2 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2777777910232544,all_total_runs:510|all_finished_runs:438|step2_total_runs:450|step2_finished_runs:378|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.88%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2222222238779068 +f801b7a9-80a6-4d09-9161-71474deb58ae,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6zzg3aev|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ti1w2l2i,https://wandb.ai/xzy11632/dance-dev/sweeps/en9xlysw,https://wandb.ai/xzy11632/dance-dev/sweeps/cbj2rjp1","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 5.700035243593383 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 460 + top: true + mode: var +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 520 + feat_norm_mode: standardize +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3655914068222046,all_total_runs:209|all_finished_runs:164|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:12|step3_1_total_runs:19|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:78.47%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3647642731666565,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qoaxxv3r|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/scykgn20,https://wandb.ai/xzy11632/dance-dev/sweeps/n8btsi9f,https://wandb.ai/xzy11632/dance-dev/sweeps/z5tkx4n0","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3449131513647642,all_total_runs:150|all_finished_runs:97|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:64.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3449131513647642,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0my62r0x|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2j2fewq5,https://wandb.ai/xzy11632/dance-dev/sweeps/cepp4w5d,https://wandb.ai/xzy11632/dance-dev/sweeps/6xvxfv4t","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3672456443309784,all_total_runs:558|all_finished_runs:429|step2_total_runs:540|step2_finished_runs:429|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:76.88%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3672456443309784,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hrylvzb1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/km714tee,https://wandb.ai/xzy11632/dance-dev/sweeps/5yr6v6hl,https://wandb.ai/xzy11632/dance-dev/sweeps/44mxsz2v","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3564929664134979,all_total_runs:459|all_finished_runs:359|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:78.21%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3564929664134979 +20d87640-4be8-487f-93d4-dce38378d00f,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/x8uut7hm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zhpozwl1,https://wandb.ai/xzy11632/dance-dev/sweeps/i43sxcxt,https://wandb.ai/xzy11632/dance-dev/sweeps/vscrpbjl","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.294682890176773,all_total_runs:209|all_finished_runs:157|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:19|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:75.12%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.294682890176773,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xx97kth1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2ij5ijlv,https://wandb.ai/xzy11632/dance-dev/sweeps/euzr7ujg,https://wandb.ai/xzy11632/dance-dev/sweeps/dlrnxq72","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3042921204356182,all_total_runs:150|all_finished_runs:131|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:87.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3042921204356182,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zn9j6dg5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/06i2q2p7,https://wandb.ai/xzy11632/dance-dev/sweeps/1te143pv,https://wandb.ai/xzy11632/dance-dev/sweeps/i2bo7l98","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.332479178905487,all_total_runs:600|all_finished_runs:483|step2_total_runs:540|step2_finished_runs:423|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.50%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.332479178905487,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ajwsfjty|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/m73ege01,https://wandb.ai/xzy11632/dance-dev/sweeps/tnm2ji4l,https://wandb.ai/xzy11632/dance-dev/sweeps/acrse11l","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000 + max_fraction: 1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9315 + top: true + mode: rv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2696989178657532,all_total_runs:493|all_finished_runs:381|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.28%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2620115280151367 +2d31c0ca-0233-41ce-bd1a-05aa8404b073,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gfl9vtdc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wqi6cztc,https://wandb.ai/xzy11632/dance-dev/sweeps/eng7tqc9,https://wandb.ai/xzy11632/dance-dev/sweeps/rz1nmsox","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3649635016918182,all_total_runs:210|all_finished_runs:166|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:79.05%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3649635016918182,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/x7o546sk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xoxj0wu3,https://wandb.ai/xzy11632/dance-dev/sweeps/fp7afgvx,https://wandb.ai/xzy11632/dance-dev/sweeps/oo1am6pb","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_counts + - min_cells + - max_cells + min_counts: 22 + min_cells: 0.05741156858919219 + max_counts: 0.91367665193381 + max_cells: 0.9829848013655572 +- type: normalize + target: NormalizeTotal + params: + target_sum: 10000 + max_fraction: 0.01 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3766423357664233,all_total_runs:150|all_finished_runs:96|step2_total_runs:90|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:64.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3759124087591241,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0vcqva6z|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/t219mhhy,https://wandb.ai/xzy11632/dance-dev/sweeps/o8k3c6lv,https://wandb.ai/xzy11632/dance-dev/sweeps/n54ib73r","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3620437979698181,all_total_runs:600|all_finished_runs:469|step2_total_runs:540|step2_finished_runs:411|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:78.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3620437979698181,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/pvarw0pp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/x4irukl6,https://wandb.ai/xzy11632/dance-dev/sweeps/5lzcuql4,https://wandb.ai/xzy11632/dance-dev/sweeps/h1ibvdke","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 4.297684302523655 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 7446 + top: true + mode: rv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.344525545835495,all_total_runs:510|all_finished_runs:419|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.16%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3394160568714142 +fd072bc3-2dfb-46f8-b4e3-467cb3223182,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fv5txyhd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/gftuks1f,https://wandb.ai/xzy11632/dance-dev/sweeps/vhtoxock,https://wandb.ai/xzy11632/dance-dev/sweeps/1qsjz3ai","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2759999930858612,all_total_runs:196|all_finished_runs:146|step2_total_runs:150|step2_finished_runs:113|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:74.49%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2759999930858612,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rfy7muvr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0pdtdvge,https://wandb.ai/xzy11632/dance-dev/sweeps/7qoqqm29,https://wandb.ai/xzy11632/dance-dev/sweeps/z3tsakmq","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2915,all_total_runs:150|all_finished_runs:115|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:76.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2915,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/l6gb8igg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/avpo32k2,https://wandb.ai/xzy11632/dance-dev/sweeps/8ga8qet1,https://wandb.ai/xzy11632/dance-dev/sweeps/0lz70ruz","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2804999947547912,all_total_runs:600|all_finished_runs:487|step2_total_runs:540|step2_finished_runs:427|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.17%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2804999947547912,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/58296xo1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ckbfs7l7,https://wandb.ai/xzy11632/dance-dev/sweeps/ri8pts3d,https://wandb.ai/xzy11632/dance-dev/sweeps/8i66984j","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 5 + max_val: 98 + mode: sum +- type: normalize + target: Log1P + params: + base: 4.533975561756228 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 4165 + top: false + mode: cv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.27300000190734863,all_total_runs:493|all_finished_runs:380|step2_total_runs:450|step2_finished_runs:340|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.08%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2630000114440918 +2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Kidney),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/02te0za8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8narfff8,https://wandb.ai/xzy11632/dance-dev/sweeps/gt2dfvtp,https://wandb.ai/xzy11632/dance-dev/sweeps/1deo7tn9","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4375,all_total_runs:182|all_finished_runs:138|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:75.82%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4375,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2xlnu6s7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ged3jw2n,https://wandb.ai/xzy11632/dance-dev/sweeps/au2t88g0,https://wandb.ai/xzy11632/dance-dev/sweeps/z6zqb0ij","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4125,all_total_runs:150|all_finished_runs:121|step2_total_runs:90|step2_finished_runs:68|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:80.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4125,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/75eb8mu2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/m6j8n05u,https://wandb.ai/xzy11632/dance-dev/sweeps/hvbyary3,https://wandb.ai/xzy11632/dance-dev/sweeps/536wy46e","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4284999966621399,all_total_runs:600|all_finished_runs:490|step2_total_runs:540|step2_finished_runs:430|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4284999966621399,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sf8u6xh6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/90x7mz4f,https://wandb.ai/xzy11632/dance-dev/sweeps/39aa3jfz,https://wandb.ai/xzy11632/dance-dev/sweeps/hl4ld5tp","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - min_cells + - min_counts + - max_cells + min_counts: 97 + min_cells: 0.008669870041697503 + max_counts: 0.9782460305842908 + max_cells: 0.9930432468421152 +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 9555 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4275000095367432,all_total_runs:493|all_finished_runs:382|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:3|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.48%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3790000081062317 +0b75c598-0893-4216-afe8-5414cab7739d,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/h267r9gw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/gsf3qy1c,https://wandb.ai/xzy11632/dance-dev/sweeps/dzembwwg,https://wandb.ai/xzy11632/dance-dev/sweeps/iygud7ig","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2405000030994415,all_total_runs:182|all_finished_runs:126|step2_total_runs:150|step2_finished_runs:114|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:12|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:69.23%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2405000030994415,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wcb9vpq4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4bgd5dkd,https://wandb.ai/xzy11632/dance-dev/sweeps/ap5p1ejx,https://wandb.ai/xzy11632/dance-dev/sweeps/8vpkidbc","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2465,all_total_runs:150|all_finished_runs:85|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:56.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2465,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zw08f3vc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zokwex9g,https://wandb.ai/xzy11632/dance-dev/sweeps/6w8eah70,https://wandb.ai/xzy11632/dance-dev/sweeps/rh47nlz0","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.244499996304512,all_total_runs:600|all_finished_runs:466|step2_total_runs:540|step2_finished_runs:406|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.244499996304512,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5j0mk5dm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qj8fwcsn,https://wandb.ai/xzy11632/dance-dev/sweeps/s1ybint1,https://wandb.ai/xzy11632/dance-dev/sweeps/np4gc8ac","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.22499999403953552,all_total_runs:510|all_finished_runs:363|step2_total_runs:450|step2_finished_runs:339|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:71.18%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.22499999403953552 +2aa1c93c-4ef3-4e9a-98e7-0bd37933953c,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cgm5lh8e|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/r6m7zdo1,https://wandb.ai/xzy11632/dance-dev/sweeps/rvpunccy,https://wandb.ai/xzy11632/dance-dev/sweeps/50vokx7l","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 98 + mode: cv +- type: normalize + target: Log1P + params: + base: 1.0842803516615516 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: + min_disp: 0.06377687896770325 + max_disp: 41.939375689351905 + min_mean: 0.0025444527190867693 + max_mean: 17.950279292657427 + n_bins: 21 + flavor: seurat +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 664 + feat_norm_mode: standardize +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5051282048225403,all_total_runs:210|all_finished_runs:161|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:76.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ebnsel1o|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hzm9cmea,https://wandb.ai/xzy11632/dance-dev/sweeps/im8zzzed,https://wandb.ai/xzy11632/dance-dev/sweeps/0v22gcsp","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.488034188034188,all_total_runs:150|all_finished_runs:94|step2_total_runs:90|step2_finished_runs:73|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:62.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.488034188034188,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zw2x3j2g|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/yayfm8nk,https://wandb.ai/xzy11632/dance-dev/sweeps/shh6b1z9,https://wandb.ai/xzy11632/dance-dev/sweeps/oyem3gtm","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.488034188747406,all_total_runs:599|all_finished_runs:466|step2_total_runs:540|step2_finished_runs:408|step3_0_total_runs:19|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.80%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.488034188747406,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/098iecnp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0a785nvw,https://wandb.ai/xzy11632/dance-dev/sweeps/05d33k6p,https://wandb.ai/xzy11632/dance-dev/sweeps/a878cw3h","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 100000 + max_fraction: 1 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 9957 + span: 0.2627532661141566 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4931623935699463,all_total_runs:510|all_finished_runs:420|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.35%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.45897436141967773 +2423ce2c-3149-4cca-a2ff-cf682ea29b5f,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/z3v3k8xa|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/rxf8w4kk,https://wandb.ai/xzy11632/dance-dev/sweeps/oq5yjvcy,https://wandb.ai/xzy11632/dance-dev/sweeps/g644vduv","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8755832314491272,all_total_runs:210|all_finished_runs:154|step2_total_runs:150|step2_finished_runs:114|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:8|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:73.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8755832314491272,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/n2s4t1f7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/h78trrkg,https://wandb.ai/xzy11632/dance-dev/sweeps/5i7grztx,https://wandb.ai/xzy11632/dance-dev/sweeps/k7zpw3jk","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8657335406946605,all_total_runs:150|all_finished_runs:130|step2_total_runs:90|step2_finished_runs:70|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:86.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8657335406946605,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/yvdvm8br|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tuecazpp,https://wandb.ai/xzy11632/dance-dev/sweeps/1axejlbz,https://wandb.ai/xzy11632/dance-dev/sweeps/zpq9n7oj","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8750647902488708,all_total_runs:586|all_finished_runs:488|step2_total_runs:540|step2_finished_runs:450|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.28%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8750647902488708,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/l3peh3ey|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pstn2il1,https://wandb.ai/xzy11632/dance-dev/sweeps/w0nlva0s,https://wandb.ai/xzy11632/dance-dev/sweeps/iw5hu22k","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_cells + - max_counts + min_counts: 499 + min_cells: 0.018131353485912372 + max_counts: 0.991161328623826 + max_cells: 0.9558836866906196 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.3 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9999 + top: true + mode: rv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8750647902488708,all_total_runs:510|all_finished_runs:401|step2_total_runs:450|step2_finished_runs:341|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.63%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.870917558670044 diff --git a/examples/atlas/sweep_results/Lung_ans.csv b/examples/atlas/sweep_results/Lung_ans.csv new file mode 100644 index 00000000..d85c9bf1 --- /dev/null +++ b/examples/atlas/sweep_results/Lung_ans.csv @@ -0,0 +1,4468 @@ +Dataset_id,cta_scdeepsort,cta_scdeepsort_best_yaml,cta_scdeepsort_best_res,cta_scdeepsort_run_stats,cta_scdeepsort_check,cta_scdeepsort_step2_best_yaml,cta_scdeepsort_step2_best_res,cta_singlecellnet,cta_singlecellnet_best_yaml,cta_singlecellnet_best_res,cta_singlecellnet_run_stats,cta_singlecellnet_check,cta_singlecellnet_step2_best_yaml,cta_singlecellnet_step2_best_res,cta_actinn,cta_actinn_best_yaml,cta_actinn_best_res,cta_actinn_run_stats,cta_actinn_check,cta_actinn_step2_best_yaml,cta_actinn_step2_best_res,cta_celltypist,cta_celltypist_best_yaml,cta_celltypist_best_res,cta_celltypist_run_stats,cta_celltypist_check,cta_celltypist_step2_best_yaml,cta_celltypist_step2_best_res +fa27492b-82ff-4ab7-ac61-0e2b184eee67(Lung),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/31p1jl13|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/jv0qygxw,https://wandb.ai/xzy11632/dance-dev/sweeps/3k1x4ael,https://wandb.ai/xzy11632/dance-dev/sweeps/0drfyazl","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4790000021457672,all_total_runs:210|all_finished_runs:173|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:82.38%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4790000021457672,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/umip8col|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8rbu9tz5,https://wandb.ai/xzy11632/dance-dev/sweeps/s2x3klie,https://wandb.ai/xzy11632/dance-dev/sweeps/xq1tygx9","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.486,all_total_runs:150|all_finished_runs:111|step2_total_runs:90|step2_finished_runs:56|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.486,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/88sp4mxc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uz23y4v1,https://wandb.ai/xzy11632/dance-dev/sweeps/4mlv8rqb,https://wandb.ai/xzy11632/dance-dev/sweeps/vc7o5nsc","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4790000021457672,all_total_runs:600|all_finished_runs:479|step2_total_runs:540|step2_finished_runs:431|step3_0_total_runs:20|step3_0_finished_runs:10|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:79.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4790000021457672,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/p93dumjw|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0garwmxd,https://wandb.ai/xzy11632/dance-dev/sweeps/s6vapi8h,https://wandb.ai/xzy11632/dance-dev/sweeps/vjyplvr1","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4560000002384186,all_total_runs:493|all_finished_runs:381|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:77.28%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4560000002384186 +f72958f5-7f42-4ebb-98da-445b0c6de516,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/u66vt0zy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0e4fl2ig,https://wandb.ai/xzy11632/dance-dev/sweeps/26t9dcb3,https://wandb.ai/xzy11632/dance-dev/sweeps/6er1nf7y","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3079999983310699,all_total_runs:225|all_finished_runs:180|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:35|step3_0_finished_runs:26|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:80.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3079999983310699,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sa0zrzyh|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ddp05p3y,https://wandb.ai/xzy11632/dance-dev/sweeps/4n5kvy4f,https://wandb.ai/xzy11632/dance-dev/sweeps/4nw3qvss","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000 + max_fraction: 0.05 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.306,all_total_runs:150|all_finished_runs:106|step2_total_runs:90|step2_finished_runs:66|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:70.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3055,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fbs68rd7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xcit9qy8,https://wandb.ai/xzy11632/dance-dev/sweeps/4ftre5j8,https://wandb.ai/xzy11632/dance-dev/sweeps/f5uutcyi","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 96 + mode: cv +- type: normalize + target: Log1P + params: + base: 9.29338977585692 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 4645 + top: false + mode: sum +- type: feature.cell + target: CellPCA + params: + out: feature.cell + log_level: INFO + n_components: 671 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2939999997615814,all_total_runs:600|all_finished_runs:463|step2_total_runs:540|step2_finished_runs:411|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:77.17%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellPCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.293500006198883,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cf7nubki|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/z0dqimbs,https://wandb.ai/xzy11632/dance-dev/sweeps/obby7pnt,https://wandb.ai/xzy11632/dance-dev/sweeps/mvohukm2","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.27549999952316284,all_total_runs:510|all_finished_runs:324|step2_total_runs:450|step2_finished_runs:264|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:63.53%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.27549999952316284 +3de0ad6d-4378-4f62-b37b-ec0b75a50d94,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cztlwh8l|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xnekcm5a,https://wandb.ai/xzy11632/dance-dev/sweeps/92k8gjvn,https://wandb.ai/xzy11632/dance-dev/sweeps/ebwccpe0","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1770000010728836,all_total_runs:211|all_finished_runs:157|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:21|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.41%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1770000010728836,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ya45i0hj|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/txt2fqri,https://wandb.ai/xzy11632/dance-dev/sweeps/eartlz9g,https://wandb.ai/xzy11632/dance-dev/sweeps/4q91ab4x","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - min_counts + - max_cells + - max_counts + min_counts: 154 + min_cells: 0.007759793169660634 + max_counts: 0.9471824565588984 + max_cells: 0.977680030415662 +- type: normalize + target: Log1P + params: + base: 5.73752690176084 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 7401 + span: 0.5600576148418653 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.168,all_total_runs:150|all_finished_runs:99|step2_total_runs:90|step2_finished_runs:60|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:66.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.167,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gr6v110e|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2af03zz4,https://wandb.ai/xzy11632/dance-dev/sweeps/q5e23azt,https://wandb.ai/xzy11632/dance-dev/sweeps/s3ytrjbv","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_counts + - max_cells + - min_cells + min_counts: 458 + min_cells: 0.011591892698839612 + max_counts: 0.9504786715733048 + max_cells: 0.968929807966842 +- type: normalize + target: Log1P + params: + base: 2.5831898659365935 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 1528 + span: 0.25048936376968134 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 757 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1739999949932098,all_total_runs:600|all_finished_runs:472|step2_total_runs:540|step2_finished_runs:415|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:78.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1729999929666519,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/82wyioi1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9stmezaf,https://wandb.ai/xzy11632/dance-dev/sweeps/w5sy9d7k,https://wandb.ai/xzy11632/dance-dev/sweeps/wpjgpvr7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.15850000083446503,all_total_runs:510|all_finished_runs:419|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.16%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.15850000083446503 +1e5bd3b8-6a0e-4959-8d69-cafed30fe814,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gvzf9hvu|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xn6gkyue,https://wandb.ai/xzy11632/dance-dev/sweeps/wohspkph,https://wandb.ai/xzy11632/dance-dev/sweeps/0es2sjqj","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 99 + mode: cv +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3133 + n_bins: 25 + flavor: cell_ranger +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 327 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3585000038146972,all_total_runs:210|all_finished_runs:168|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:80.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3569999933242798,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fk9bgw6i|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/u9bvksor,https://wandb.ai/xzy11632/dance-dev/sweeps/y6np5hym,https://wandb.ai/xzy11632/dance-dev/sweeps/a2uwktag","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000 + max_fraction: 1 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3405 + span: 0.1243084522697208 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.343,all_total_runs:150|all_finished_runs:94|step2_total_runs:90|step2_finished_runs:56|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:62.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.34,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q46hxsfq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6dkzww83,https://wandb.ai/xzy11632/dance-dev/sweeps/ctnmrdn1,https://wandb.ai/xzy11632/dance-dev/sweeps/6og1pgzb","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3650000095367432,all_total_runs:600|all_finished_runs:449|step2_total_runs:540|step2_finished_runs:392|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:74.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3650000095367432,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6tj8p155|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/81avsh07,https://wandb.ai/xzy11632/dance-dev/sweeps/buygqdt4,https://wandb.ai/xzy11632/dance-dev/sweeps/4l19utts","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: NormalizeTotal + params: + target_sum: 10000 + max_fraction: 0.5 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 2690 + top: true + mode: cv +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 461 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.33899998664855957,all_total_runs:493|all_finished_runs:399|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:80.93%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3334999978542328 +4ed927e9-c099-49af-b8ce-a2652d069333(Lung),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/up1qmjf2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xlh552ry,https://wandb.ai/xzy11632/dance-dev/sweeps/w64bnq3j,https://wandb.ai/xzy11632/dance-dev/sweeps/t7nbjgz0","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 1 + max_val: 95 + mode: cv +- type: normalize + target: ScaleFeature + params: + mode: normalize + eps: -1 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 9736 + span: 0.25241821131495124 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 891 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6175000071525574,all_total_runs:220|all_finished_runs:184|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:40|step3_1_finished_runs:35|step3_2_total_runs:10|step3_2_finished_runs:10|finished_rate:83.64%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6169999837875366,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/3d1v8h2t|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/c1w0za8n,https://wandb.ai/xzy11632/dance-dev/sweeps/6bzf7x2w,https://wandb.ai/xzy11632/dance-dev/sweeps/28wpkbwl","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6425,all_total_runs:150|all_finished_runs:109|step2_total_runs:90|step2_finished_runs:54|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:72.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6425,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/o3xgoa6y|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bqb8ige8,https://wandb.ai/xzy11632/dance-dev/sweeps/32xe959r,https://wandb.ai/xzy11632/dance-dev/sweeps/wajc9h8x","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6570000052452087,all_total_runs:600|all_finished_runs:490|step2_total_runs:540|step2_finished_runs:432|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6570000052452087,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/go3pdoh7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/v5kbmzlh,https://wandb.ai/xzy11632/dance-dev/sweeps/7jrk2f6s,https://wandb.ai/xzy11632/dance-dev/sweeps/mhxt4wt6","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5975000262260437,all_total_runs:459|all_finished_runs:360|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:78.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5975000262260437 +01209dce-3575-4bed-b1df-129f57fbc031(Lung),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bhc72mqi|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/bvgh7gu1,https://wandb.ai/xzy11632/dance-dev/sweeps/oyrg3g50,https://wandb.ai/xzy11632/dance-dev/sweeps/yazhk2wh","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 8 + max_val: 98 + mode: sum +- type: normalize + target: Log1P + params: + base: 2.3999362085689735 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 2774 + span: 0.14012171784395563 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 143 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3079999983310699,all_total_runs:210|all_finished_runs:180|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.71%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.304500013589859,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wyv759w9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/shkhipgt,https://wandb.ai/xzy11632/dance-dev/sweeps/fkgincu3,https://wandb.ai/xzy11632/dance-dev/sweeps/2ai1maaq","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - min_counts + - max_cells + - max_counts + min_counts: 268 + min_cells: 0.09282122792071212 + max_counts: 0.9111506923231292 + max_cells: 0.9791784429304778 +- type: normalize + target: NormalizeTotal + params: + target_sum: null + max_fraction: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 2846 + span: 0.4736431293720086 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.289,all_total_runs:150|all_finished_runs:112|step2_total_runs:90|step2_finished_runs:53|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:74.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2835,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8072p0n9|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/eh05iegv,https://wandb.ai/xzy11632/dance-dev/sweeps/0hraadqb,https://wandb.ai/xzy11632/dance-dev/sweeps/pyj1uv1u","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3019999861717224,all_total_runs:600|all_finished_runs:495|step2_total_runs:540|step2_finished_runs:435|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3019999861717224,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/kqfwox7t|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/y0046ayn,https://wandb.ai/xzy11632/dance-dev/sweeps/ldnjitb7,https://wandb.ai/xzy11632/dance-dev/sweeps/lt59uias","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 6 + max_val: 99 + mode: var +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 1122 +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 476 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.28450000286102295,all_total_runs:510|all_finished_runs:420|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.35%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.28349998593330383 +c5d88abe-f23a-45fa-a534-788985e93dad(Lung),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0nyymfuu|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2pkvz50m,https://wandb.ai/xzy11632/dance-dev/sweeps/f08kfu41,https://wandb.ai/xzy11632/dance-dev/sweeps/hqrfqchi","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6800000071525574,all_total_runs:210|all_finished_runs:147|step2_total_runs:150|step2_finished_runs:112|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:70.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6800000071525574,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9p8xgwaa|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mhdq21lf,https://wandb.ai/xzy11632/dance-dev/sweeps/n17pymb1,https://wandb.ai/xzy11632/dance-dev/sweeps/kpo3scgj","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6965,all_total_runs:151|all_finished_runs:75|step2_total_runs:91|step2_finished_runs:74|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:49.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6965,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/g3u1qk0j|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nlje84qw,https://wandb.ai/xzy11632/dance-dev/sweeps/d8gpkrs5,https://wandb.ai/xzy11632/dance-dev/sweeps/anhsxtq2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.703000009059906,all_total_runs:572|all_finished_runs:447|step2_total_runs:540|step2_finished_runs:427|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.15%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.703000009059906,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/uffahbta|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kce6ughj,https://wandb.ai/xzy11632/dance-dev/sweeps/a2x6wq1a,https://wandb.ai/xzy11632/dance-dev/sweeps/ahewlrh8","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6784999966621399,all_total_runs:510|all_finished_runs:375|step2_total_runs:450|step2_finished_runs:315|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:73.53%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6784999966621399 +9968be68-ab65-4a38-9e1a-c9b6abece194,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/be4nwgbf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/s51pse9z,https://wandb.ai/xzy11632/dance-dev/sweeps/x2q55wwy,https://wandb.ai/xzy11632/dance-dev/sweeps/1358q46s","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6744999885559082,all_total_runs:210|all_finished_runs:177|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:84.29%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6744999885559082,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/i6274vfx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7dcfwbih,https://wandb.ai/xzy11632/dance-dev/sweeps/teou6ic8,https://wandb.ai/xzy11632/dance-dev/sweeps/b0q7l3ro","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6945,all_total_runs:150|all_finished_runs:107|step2_total_runs:90|step2_finished_runs:68|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:71.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6945,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zl582av4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zlh4j7ft,https://wandb.ai/xzy11632/dance-dev/sweeps/dxovufnv,https://wandb.ai/xzy11632/dance-dev/sweeps/ojvv4lhn","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6759999990463257,all_total_runs:600|all_finished_runs:489|step2_total_runs:540|step2_finished_runs:436|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:81.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6759999990463257,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/idz72j8l|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2zs9no5j,https://wandb.ai/xzy11632/dance-dev/sweeps/0a22jgfw,https://wandb.ai/xzy11632/dance-dev/sweeps/cqlbke6s","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6570000052452087,all_total_runs:476|all_finished_runs:360|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:75.63%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6570000052452087 +1e6a6ef9-7ec9-4c90-bbfb-2ad3c3165fd1,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/yp0mgsmx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/h8uoiu79,https://wandb.ai/xzy11632/dance-dev/sweeps/dkgaia78,https://wandb.ai/xzy11632/dance-dev/sweeps/byfhrep5","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 2 + max_val: 97 + mode: rv +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 7341 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 791 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1490000039339065,all_total_runs:210|all_finished_runs:173|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:82.38%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.147499993443489,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9c0qxaop|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cu25ez82,https://wandb.ai/xzy11632/dance-dev/sweeps/0gnr41ck,https://wandb.ai/xzy11632/dance-dev/sweeps/91zgl42j","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1545,all_total_runs:150|all_finished_runs:92|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:61.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1545,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rxpz0717|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kwdb5hwh,https://wandb.ai/xzy11632/dance-dev/sweeps/8y8lxfu9,https://wandb.ai/xzy11632/dance-dev/sweeps/tc33wt4o","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.1 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 4755 +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1389999985694885,all_total_runs:600|all_finished_runs:473|step2_total_runs:540|step2_finished_runs:415|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:78.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1369999945163726,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/b54i7xxa|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mgw2de3q,https://wandb.ai/xzy11632/dance-dev/sweeps/jfuj5vll,https://wandb.ai/xzy11632/dance-dev/sweeps/3r9o7kkx","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.14749999344348907,all_total_runs:510|all_finished_runs:420|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.35%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.14749999344348907 +486486d4-9462-43e5-9249-eb43fa5a49a6,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/z3e3gntq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/eal8ymn1,https://wandb.ai/xzy11632/dance-dev/sweeps/hdzb2brg,https://wandb.ai/xzy11632/dance-dev/sweeps/du2ryve3","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5394999980926514,all_total_runs:210|all_finished_runs:179|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:85.24%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5394999980926514,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/949fx7i2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/48o2a3bp,https://wandb.ai/xzy11632/dance-dev/sweeps/rz2qkusr,https://wandb.ai/xzy11632/dance-dev/sweeps/0pyosaoa","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.524,all_total_runs:150|all_finished_runs:72|step2_total_runs:90|step2_finished_runs:70|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:48.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.524,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/3f9mji78|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/vv3ue6q6,https://wandb.ai/xzy11632/dance-dev/sweeps/j3e3p8mv,https://wandb.ai/xzy11632/dance-dev/sweeps/o986jmf2","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5285000205039978,all_total_runs:600|all_finished_runs:466|step2_total_runs:540|step2_finished_runs:424|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:12|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:77.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5285000205039978,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4sue5c56|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/o8vlmct0,https://wandb.ai/xzy11632/dance-dev/sweeps/xajb94o1,https://wandb.ai/xzy11632/dance-dev/sweeps/sgh0lqbn","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4869999885559082,all_total_runs:476|all_finished_runs:380|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:79.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4869999885559082 +7b3368a5-c1a0-4973-9e75-d95b4150c7da,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xtfsfufy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lu662hzj,https://wandb.ai/xzy11632/dance-dev/sweeps/zsy2u3xl","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + values: + - - min_counts + - min_cells + - max_counts + - max_cells + - - min_counts + - min_cells + - max_cells + - max_counts + - - min_counts + - max_counts + - min_cells + - max_cells + - - min_counts + - max_counts + - max_cells + - min_cells + - - min_counts + - max_cells + - min_cells + - max_counts + - - min_counts + - max_cells + - max_counts + - min_cells + - - min_cells + - min_counts + - max_counts + - max_cells + - - min_cells + - min_counts + - max_cells + - max_counts + - - min_cells + - max_counts + - min_counts + - max_cells + - - min_cells + - max_counts + - max_cells + - min_counts + - - min_cells + - max_cells + - min_counts + - max_counts + - - min_cells + - max_cells + - max_counts + - min_counts + - - max_counts + - min_counts + - min_cells + - max_cells + - - max_counts + - min_counts + - max_cells + - min_cells + - - max_counts + - min_cells + - min_counts + - max_cells + - - max_counts + - min_cells + - max_cells + - min_counts + - - max_counts + - max_cells + - min_counts + - min_cells + - - max_counts + - max_cells + - min_cells + - min_counts + - - max_cells + - min_counts + - min_cells + - max_counts + - - max_cells + - min_counts + - max_counts + - min_cells + - - max_cells + - min_cells + - min_counts + - max_counts + - - max_cells + - min_cells + - max_counts + - min_counts + - - max_cells + - max_counts + - min_counts + - min_cells + - - max_cells + - max_counts + - min_cells + - min_counts + min_counts: + min: 3 + max: 500 + min_cells: + min: 0.0 + max: 0.1 + max_counts: + min: 0.9 + max: 1.0 + max_cells: + min: 0.95 + max: 1.0 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: -1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: + min: 100 + max: 10000 + top: + values: + - true + - false + mode: + values: + - sum + - var + - cv + - rv +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: + min: 100 + max: 1000 + feat_norm_mode: + values: + - null + - normalize + - standardize + - minmax + - l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1714975833892822,all_total_runs:190|all_finished_runs:142|step2_total_runs:150|step2_finished_runs:116|step3_0_total_runs:20|step3_0_finished_runs:12|step3_1_total_runs:20|step3_1_finished_runs:14|finished_rate:74.74%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1690821200609207,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/llbot2wd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7rwgizyg,https://wandb.ai/xzy11632/dance-dev/sweeps/f72tj8le,https://wandb.ai/xzy11632/dance-dev/sweeps/teurxxdt","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1545893719806763,all_total_runs:150|all_finished_runs:111|step2_total_runs:90|step2_finished_runs:72|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:74.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1545893719806763,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/cg83tw7s|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/i6cyq8ts,https://wandb.ai/xzy11632/dance-dev/sweeps/rlaksknq,https://wandb.ai/xzy11632/dance-dev/sweeps/p9jldquf","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 7 + max_val: 97 + mode: sum +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: -1 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 131 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.159420296549797,all_total_runs:600|all_finished_runs:470|step2_total_runs:540|step2_finished_runs:423|step3_0_total_runs:20|step3_0_finished_runs:7|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1582125574350357,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hlkac19s|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ov3ryli8,https://wandb.ai/xzy11632/dance-dev/sweeps/6obgw9bs,https://wandb.ai/xzy11632/dance-dev/sweeps/izhbqz2a","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1557970941066742,all_total_runs:510|all_finished_runs:365|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:71.57%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1557970941066742 +e04daea4-4412-45b5-989e-76a9be070a89,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8zrdwmrx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/kukr7kps,https://wandb.ai/xzy11632/dance-dev/sweeps/er20styk,https://wandb.ai/xzy11632/dance-dev/sweeps/u54ch3g2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1299076229333877,all_total_runs:210|all_finished_runs:156|step2_total_runs:150|step2_finished_runs:108|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:74.29%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1299076229333877,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0p7su6u6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wglkhxfr,https://wandb.ai/xzy11632/dance-dev/sweeps/7wvua5jk,https://wandb.ai/xzy11632/dance-dev/sweeps/idsyyyng","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 9 + max_val: 99 + mode: sum +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: -1 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1200923787528868,all_total_runs:149|all_finished_runs:122|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:19|step3_2_finished_runs:19|finished_rate:81.88%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1143187066974595,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/wnsy4hn7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pgk1kprh,https://wandb.ai/xzy11632/dance-dev/sweeps/des8g1uo,https://wandb.ai/xzy11632/dance-dev/sweeps/eibzdtvw","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_cells + - min_cells + - max_counts + min_counts: 331 + min_cells: 0.05663401319355241 + max_counts: 0.98489641163213 + max_cells: 0.995172911157806 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.5 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 459 + n_bins: 20 + flavor: seurat +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 990 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1224018484354019,all_total_runs:600|all_finished_runs:434|step2_total_runs:540|step2_finished_runs:384|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:72.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1218244805932045,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fw95i0vc|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lzszad4s,https://wandb.ai/xzy11632/dance-dev/sweeps/2hg95kcf,https://wandb.ai/xzy11632/dance-dev/sweeps/ix89ykms","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.11605080962181091,all_total_runs:510|all_finished_runs:335|step2_total_runs:450|step2_finished_runs:294|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:65.69%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.11605080962181091 +e9175006-8978-4417-939f-819855eab80e,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/2vgla34n|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/aams26q9,https://wandb.ai/xzy11632/dance-dev/sweeps/m7mgtsq0,https://wandb.ai/xzy11632/dance-dev/sweeps/ft38l6wk","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8185998797416687,all_total_runs:210|all_finished_runs:172|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:81.90%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.8185998797416687,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4hf1e1zt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/17uqbg1j,https://wandb.ai/xzy11632/dance-dev/sweeps/w8z7bp2m,https://wandb.ai/xzy11632/dance-dev/sweeps/609y6mnf","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8252427184466019,all_total_runs:150|all_finished_runs:75|step2_total_runs:90|step2_finished_runs:73|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:50.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.8252427184466019,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/jownb9u6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/y6fpynzt,https://wandb.ai/xzy11632/dance-dev/sweeps/tgnrrl9z,https://wandb.ai/xzy11632/dance-dev/sweeps/ba9avnb8","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8196218609809875,all_total_runs:600|all_finished_runs:474|step2_total_runs:540|step2_finished_runs:422|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:15|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:79.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8196218609809875,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ihea1f9w|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5ih7dsx2,https://wandb.ai/xzy11632/dance-dev/sweeps/ise6x4da,https://wandb.ai/xzy11632/dance-dev/sweeps/1z7617jg","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8073582053184509,all_total_runs:510|all_finished_runs:361|step2_total_runs:450|step2_finished_runs:358|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:70.78%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.8073582053184509 +0ba16f4b-cb87-4fa3-9363-19fc51eec6e7,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/sddbq9kk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/i32fl00z,https://wandb.ai/xzy11632/dance-dev/sweeps/3ux4j65s,https://wandb.ai/xzy11632/dance-dev/sweeps/wevylzje","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4050359725952149,all_total_runs:210|all_finished_runs:160|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:76.19%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4050359725952149,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nzqxkwr2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dxp2byqu,https://wandb.ai/xzy11632/dance-dev/sweeps/lkiksixl,https://wandb.ai/xzy11632/dance-dev/sweeps/txxkqm04","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4014388489208633,all_total_runs:150|all_finished_runs:117|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4014388489208633,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/d4ed7of2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4cqjlphf,https://wandb.ai/xzy11632/dance-dev/sweeps/wwtpqhff,https://wandb.ai/xzy11632/dance-dev/sweeps/2hsqujqo","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4345323741436004,all_total_runs:600|all_finished_runs:468|step2_total_runs:540|step2_finished_runs:421|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:13|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:78.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4345323741436004,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/v0gc7aor|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/u7i7sus4,https://wandb.ai/xzy11632/dance-dev/sweeps/8cyvbkoa,https://wandb.ai/xzy11632/dance-dev/sweeps/xhuq33y2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_counts + - max_cells + - min_cells + - min_counts + min_counts: 463 + min_cells: 0.049804811405829666 + max_counts: 0.9755914780222 + max_cells: 0.9940224942643062 +- type: normalize + target: ScTransform + params: + processes_num: 8 + min_cells: 10 + gmean_eps: 1 + n_genes: 1460 + n_cells: 10 + bin_size: 658 + bw_adjust: 3.5601682171616047 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 4623 + top: false + mode: var +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3827338218688965,all_total_runs:493|all_finished_runs:377|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:76.47%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.35827338695526123 +a68b64d8-aee3-4947-81b7-36b8fe5a44d2(Lung),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8vygl5n6|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/il88es7n,https://wandb.ai/xzy11632/dance-dev/sweeps/kyv0eh67,https://wandb.ai/xzy11632/dance-dev/sweeps/qx4x5rqz","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3348017632961273,all_total_runs:210|all_finished_runs:127|step2_total_runs:150|step2_finished_runs:105|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:60.48%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3348017632961273,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ugznmank|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2zv9lzme,https://wandb.ai/xzy11632/dance-dev/sweeps/8ptyl7c3","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 2 + max_val: 98 + mode: rv +- type: normalize + target: NormalizePlaceHolder +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3612334801762114,all_total_runs:130|all_finished_runs:105|step2_total_runs:90|step2_finished_runs:67|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|finished_rate:80.77%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3303964757709251,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xn9x8pbm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/g2cw98af,https://wandb.ai/xzy11632/dance-dev/sweeps/cuif1dsz,https://wandb.ai/xzy11632/dance-dev/sweeps/twq492am","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3876652121543884,all_total_runs:600|all_finished_runs:461|step2_total_runs:540|step2_finished_runs:411|step3_0_total_runs:20|step3_0_finished_runs:13|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:76.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3876652121543884,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/b76qr295|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dn8svl35,https://wandb.ai/xzy11632/dance-dev/sweeps/epc20utc,https://wandb.ai/xzy11632/dance-dev/sweeps/mg2pnd4n","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3480176329612732,all_total_runs:510|all_finished_runs:383|step2_total_runs:450|step2_finished_runs:326|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:75.10%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3480176329612732 +8c42cfd0-0b0a-46d5-910c-fc833d83c45e,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/77gxykh3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/vql4ta4g,https://wandb.ai/xzy11632/dance-dev/sweeps/bwiyitpi,https://wandb.ai/xzy11632/dance-dev/sweeps/wvnzhocs","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2515000104904175,all_total_runs:210|all_finished_runs:172|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.90%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2515000104904175,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/bvhvfd0e|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/r8kvjad3,https://wandb.ai/xzy11632/dance-dev/sweeps/2gztfme0,https://wandb.ai/xzy11632/dance-dev/sweeps/moka4ir1","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.265,all_total_runs:149|all_finished_runs:113|step2_total_runs:90|step2_finished_runs:73|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:19|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:75.84%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.265,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/6pmayeh5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qllm738w,https://wandb.ai/xzy11632/dance-dev/sweeps/9bevhqje,https://wandb.ai/xzy11632/dance-dev/sweeps/axo7zz7i","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: Log1P + params: + base: 7.282700138506678 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 355 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2425000071525573,all_total_runs:600|all_finished_runs:489|step2_total_runs:540|step2_finished_runs:429|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.50%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2419999986886978,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mwjlq7a2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pt55s3l9,https://wandb.ai/xzy11632/dance-dev/sweeps/gk0raad1,https://wandb.ai/xzy11632/dance-dev/sweeps/sxex7w80","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - max_counts + - min_counts + - min_cells + min_counts: 455 + min_cells: 0.08766785970976693 + max_counts: 0.982343433796268 + max_cells: 0.9664774788562582 +- type: normalize + target: Log1P + params: + base: 7.459782027773534 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9807 + top: true + mode: cv +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.226500004529953,all_total_runs:476|all_finished_runs:380|step2_total_runs:450|step2_finished_runs:360|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:79.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.22300000488758087 +2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Lung),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/x7ca9zjk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/g69bgevs,https://wandb.ai/xzy11632/dance-dev/sweeps/lqjvl3t9,https://wandb.ai/xzy11632/dance-dev/sweeps/lcb0w1tc","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - min_cells + - max_counts + - min_counts + min_counts: 452 + min_cells: 0.03353995237571974 + max_counts: 0.9121476758403412 + max_cells: 0.99348026292544 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.3 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 6962 + top: true + mode: cv +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 755 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2234999984502792,all_total_runs:210|all_finished_runs:173|step2_total_runs:150|step2_finished_runs:116|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:82.38%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2214999943971634,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8wu00rrs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/emkgdv7m,https://wandb.ai/xzy11632/dance-dev/sweeps/yz3ptmyb,https://wandb.ai/xzy11632/dance-dev/sweeps/8zpy4daf","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2355,all_total_runs:150|all_finished_runs:118|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2355,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qb638tpt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qnbj3gg0,https://wandb.ai/xzy11632/dance-dev/sweeps/kfih2j62,https://wandb.ai/xzy11632/dance-dev/sweeps/fe79qk1l","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.226500004529953,all_total_runs:600|all_finished_runs:503|step2_total_runs:540|step2_finished_runs:443|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.226500004529953,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ggmt3lbe|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/gukxv9vr,https://wandb.ai/xzy11632/dance-dev/sweeps/a4gvm8jz,https://wandb.ai/xzy11632/dance-dev/sweeps/1yxm20rs","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.21649999916553497,all_total_runs:493|all_finished_runs:388|step2_total_runs:450|step2_finished_runs:348|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.70%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.21649999916553497 +d8da613f-e681-4c69-b463-e94f5e66847f,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7n25es77|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/vslww26r,https://wandb.ai/xzy11632/dance-dev/sweeps/dnhruay0,https://wandb.ai/xzy11632/dance-dev/sweeps/213rny4x","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1815000027418137,all_total_runs:210|all_finished_runs:169|step2_total_runs:150|step2_finished_runs:118|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:14|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:80.48%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.1815000027418137,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qpyso58s|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/n9xhwciz,https://wandb.ai/xzy11632/dance-dev/sweeps/zb5fdqlj,https://wandb.ai/xzy11632/dance-dev/sweeps/gdl97dnb","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1705,all_total_runs:150|all_finished_runs:86|step2_total_runs:90|step2_finished_runs:65|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:57.33%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.1705,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/1lf1dmfq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wmh2vp6l,https://wandb.ai/xzy11632/dance-dev/sweeps/9zkgyabm,https://wandb.ai/xzy11632/dance-dev/sweeps/eg7prnlf","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1724999994039535,all_total_runs:600|all_finished_runs:493|step2_total_runs:540|step2_finished_runs:439|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:14|finished_rate:82.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.1724999994039535,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xbubo8oq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6vnfiblb,https://wandb.ai/xzy11632/dance-dev/sweeps/1rgmr3tb,https://wandb.ai/xzy11632/dance-dev/sweeps/gt2wvt9c","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.15800000727176666,all_total_runs:493|all_finished_runs:399|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:3|step3_2_finished_runs:0|finished_rate:80.93%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.15800000727176666 +4023a2bc-6325-47db-bfdf-9639e91042c2,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hv9b5aer|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/clfj1oh7,https://wandb.ai/xzy11632/dance-dev/sweeps/myvaevvn,https://wandb.ai/xzy11632/dance-dev/sweeps/xkcoq40e","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 10 + max_val: 95 + mode: cv +- type: normalize + target: Log1P + params: + base: 1.8942568918726996 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 1319 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 515 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.648901104927063,all_total_runs:196|all_finished_runs:158|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.61%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6483516693115234,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/s1tkaoyx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/48ud2zju,https://wandb.ai/xzy11632/dance-dev/sweeps/hvco0aoq,https://wandb.ai/xzy11632/dance-dev/sweeps/hab6rxge","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.65,all_total_runs:150|all_finished_runs:97|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:1|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:1|finished_rate:64.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.65,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/w6h9lrkf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/828yc8fb,https://wandb.ai/xzy11632/dance-dev/sweeps/xetdwps8,https://wandb.ai/xzy11632/dance-dev/sweeps/6mtvx8u2","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6615384817123413,all_total_runs:586|all_finished_runs:480|step2_total_runs:540|step2_finished_runs:440|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.91%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6615384817123413,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7u7qawi2|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/n2403fvc,https://wandb.ai/xzy11632/dance-dev/sweeps/4jk06ql6,https://wandb.ai/xzy11632/dance-dev/sweeps/6t7sm8o0","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6186813116073608,all_total_runs:493|all_finished_runs:361|step2_total_runs:450|step2_finished_runs:359|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:73.23%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6186813116073608 +71be997d-ff75-41b9-8a9f-1288c865f921(Lung),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/v5hbb1ob|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/la5t6f69,https://wandb.ai/xzy11632/dance-dev/sweeps/6f1i7xhi,https://wandb.ai/xzy11632/dance-dev/sweeps/q7mkmn1w","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5454545617103577,all_total_runs:168|all_finished_runs:119|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:70.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.5454545617103577,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/tmb6nbhs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/h0xwzuin,https://wandb.ai/xzy11632/dance-dev/sweeps/3xl8m5ai,https://wandb.ai/xzy11632/dance-dev/sweeps/a6q7uf5a","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 7 + max_val: 99 + mode: var +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000000 + max_fraction: 0.05 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 9586 + span: 0.4808965576925112 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4393939393939394,all_total_runs:150|all_finished_runs:129|step2_total_runs:90|step2_finished_runs:75|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:86.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4242424242424242,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4zpkroz8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8ya78zvj,https://wandb.ai/xzy11632/dance-dev/sweeps/etsb2867,https://wandb.ai/xzy11632/dance-dev/sweeps/ul16ui5e","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4848484992980957,all_total_runs:572|all_finished_runs:438|step2_total_runs:540|step2_finished_runs:435|step3_0_total_runs:20|step3_0_finished_runs:3|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:76.57%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4848484992980957,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/l2wuxpnd|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/t17ir30r,https://wandb.ai/xzy11632/dance-dev/sweeps/boxtoi63,https://wandb.ai/xzy11632/dance-dev/sweeps/wu62crhr","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5909090638160706,all_total_runs:510|all_finished_runs:413|step2_total_runs:450|step2_finished_runs:357|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.98%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.5909090638160706 diff --git a/examples/atlas/sweep_results/Pancreas_ans.csv b/examples/atlas/sweep_results/Pancreas_ans.csv new file mode 100644 index 00000000..dbfec2b2 --- /dev/null +++ b/examples/atlas/sweep_results/Pancreas_ans.csv @@ -0,0 +1,2985 @@ +Dataset_id,cta_scdeepsort,cta_scdeepsort_best_yaml,cta_scdeepsort_best_res,cta_scdeepsort_run_stats,cta_scdeepsort_check,cta_scdeepsort_step2_best_yaml,cta_scdeepsort_step2_best_res,cta_singlecellnet,cta_singlecellnet_best_yaml,cta_singlecellnet_best_res,cta_singlecellnet_run_stats,cta_singlecellnet_check,cta_singlecellnet_step2_best_yaml,cta_singlecellnet_step2_best_res,cta_actinn,cta_actinn_best_yaml,cta_actinn_best_res,cta_actinn_run_stats,cta_actinn_check,cta_actinn_step2_best_yaml,cta_actinn_step2_best_res,cta_celltypist,cta_celltypist_best_yaml,cta_celltypist_best_res,cta_celltypist_run_stats,cta_celltypist_check,cta_celltypist_step2_best_yaml,cta_celltypist_step2_best_res +53d208b0-2cfd-4366-9866-c3c6114081bc(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/g7t7xwhn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cf0x6364,https://wandb.ai/xzy11632/dance-dev/sweeps/ol212cn4,https://wandb.ai/xzy11632/dance-dev/sweeps/i688o13x","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - min_cells + - min_counts + - max_counts + min_counts: 482 + min_cells: 0.08359667621587258 + max_counts: 0.984260099671448 + max_cells: 0.9831967316325464 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.1 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 4805 + span: 0.59331455825036 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 541 + feat_norm_mode: minmax +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.40299999713897705,all_total_runs:210|all_finished_runs:126|step2_total_runs:150|step2_finished_runs:99|step3_0_total_runs:20|step3_0_finished_runs:8|step3_1_total_runs:20|step3_1_finished_runs:10|step3_2_total_runs:20|step3_2_finished_runs:9|finished_rate:60.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4020000100135803,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/gpj4i6jb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pqpwvbcl,https://wandb.ai/xzy11632/dance-dev/sweeps/hc0zyrsm,https://wandb.ai/xzy11632/dance-dev/sweeps/oqeg7gt6","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 1 + max_val: 95 + mode: cv +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000 + max_fraction: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3006 + span: 0.3081446146760134 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4035,all_total_runs:150|all_finished_runs:91|step2_total_runs:90|step2_finished_runs:57|step3_0_total_runs:20|step3_0_finished_runs:9|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:9|finished_rate:60.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.402,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/22ozz7li|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7af40uoa,https://wandb.ai/xzy11632/dance-dev/sweeps/go7b10ao,https://wandb.ai/xzy11632/dance-dev/sweeps/fogjho7h","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4149999916553498,all_total_runs:586|all_finished_runs:442|step2_total_runs:540|step2_finished_runs:402|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:6|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:75.43%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4149999916553498,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q7l6m2qp|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/5go16fns,https://wandb.ai/xzy11632/dance-dev/sweeps/i63ze0b1,https://wandb.ai/xzy11632/dance-dev/sweeps/e7g4eglj","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4020000100135803,all_total_runs:510|all_finished_runs:402|step2_total_runs:450|step2_finished_runs:342|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:78.82%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4020000100135803 +78f10833-3e61-4fad-96c9-4bbd4f14bdfa,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ile10jfv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8tfuwq6k,https://wandb.ai/xzy11632/dance-dev/sweeps/cwadf7td,https://wandb.ai/xzy11632/dance-dev/sweeps/6kx7b6kc","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:210|all_finished_runs:163|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:13|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:77.62%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mjxq9wbz|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mb64lqt6,https://wandb.ai/xzy11632/dance-dev/sweeps/gaeji3wq,https://wandb.ai/xzy11632/dance-dev/sweeps/jdxyftrd","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:33|step2_total_runs:90|step2_finished_runs:16|step3_0_total_runs:20|step3_0_finished_runs:9|step3_1_total_runs:20|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:8|finished_rate:22.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/t544qsq4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mdst6ozg,https://wandb.ai/xzy11632/dance-dev/sweeps/5wuust9u,https://wandb.ai/xzy11632/dance-dev/sweeps/0jz8lzw5","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:455|step2_total_runs:540|step2_finished_runs:415|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:12|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:75.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,, +f7c1c579-2dc0-47e2-ba19-8165c5a0e353(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/alp04n2p|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ki0b8xal,https://wandb.ai/xzy11632/dance-dev/sweeps/hzv5a32f,https://wandb.ai/xzy11632/dance-dev/sweeps/vvy7c4q9","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.25999999046325684,all_total_runs:210|all_finished_runs:121|step2_total_runs:150|step2_finished_runs:104|step3_0_total_runs:20|step3_0_finished_runs:7|step3_1_total_runs:20|step3_1_finished_runs:6|step3_2_total_runs:20|step3_2_finished_runs:4|finished_rate:57.62%,True,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.25999999046325684,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/szccibek|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ncv8d9cl,https://wandb.ai/xzy11632/dance-dev/sweeps/9c2q16tc,https://wandb.ai/xzy11632/dance-dev/sweeps/t3jzvjsd","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_cells + - min_cells + - max_counts + min_counts: 290 + min_cells: 0.09769546522542771 + max_counts: 0.9875755318917276 + max_cells: 0.9902514987938889 +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.3 +- type: filter.gene + target: FilterGenesRegression + params: + method: scmap + num_genes: 7878 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2475,all_total_runs:150|all_finished_runs:90|step2_total_runs:90|step2_finished_runs:56|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:5|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:60.00%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2375,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/mb7tyn1a|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tbsp1xsw,https://wandb.ai/xzy11632/dance-dev/sweeps/cx1inrux,https://wandb.ai/xzy11632/dance-dev/sweeps/ffjmt120","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2585000097751617,all_total_runs:600|all_finished_runs:457|step2_total_runs:540|step2_finished_runs:410|step3_0_total_runs:20|step3_0_finished_runs:16|step3_1_total_runs:20|step3_1_finished_runs:16|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:76.17%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2585000097751617,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q7pjlbgz|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hn65sj20,https://wandb.ai/xzy11632/dance-dev/sweeps/0aloe2j4,https://wandb.ai/xzy11632/dance-dev/sweeps/2fp77b7l","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.257999986410141,all_total_runs:510|all_finished_runs:413|step2_total_runs:450|step2_finished_runs:353|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:80.98%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.257999986410141 +37b21763-7f0f-41ae-9001-60bad6e2841d,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ertfvv8w|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/8r7518v2,https://wandb.ai/xzy11632/dance-dev/sweeps/hh8iu4b5,https://wandb.ai/xzy11632/dance-dev/sweeps/fd2zwr1f","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 2 + max_val: 96 + mode: var +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.1 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 2997 +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 645 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3165000081062317,all_total_runs:210|all_finished_runs:139|step2_total_runs:150|step2_finished_runs:104|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:7|finished_rate:66.19%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3160000145435333,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/tvr3zb5f|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4fnco0ue,https://wandb.ai/xzy11632/dance-dev/sweeps/u1pqoyl6,https://wandb.ai/xzy11632/dance-dev/sweeps/15z2bfgp","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.313,all_total_runs:150|all_finished_runs:58|step2_total_runs:90|step2_finished_runs:56|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:38.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.313,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/nflips6b|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/k7q8z2pc,https://wandb.ai/xzy11632/dance-dev/sweeps/qcv9a0iw,https://wandb.ai/xzy11632/dance-dev/sweeps/252d5f2x","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.328000009059906,all_total_runs:600|all_finished_runs:436|step2_total_runs:540|step2_finished_runs:376|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:72.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.328000009059906,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/njuwyfnv|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/nrka7j9c,https://wandb.ai/xzy11632/dance-dev/sweeps/9a520ovb,https://wandb.ai/xzy11632/dance-dev/sweeps/enxkipmk","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 1 + max_val: 95 + mode: sum +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 9608 + top: false + mode: var +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 137 + feat_norm_mode: null +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3160000145435333,all_total_runs:510|all_finished_runs:415|step2_total_runs:450|step2_finished_runs:355|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.37%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3050000071525574 +9c4c8515-8f82-4c72-b0c6-f87647b00bbe,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/m45z81gy|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/40zgwwd2,https://wandb.ai/xzy11632/dance-dev/sweeps/mrhq79ks,https://wandb.ai/xzy11632/dance-dev/sweeps/3k6f32vq","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:210|all_finished_runs:133|step2_total_runs:150|step2_finished_runs:116|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:6|finished_rate:63.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/7oluz6cx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0fcdpmmt,https://wandb.ai/xzy11632/dance-dev/sweeps/ov9j4tv9,https://wandb.ai/xzy11632/dance-dev/sweeps/uj2tgfav","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:25|step2_total_runs:90|step2_finished_runs:11|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:7|step3_2_total_runs:20|step3_2_finished_runs:7|finished_rate:16.67%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9wolfmyb|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/9mvl5sx5,https://wandb.ai/xzy11632/dance-dev/sweeps/9fpnmpj0,https://wandb.ai/xzy11632/dance-dev/sweeps/ryu2aorc","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:586|all_finished_runs:451|step2_total_runs:540|step2_finished_runs:424|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:13|step3_2_total_runs:6|step3_2_finished_runs:0|finished_rate:76.96%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,, +fa27492b-82ff-4ab7-ac61-0e2b184eee67(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/fwdw9o1c|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/30k56x2x,https://wandb.ai/xzy11632/dance-dev/sweeps/ic80cn5k,https://wandb.ai/xzy11632/dance-dev/sweeps/3nxuuyy6","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 4 + max_val: 98 + mode: var +- type: normalize + target: Log1P + params: + base: 4.773785466305951 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 8855 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 135 + feat_norm_mode: l2 +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2465000003576278,all_total_runs:210|all_finished_runs:169|step2_total_runs:150|step2_finished_runs:116|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:18|step3_2_total_runs:20|step3_2_finished_runs:15|finished_rate:80.48%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.2454999983310699,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/b7bg7l7f|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/i15ygwm0,https://wandb.ai/xzy11632/dance-dev/sweeps/sk1wej2m,https://wandb.ai/xzy11632/dance-dev/sweeps/kyoy45e1","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.7 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.26,all_total_runs:150|all_finished_runs:79|step2_total_runs:90|step2_finished_runs:57|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:52.67%,True,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.252,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/l86ls3ov|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lnfv32gq,https://wandb.ai/xzy11632/dance-dev/sweeps/2q0nk04q,https://wandb.ai/xzy11632/dance-dev/sweeps/16gfa1y6","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2585000097751617,all_total_runs:600|all_finished_runs:503|step2_total_runs:540|step2_finished_runs:448|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:83.83%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2585000097751617,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zcjk9kzu|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xa1zrlvf,https://wandb.ai/xzy11632/dance-dev/sweeps/svep9r0f,https://wandb.ai/xzy11632/dance-dev/sweeps/earmglny","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2450000047683716,all_total_runs:510|all_finished_runs:402|step2_total_runs:450|step2_finished_runs:344|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:78.82%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2450000047683716 +b07e5164-baf6-43d2-bdba-5a249d0da879,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/acvxgobi|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/367ly4lx,https://wandb.ai/xzy11632/dance-dev/sweeps/qyt8n1ye,https://wandb.ai/xzy11632/dance-dev/sweeps/yuvualyj","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.38967135548591614,all_total_runs:210|all_finished_runs:129|step2_total_runs:150|step2_finished_runs:112|step3_0_total_runs:20|step3_0_finished_runs:2|step3_1_total_runs:20|step3_1_finished_runs:9|step3_2_total_runs:20|step3_2_finished_runs:6|finished_rate:61.43%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.38967135548591614,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/y7k7yxnm|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/eokqtgdx,https://wandb.ai/xzy11632/dance-dev/sweeps/a6sdhtgr,https://wandb.ai/xzy11632/dance-dev/sweeps/1qwufafk","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.392018779342723,all_total_runs:150|all_finished_runs:119|step2_total_runs:90|step2_finished_runs:64|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:79.33%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.392018779342723,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/n58tiwn8|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uhkwcf89,https://wandb.ai/xzy11632/dance-dev/sweeps/ucmsvu93,https://wandb.ai/xzy11632/dance-dev/sweeps/ws9k52zd","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3920187652111053,all_total_runs:600|all_finished_runs:499|step2_total_runs:540|step2_finished_runs:440|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.17%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3920187652111053,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/4y7bjr73|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2bftkn2f,https://wandb.ai/xzy11632/dance-dev/sweeps/6wksp40t,https://wandb.ai/xzy11632/dance-dev/sweeps/b0igv55h","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3849765360355377,all_total_runs:493|all_finished_runs:357|step2_total_runs:450|step2_finished_runs:319|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:72.41%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3849765360355377 +c5d88abe-f23a-45fa-a534-788985e93dad(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/9nfe3jei|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/6v7hplqp,https://wandb.ai/xzy11632/dance-dev/sweeps/mt4za374,https://wandb.ai/xzy11632/dance-dev/sweeps/zzx2pq9v","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - max_cells + - min_cells + - max_counts + min_counts: 32 + min_cells: 0.0068989667478746575 + max_counts: 0.9204035632326032 + max_cells: 0.9697353117439718 +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: 0.7 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 7785 + span: 0.21716427597527824 +- type: feature.cell + target: WeightedFeatureSVD + params: + out: feature.cell + log_level: INFO + n_components: 700 + feat_norm_mode: null +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6612021923065186,all_total_runs:210|all_finished_runs:164|step2_total_runs:150|step2_finished_runs:108|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:78.10%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6593806743621826,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/x1qjt8yx|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/ke45liig,https://wandb.ai/xzy11632/dance-dev/sweeps/2vx40yev,https://wandb.ai/xzy11632/dance-dev/sweeps/jficu6da","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7231329690346083,all_total_runs:150|all_finished_runs:115|step2_total_runs:90|step2_finished_runs:57|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:76.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.7231329690346083,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/s0vghv5c|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/v0trjp3v,https://wandb.ai/xzy11632/dance-dev/sweeps/ghm1g52e,https://wandb.ai/xzy11632/dance-dev/sweeps/w5ig97h5","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6502732038497925,all_total_runs:600|all_finished_runs:496|step2_total_runs:540|step2_finished_runs:437|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:82.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6502732038497925,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/91ahvamr|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/1b2ngpol,https://wandb.ai/xzy11632/dance-dev/sweeps/1djcluuc,https://wandb.ai/xzy11632/dance-dev/sweeps/k4aioss2","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6593806743621826,all_total_runs:510|all_finished_runs:370|step2_total_runs:450|step2_finished_runs:314|step3_0_total_runs:20|step3_0_finished_runs:18|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:72.55%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6593806743621826 +a68b64d8-aee3-4947-81b7-36b8fe5a44d2(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/8n01i0az|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/0ub6c440,https://wandb.ai/xzy11632/dance-dev/sweeps/ia5uvd84,https://wandb.ai/xzy11632/dance-dev/sweeps/0ex0khdw","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9090909361839294,all_total_runs:210|all_finished_runs:139|step2_total_runs:150|step2_finished_runs:98|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:1|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:66.19%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.9090909361839294,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/c6qilb4p|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/2j09x0xu,https://wandb.ai/xzy11632/dance-dev/sweeps/ing4i47q,https://wandb.ai/xzy11632/dance-dev/sweeps/wkox37xs","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9204545454545454,all_total_runs:150|all_finished_runs:77|step2_total_runs:90|step2_finished_runs:61|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:7|step3_2_total_runs:20|step3_2_finished_runs:9|finished_rate:51.33%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.9204545454545454,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/swbuefez|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/4rfpc6i6,https://wandb.ai/xzy11632/dance-dev/sweeps/zh0y5b7w,https://wandb.ai/xzy11632/dance-dev/sweeps/es9x4wkl","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.931818187236786,all_total_runs:600|all_finished_runs:443|step2_total_runs:540|step2_finished_runs:383|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:73.83%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.931818187236786,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/3vagufgh|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/zbn2i026,https://wandb.ai/xzy11632/dance-dev/sweeps/za3zf761,https://wandb.ai/xzy11632/dance-dev/sweeps/d8thkug7","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9090909361839294,all_total_runs:510|all_finished_runs:356|step2_total_runs:450|step2_finished_runs:303|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:13|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:69.80%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.9090909361839294 +5a11f879-d1ef-458a-910c-9b0bdfca5ebf(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/zqtpjc1h|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/1hyvxkgj,https://wandb.ai/xzy11632/dance-dev/sweeps/86i5rx8r,https://wandb.ai/xzy11632/dance-dev/sweeps/xz26h5pz","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,all_total_runs:210|all_finished_runs:123|step2_total_runs:150|step2_finished_runs:87|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:58.57%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/p1kvq9l5|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mj8qxe4y,https://wandb.ai/xzy11632/dance-dev/sweeps/o382i5n0,https://wandb.ai/xzy11632/dance-dev/sweeps/tl4iv383","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,all_total_runs:150|all_finished_runs:27|step2_total_runs:90|step2_finished_runs:15|step3_0_total_runs:20|step3_0_finished_runs:4|step3_1_total_runs:20|step3_1_finished_runs:5|step3_2_total_runs:20|step3_2_finished_runs:3|finished_rate:18.00%,True,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",1.0,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ldwyub15|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/wbohhp4w,https://wandb.ai/xzy11632/dance-dev/sweeps/4m9kquzw,https://wandb.ai/xzy11632/dance-dev/sweeps/dy3sel7f","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,all_total_runs:600|all_finished_runs:432|step2_total_runs:540|step2_finished_runs:382|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:17|step3_2_total_runs:20|step3_2_finished_runs:13|finished_rate:72.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",1.0,,,,,,, +3294d050-6eeb-4a00-b24c-71aacc9b777f,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/rq1aqcks|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/w7fykvmx,https://wandb.ai/xzy11632/dance-dev/sweeps/7zg7srym,https://wandb.ai/xzy11632/dance-dev/sweeps/qgcvp9vy","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.47699999809265137,all_total_runs:193|all_finished_runs:128|step2_total_runs:150|step2_finished_runs:103|step3_0_total_runs:20|step3_0_finished_runs:5|step3_1_total_runs:3|step3_1_finished_runs:0|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:66.32%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.47699999809265137,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/l3ch2l5s|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/pgj5t8lc,https://wandb.ai/xzy11632/dance-dev/sweeps/tmjfipc9,https://wandb.ai/xzy11632/dance-dev/sweeps/zudbm7ur","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: FilterGenesRegression + params: + method: enclasc + num_genes: 8585 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4775,all_total_runs:150|all_finished_runs:100|step2_total_runs:90|step2_finished_runs:54|step3_0_total_runs:20|step3_0_finished_runs:10|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:66.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByMeanAndDisp + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4745,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/s0e382wf|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/hemo1t7y,https://wandb.ai/xzy11632/dance-dev/sweeps/x2gofgl5,https://wandb.ai/xzy11632/dance-dev/sweeps/9cwz7pvl","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 8 + max_val: 98 + mode: sum +- type: normalize + target: Log1P + params: + base: 6.12335875625052 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 8561 +- type: feature.cell + target: GaussRandProjFeature + params: + out: feature.cell + log_level: INFO + n_components: 909 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4634999930858612,all_total_runs:599|all_finished_runs:425|step2_total_runs:539|step2_finished_runs:367|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:70.95%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: CellSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4589999914169311,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/g85syyzg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/cdggwljw,https://wandb.ai/xzy11632/dance-dev/sweeps/natn1hgy,https://wandb.ai/xzy11632/dance-dev/sweeps/b0eefc5r","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4670000076293946,all_total_runs:510|all_finished_runs:363|step2_total_runs:450|step2_finished_runs:341|step3_0_total_runs:20|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:2|finished_rate:71.18%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4670000076293946 +2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/ghnlphpt|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/qmwfsxt6,https://wandb.ai/xzy11632/dance-dev/sweeps/0bv97iz8,https://wandb.ai/xzy11632/dance-dev/sweeps/fhv7qkjx","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.27399998903274536,all_total_runs:210|all_finished_runs:147|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:2|step3_2_total_runs:20|step3_2_finished_runs:11|finished_rate:70.00%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: NormalizePlaceHolder + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.27399998903274536,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/d1q0greq|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/xxfkabxr,https://wandb.ai/xzy11632/dance-dev/sweeps/br7tiz9e,https://wandb.ai/xzy11632/dance-dev/sweeps/rarxceli","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - min_counts + - max_cells + - max_counts + min_counts: 29 + min_cells: 0.055457586675047424 + max_counts: 0.9981740240410047 + max_cells: 0.960870897330556 +- type: normalize + target: ScaleFeature + params: + mode: standardize + eps: 0.5 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.261,all_total_runs:150|all_finished_runs:91|step2_total_runs:90|step2_finished_runs:56|step3_0_total_runs:20|step3_0_finished_runs:15|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:0|finished_rate:60.67%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.2605,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vqaxcou0|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/7vnuzemx,https://wandb.ai/xzy11632/dance-dev/sweeps/hlo0w2iq,https://wandb.ai/xzy11632/dance-dev/sweeps/693fk2tv","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2585000097751617,all_total_runs:601|all_finished_runs:487|step2_total_runs:541|step2_finished_runs:427|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.03%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2585000097751617,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/tnlms8f7|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/37b6ag4h,https://wandb.ai/xzy11632/dance-dev/sweeps/drrj9j62,https://wandb.ai/xzy11632/dance-dev/sweeps/yrm085kp","- type: filter.gene + target: FilterGenesPlaceHolder +- type: normalize + target: ScaleFeature + params: + mode: minmax + eps: -1 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 8013 + top: false + mode: sum +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 897 + feat_norm_mode: l2 +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2730000019073486,all_total_runs:510|all_finished_runs:395|step2_total_runs:450|step2_finished_runs:337|step3_0_total_runs:20|step3_0_finished_runs:19|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:77.45%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.2644999921321869 +ff45e623-7f5f-46e3-b47d-56be0341f66b,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/xrzp33gj|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/erm7pgbk,https://wandb.ai/xzy11632/dance-dev/sweeps/qaf8aynk,https://wandb.ai/xzy11632/dance-dev/sweeps/3hef99ol","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4124999940395355,all_total_runs:210|all_finished_runs:141|step2_total_runs:150|step2_finished_runs:93|step3_0_total_runs:20|step3_0_finished_runs:12|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:17|finished_rate:67.14%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.4124999940395355,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/qmyvmdq1|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/repllvxm,https://wandb.ai/xzy11632/dance-dev/sweeps/1u1hsnc6,https://wandb.ai/xzy11632/dance-dev/sweeps/0romoagi","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - max_counts + - min_counts + - max_cells + min_counts: 142 + min_cells: 0.09808550094261272 + max_counts: 0.9702330969318216 + max_cells: 0.9570367158864392 +- type: normalize + target: ScaleFeature + params: + mode: l2 + eps: 0.7 +- type: filter.gene + target: FilterGenesRegression + params: + method: seurat3 + num_genes: 5791 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4135,all_total_runs:150|all_finished_runs:112|step2_total_runs:90|step2_finished_runs:62|step3_0_total_runs:20|step3_0_finished_runs:14|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:16|finished_rate:74.67%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.4095,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/lzckrtvs|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/h108k8vo,https://wandb.ai/xzy11632/dance-dev/sweeps/yglgx70h,https://wandb.ai/xzy11632/dance-dev/sweeps/19oi9utb","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4135000109672546,all_total_runs:600|all_finished_runs:499|step2_total_runs:540|step2_finished_runs:442|step3_0_total_runs:20|step3_0_finished_runs:17|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:83.17%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4135000109672546,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/li0kaahk|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mftedu6f,https://wandb.ai/xzy11632/dance-dev/sweeps/05zma5yg,https://wandb.ai/xzy11632/dance-dev/sweeps/3a1vt11n","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4115000069141388,all_total_runs:510|all_finished_runs:384|step2_total_runs:450|step2_finished_runs:325|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:75.29%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4115000069141388 +66d15835-5dc8-4e96-b0eb-f48971cb65e8,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/vqiycw97|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/mqxn1w2x,https://wandb.ai/xzy11632/dance-dev/sweeps/7xrgbuws,https://wandb.ai/xzy11632/dance-dev/sweeps/rfy7mvau","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3791748583316803,all_total_runs:196|all_finished_runs:158|step2_total_runs:150|step2_finished_runs:119|step3_0_total_runs:6|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:19|finished_rate:80.61%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: Log1P + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.3791748583316803,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/0tpkjxr3|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/dxjir4oa,https://wandb.ai/xzy11632/dance-dev/sweeps/ozctmfyc,https://wandb.ai/xzy11632/dance-dev/sweeps/ie0fgnbo","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3595284872298624,all_total_runs:150|all_finished_runs:115|step2_total_runs:90|step2_finished_runs:60|step3_0_total_runs:20|step3_0_finished_runs:15|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:76.67%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesRegression + params: + num_genes: 3000 +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.3595284872298624,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5i2bqatn|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/f3fnnke6,https://wandb.ai/xzy11632/dance-dev/sweeps/0nyyt1k7,https://wandb.ai/xzy11632/dance-dev/sweeps/oaa1e4hg","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4420432150363922,all_total_runs:600|all_finished_runs:494|step2_total_runs:540|step2_finished_runs:434|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:82.33%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: GaussRandProjFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.4420432150363922,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/p87lac44|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/lfrx75bu,https://wandb.ai/xzy11632/dance-dev/sweeps/9dafryxc,https://wandb.ai/xzy11632/dance-dev/sweeps/yh7p9cq3","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - max_cells + - min_cells + - max_counts + - min_counts + min_counts: 436 + min_cells: 0.008052271855593807 + max_counts: 0.9724095836117284 + max_cells: 0.968847446724503 +- type: normalize + target: Log1P + params: + base: 5.483824101447068 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 6222 + top: true + mode: var +- type: feature.cell + target: FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3791748583316803,all_total_runs:493|all_finished_runs:344|step2_total_runs:450|step2_finished_runs:307|step3_0_total_runs:3|step3_0_finished_runs:0|step3_1_total_runs:20|step3_1_finished_runs:19|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:69.78%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScTransform + params: + processes_num: 8 +- type: filter.gene + target: HighlyVariableGenesLogarithmizedByTopGenes + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + target: FeatureCellPlaceHolder +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.3634577691555023 +97a17473-e2b1-4f31-a544-44a60773e2dd(Pancreas),"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/5sc3ymja|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/tzb3gq58,https://wandb.ai/xzy11632/dance-dev/sweeps/epie6vgv,https://wandb.ai/xzy11632/dance-dev/sweeps/geh4eyae","- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6768107414245605,all_total_runs:210|all_finished_runs:145|step2_total_runs:150|step2_finished_runs:120|step3_0_total_runs:20|step3_0_finished_runs:10|step3_1_total_runs:20|step3_1_finished_runs:3|step3_2_total_runs:20|step3_2_finished_runs:12|finished_rate:69.05%,False,"- type: filter.gene + target: FilterGenesPercentile + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeaturePCA +- type: graph.cell + target: CellFeatureGraph + params: + cell_feature_channel: feature.cell +- type: misc + target: SetConfig + params: + config_dict: + label_channel: cell_type +",0.6768107414245605,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/09vtppjh|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/l5fovbpb,https://wandb.ai/xzy11632/dance-dev/sweeps/utu1c0zt,https://wandb.ai/xzy11632/dance-dev/sweeps/689d3b91","- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_cells + - min_counts + - max_counts + - max_cells + min_counts: 327 + min_cells: 0.08986191604520012 + max_counts: 0.9467699188647029 + max_cells: 0.9545870083635444 +- type: normalize + target: NormalizeTotal + params: + target_sum: 1000000 + max_fraction: 0.05 +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 571 + top: true + mode: sum +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6518563603164942,all_total_runs:150|all_finished_runs:116|step2_total_runs:90|step2_finished_runs:56|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:77.33%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: NormalizeTotal + params: {} +- type: filter.gene + target: FilterGenesNumberPlaceHolder + params: {} +- type: feature.cell + target: SCNFeature +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: SCNFeature + label_channel: cell_type +",0.6378575776019476,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/q75qr9j4|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/sk8ji4mk,https://wandb.ai/xzy11632/dance-dev/sweeps/bjg9ihgt,https://wandb.ai/xzy11632/dance-dev/sweeps/w24yl7xi","- type: filter.gene + target: FilterGenesPercentile + params: + min_val: 9 + max_val: 98 + mode: rv +- type: normalize + target: Log1P + params: + base: 9.215313360927013 +- type: filter.gene + target: FilterGenesNumberPlaceHolder +- type: feature.cell + target: WeightedFeaturePCA + params: + out: feature.cell + log_level: INFO + n_components: 323 + feat_norm_mode: standardize +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6792452931404114,all_total_runs:600|all_finished_runs:486|step2_total_runs:540|step2_finished_runs:426|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:20|finished_rate:81.00%,False,"- type: filter.gene + target: FilterGenesScanpyOrder + params: + order: + - min_counts + - min_cells + - max_counts + - max_cells + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: HighlyVariableGenesRawCount + params: + n_top_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6786366105079651,"step2:https://wandb.ai/xzy11632/dance-dev/sweeps/hikrp0lg|step3:https://wandb.ai/xzy11632/dance-dev/sweeps/uazhlu4v,https://wandb.ai/xzy11632/dance-dev/sweeps/wrbzgnc1,https://wandb.ai/xzy11632/dance-dev/sweeps/kvelln8e","- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6755934357643127,all_total_runs:511|all_finished_runs:385|step2_total_runs:451|step2_finished_runs:327|step3_0_total_runs:20|step3_0_finished_runs:20|step3_1_total_runs:20|step3_1_finished_runs:20|step3_2_total_runs:20|step3_2_finished_runs:18|finished_rate:75.34%,False,"- type: filter.gene + target: FilterGenesPlaceHolder + params: {} +- type: normalize + target: ScaleFeature + params: {} +- type: filter.gene + target: FilterGenesTopK + params: + num_genes: 3000 +- type: feature.cell + params: + out: feature.cell + log_level: INFO + split_name: train + target: WeightedFeatureSVD +- type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +",0.6755934357643127 diff --git a/examples/atlas/upload_data.py b/examples/atlas/upload_data.py new file mode 100644 index 00000000..c8bd7baa --- /dev/null +++ b/examples/atlas/upload_data.py @@ -0,0 +1,126 @@ +"""Upload Atlas and Query datasets to Dropbox. + +This script handles the upload of single-cell RNA sequencing datasets to Dropbox. +It processes both atlas and query datasets, handling large (>10000 cells) and small datasets separately. +The script reads data from local h5ad files and uploads them to a specified Dropbox location. + +Required environment variables: + DROPBOX_ACCESS_TOKEN: Authentication token for Dropbox API + +Usage: + python upload_data.py --maindir --filedir + --tissues --dropbox_dest_path + +""" + +import argparse +import json +import os +import pathlib + +import pandas as pd +import scanpy as sc +from dotenv import load_dotenv + +from dance.atlas.data_dropbox_upload import get_ans, get_data + +if __name__ == "__main__": + # Load environment variables + load_dotenv() + + args = argparse.ArgumentParser() + args.add_argument("--maindir", type=str) + args.add_argument("--filedir", type=str) + args.add_argument("--tissues", type=str, nargs="+") + args.add_argument("--dropbox_dest_path", type=str) + args = args.parse_args() + + # Get access token from environment variables + ACCESS_TOKEN = os.getenv('DROPBOX_ACCESS_TOKEN') + if not ACCESS_TOKEN: + raise ValueError("DROPBOX_ACCESS_TOKEN environment variable not found!\n" + "Please set DROPBOX_ACCESS_TOKEN=your_token_here in .env file") + + MAINDIR = pathlib.Path(args.maindir) + FILEDIR = pathlib.Path(args.filedir) + tissues = args.tissues + DROPBOX_DEST_PATH = args.dropbox_dest_path + + def get_data(dataset_id, in_atlas=False, large=False): + """Load h5ad dataset from local path. + + Parameters + ---------- + dataset_id : str + Identifier for the dataset + in_atlas : bool + Whether dataset is from atlas (True) or query (False) + large : bool + Whether dataset is large (>10000 cells) requiring sampling + + Returns + ------- + AnnData + Loaded single cell data + Path + Local path to the data file + + """ + if large: + if in_atlas: + local_path = MAINDIR / f"sampled-10000/{tissue}/{dataset_id}.h5ad" + else: + local_path = FILEDIR / f"sampled-10000/{tissue}/{dataset_id}.h5ad" + else: + local_path = MAINDIR / f"{tissue}/{dataset_id}.h5ad" + data = sc.read_h5ad(local_path) + return data, local_path + + upload_results = [] + + # Load atlas and query results + with open(FILEDIR / "results/atlas_result.json") as f: + atlas_result = json.load(f) + with open(FILEDIR / "results/query_result.json") as f: + query_result = json.load(f) + + for tissue in tissues: + # Process atlas datasets + large_dataset_ids = atlas_result[tissue][0] + small_dataset_ids = atlas_result[tissue][1] + + # Upload large atlas datasets + for dataset_id in large_dataset_ids: + data, local_path = get_data(dataset_id=dataset_id, in_atlas=True, large=True) + upload_results.append( + get_ans(dataset_id=dataset_id, tissue=tissue, data=data, local_path=local_path, + ACCESS_TOKEN=ACCESS_TOKEN, DROPBOX_DEST_PATH=DROPBOX_DEST_PATH)) + + # Upload small atlas datasets + for dataset_id in small_dataset_ids: + data, local_path = get_data(dataset_id=dataset_id, in_atlas=True, large=False) + upload_results.append( + get_ans(dataset_id=dataset_id, tissue=tissue, data=data, local_path=local_path, + ACCESS_TOKEN=ACCESS_TOKEN, DROPBOX_DEST_PATH=DROPBOX_DEST_PATH)) + + # Process query datasets + large_query_ids = query_result[tissue][0] + small_query_ids = query_result[tissue][1] + + # Upload large query datasets + for dataset_id in large_query_ids: + data, local_path = get_data(dataset_id=dataset_id, in_atlas=False, large=True) + upload_results.append( + get_ans(dataset_id=dataset_id, tissue=tissue, data=data, local_path=local_path, + ACCESS_TOKEN=ACCESS_TOKEN, DROPBOX_DEST_PATH=DROPBOX_DEST_PATH)) + + # Upload small query datasets + for dataset_id in small_query_ids: + data, local_path = get_data(dataset_id=dataset_id, in_atlas=False, large=False) + upload_results.append( + get_ans(dataset_id=dataset_id, tissue=tissue, data=data, local_path=local_path, + ACCESS_TOKEN=ACCESS_TOKEN, DROPBOX_DEST_PATH=DROPBOX_DEST_PATH)) + + # Save upload results + output_filename = f"{','.join(tissues)}_scdeepsort.csv" + pd.DataFrame(upload_results).set_index("species").to_csv(output_filename) diff --git a/examples/config/cta_svm/main.py b/examples/config/cta_svm/main.py deleted file mode 100644 index 7d89fa8d..00000000 --- a/examples/config/cta_svm/main.py +++ /dev/null @@ -1,72 +0,0 @@ -import argparse -import pprint -from typing import get_args - -import numpy as np - -from dance import logger -from dance.datasets.singlemodality import CellTypeAnnotationDataset -from dance.modules.single_modality.cell_type_annotation.svm import SVM -from dance.pipeline import Pipeline -from dance.typing import LogLevel -from dance.utils import set_seed - -if __name__ == "__main__": - parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) - parser.add_argument("--cache", action="store_true", help="Cache processed data.") - parser.add_argument("--dense_dim", type=int, default=400, help="dim of PCA") - parser.add_argument("--gpu", type=int, default=-1, help="GPU id, set to -1 for CPU") - parser.add_argument("--log_level", type=str, default="INFO", choices=get_args(LogLevel)) - parser.add_argument("--species", default="mouse") - parser.add_argument("--test_dataset", nargs="+", default=[2695], type=int, help="list of dataset id") - parser.add_argument("--tissue", default="Brain") # TODO: Add option for different tissue name for train/test - parser.add_argument("--train_dataset", nargs="+", default=[753, 3285], type=int, help="list of dataset id") - parser.add_argument("--seed", type=int, default=10) - parser.add_argument("--num_runs", type=int, default=1) - - args = parser.parse_args() - logger.setLevel(args.log_level) - logger.info(f"Running SVM with the following parameters:\n{pprint.pformat(vars(args))}") - - scores = [] - for seed in range(args.seed, args.seed + args.num_runs): - set_seed(seed) - # Initialize model and get model specific preprocessing pipeline - model = SVM(args, random_state=seed) # TODO: get useful args out - # preprocessing_pipeline = model.preprocessing_pipeline(n_components=args.dense_dim, log_level=args.log_level) - - # Load raw data - data = CellTypeAnnotationDataset(train_dataset=args.train_dataset, test_dataset=args.test_dataset, - species=args.species, tissue=args.tissue).load_data() - - # Construct preprocessing pipeline from config file - preprocessing_pipeline = Pipeline.from_config_file("preprocessing_config.yaml") - print(f"Loaded preprocessing config:\n{preprocessing_pipeline.to_yaml()}") - - # Apply preprocessing pipeline to data - preprocessing_pipeline(data) - - # Obtain training and testing data - x_train, y_train = data.get_train_data() - y_train_converted = y_train.argmax(1) # convert one-hot representation into label index representation - x_test, y_test = data.get_test_data() - - # Train and evaluate the model - model.fit(x_train, y_train_converted) - score = model.score(x_test, y_test) - scores.append(score) - print(f"{score=:.4f}") - print(f"SVM {args.species} {args.tissue} {args.test_dataset}:") - print(f"{scores}\n{np.mean(scores):.5f} +/- {np.std(scores):.5f}") -"""To reproduce SVM benchmarks, please refer to command lines below: - -Mouse Brain -$ python main.py --species mouse --tissue Brain --train_dataset 753 3285 --test_dataset 2695 - -Mouse Spleen -$ python main.py --species mouse --tissue Spleen --train_dataset 1970 --test_dataset 1759 - -Mouse Kidney -$ python main.py --species mouse --tissue Kidney --train_dataset 4682 --test_dataset 203 - -""" diff --git a/examples/config/cta_svm/preprocessing_config.yaml b/examples/config/cta_svm/preprocessing_config.yaml deleted file mode 100644 index a884be5c..00000000 --- a/examples/config/cta_svm/preprocessing_config.yaml +++ /dev/null @@ -1,34 +0,0 @@ -type: preprocessor -desc: >- - Preprocess scRNA-seq counts into dense features for SVM by taking the - weighted sum of the gene PCA components. -pipeline: - - type: feature.cell - target: WeightedFeaturePCA - # Scope will be set to _registry_ by default, so you can leave out the - # specification of scope as well. - # Setting scope to "_registry_" will trigger auto-scope-resolve and - # iteratively combines the type. In this case, it will be resolved to - # "_registry_.preprocessor.feature.cell". - # You can also specify the absolute scope of the target object, rather than - # the scope of the registry. For example, the absolute scope for - # "WeightedFeaturePCA" is "dance.transforms.feature.cell". - scope: _registry_ - params: - n_components: 400 - split_name: train - - type: misc - target: SetConfig - # Scope will be set to _registry_ by default, so you can leave out the - # specification of scope as well. - # Setting scope to "_registry_" will trigger auto-scope-resolve and - # iteratively combines the type. In this case, it will be resolved to - # "_registry_.preprocessor.misc". - # You can also specify the absolute scope of the target object, rather than - # the scope of the registry. For example, the absolute scope for - # "SetConfig" is "dance.transforms.misc". - scope: _registry_ - params: - config_dict: - feature_channel: WeightedFeaturePCA - label_channel: cell_type diff --git a/examples/dataset_server.json b/examples/dataset_server.json new file mode 100644 index 00000000..8d07f604 --- /dev/null +++ b/examples/dataset_server.json @@ -0,0 +1,112 @@ +{ + + "heart":{ + "cta_actinn": [ + "572f3f3e-d3e4-4d13-8e2b-88215e508481", + "fa27492b-82ff-4ab7-ac61-0e2b184eee67", + "f15e263b-6544-46cb-a46e-e33ab7ce8347", + "f7995301-7551-4e1d-8396-ffe3c9497ace", + "e6a11140-2545-46bc-929e-da243eed2cae", + "1062c0f2-2a44-4cf9-a7c8-b5ed58b4728d", + "1c739a3e-c3f5-49d5-98e0-73975e751201", + "1252c5fb-945f-42d6-b1a8-8a3bd864384b", + "a68b64d8-aee3-4947-81b7-36b8fe5a44d2", + "d567b692-c374-4628-a508-8008f6778f22", + "2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Heart)", + "65badd7a-9262-4fd1-9ce2-eb5dc0ca8039", + "f7c1c579-2dc0-47e2-ba19-8165c5a0e353", + "c5d88abe-f23a-45fa-a534-788985e93dad(Heart)", + "83b5e943-a1d5-4164-b3f2-f7a37f01b524", + "bdf69f8d-5a96-4d6f-a9f5-9ee0e33597b7", + "5a11f879-d1ef-458a-910c-9b0bdfca5ebf", + "1009f384-b12d-448e-ba9f-1b7d2ecfbb4e", + "9434b020-de42-43eb-bcc4-542b2be69015", + "d4e69e01-3ba2-4d6b-a15d-e7048f78f22e", + "4ed927e9-c099-49af-b8ce-a2652d069333", + "ed852810-a003-4386-9846-1638362cee39", + "f75f2ff4-2884-4c2d-b375-70de37a34507", + "97a17473-e2b1-4f31-a544-44a60773e2dd" + ] + , + "cta_celltypist": [ + "572f3f3e-d3e4-4d13-8e2b-88215e508481", + "fa27492b-82ff-4ab7-ac61-0e2b184eee67", + "f15e263b-6544-46cb-a46e-e33ab7ce8347", + "f7995301-7551-4e1d-8396-ffe3c9497ace", + "e6a11140-2545-46bc-929e-da243eed2cae", + "1062c0f2-2a44-4cf9-a7c8-b5ed58b4728d", + "1c739a3e-c3f5-49d5-98e0-73975e751201", + "1252c5fb-945f-42d6-b1a8-8a3bd864384b", + "a68b64d8-aee3-4947-81b7-36b8fe5a44d2", + "d567b692-c374-4628-a508-8008f6778f22", + "2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Heart)", + "65badd7a-9262-4fd1-9ce2-eb5dc0ca8039", + "f7c1c579-2dc0-47e2-ba19-8165c5a0e353", + "c5d88abe-f23a-45fa-a534-788985e93dad(Heart)", + "83b5e943-a1d5-4164-b3f2-f7a37f01b524", + "bdf69f8d-5a96-4d6f-a9f5-9ee0e33597b7", + "5a11f879-d1ef-458a-910c-9b0bdfca5ebf", + "1009f384-b12d-448e-ba9f-1b7d2ecfbb4e", + "9434b020-de42-43eb-bcc4-542b2be69015", + "d4e69e01-3ba2-4d6b-a15d-e7048f78f22e", + "4ed927e9-c099-49af-b8ce-a2652d069333", + "ed852810-a003-4386-9846-1638362cee39", + "f75f2ff4-2884-4c2d-b375-70de37a34507", + "97a17473-e2b1-4f31-a544-44a60773e2dd" + ], + "cta_scdeepsort": [ + "572f3f3e-d3e4-4d13-8e2b-88215e508481", + "fa27492b-82ff-4ab7-ac61-0e2b184eee67", + "f15e263b-6544-46cb-a46e-e33ab7ce8347", + "f7995301-7551-4e1d-8396-ffe3c9497ace", + "e6a11140-2545-46bc-929e-da243eed2cae", + "1062c0f2-2a44-4cf9-a7c8-b5ed58b4728d", + "1c739a3e-c3f5-49d5-98e0-73975e751201", + "1252c5fb-945f-42d6-b1a8-8a3bd864384b", + "a68b64d8-aee3-4947-81b7-36b8fe5a44d2", + "d567b692-c374-4628-a508-8008f6778f22", + "2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Heart)", + "65badd7a-9262-4fd1-9ce2-eb5dc0ca8039", + "f7c1c579-2dc0-47e2-ba19-8165c5a0e353", + "c5d88abe-f23a-45fa-a534-788985e93dad(Heart)", + "83b5e943-a1d5-4164-b3f2-f7a37f01b524", + "bdf69f8d-5a96-4d6f-a9f5-9ee0e33597b7", + "5a11f879-d1ef-458a-910c-9b0bdfca5ebf", + "1009f384-b12d-448e-ba9f-1b7d2ecfbb4e", + "9434b020-de42-43eb-bcc4-542b2be69015", + "d4e69e01-3ba2-4d6b-a15d-e7048f78f22e", + "4ed927e9-c099-49af-b8ce-a2652d069333", + "ed852810-a003-4386-9846-1638362cee39", + "f75f2ff4-2884-4c2d-b375-70de37a34507", + "97a17473-e2b1-4f31-a544-44a60773e2dd" + ] + , + "cta_singlecellnet": [ + "572f3f3e-d3e4-4d13-8e2b-88215e508481", + "fa27492b-82ff-4ab7-ac61-0e2b184eee67", + "f15e263b-6544-46cb-a46e-e33ab7ce8347", + "f7995301-7551-4e1d-8396-ffe3c9497ace", + "e6a11140-2545-46bc-929e-da243eed2cae", + "1062c0f2-2a44-4cf9-a7c8-b5ed58b4728d", + "1c739a3e-c3f5-49d5-98e0-73975e751201", + "1252c5fb-945f-42d6-b1a8-8a3bd864384b", + "a68b64d8-aee3-4947-81b7-36b8fe5a44d2", + "d567b692-c374-4628-a508-8008f6778f22", + "2adb1f8a-a6b1-4909-8ee8-484814e2d4bf(Heart)", + "65badd7a-9262-4fd1-9ce2-eb5dc0ca8039", + "f7c1c579-2dc0-47e2-ba19-8165c5a0e353", + "c5d88abe-f23a-45fa-a534-788985e93dad(Heart)", + "83b5e943-a1d5-4164-b3f2-f7a37f01b524", + "bdf69f8d-5a96-4d6f-a9f5-9ee0e33597b7", + "5a11f879-d1ef-458a-910c-9b0bdfca5ebf", + "1009f384-b12d-448e-ba9f-1b7d2ecfbb4e", + "9434b020-de42-43eb-bcc4-542b2be69015", + "d4e69e01-3ba2-4d6b-a15d-e7048f78f22e", + "4ed927e9-c099-49af-b8ce-a2652d069333", + "ed852810-a003-4386-9846-1638362cee39", + "f75f2ff4-2884-4c2d-b375-70de37a34507", + "97a17473-e2b1-4f31-a544-44a60773e2dd" + ] + } + +} diff --git a/examples/multi_modality/joint_embedding/dcca.py b/examples/multi_modality/joint_embedding/dcca.py index 73668160..da092b93 100644 --- a/examples/multi_modality/joint_embedding/dcca.py +++ b/examples/multi_modality/joint_embedding/dcca.py @@ -45,11 +45,12 @@ def parameter_setting(): parser.add_argument("--anneal_epoch", "-ae", type=int, default=200, help="Anneal epoch") parser.add_argument("--epoch_per_test", "-ept", type=int, default=5, help="Epoch per test") parser.add_argument("--max_ARI", "-ma", type=int, default=-200, help="initial ARI") - parser.add_argument("-t", "--subtask", default="openproblems_bmmc_cite_phase2") - parser.add_argument("-device", "--device", default="cuda") + parser.add_argument("-t", "--subtask", default="openproblems_2022_multi_atac2gex") + parser.add_argument("-device", "--device", default="cuda:5") parser.add_argument("--final_rate", type=float, default=1e-4) parser.add_argument("--scale_factor", type=float, default=4) - + parser.add_argument("--span", type=float, default=0.3) + parser.add_argument("--selection_threshold", type=int, default=3000) return parser @@ -65,13 +66,15 @@ def parameter_setting(): args.lr2 = 0.005 args.flr2 = 0.0005 - dataset = JointEmbeddingNIPSDataset(args.subtask, root="./data/joint_embedding", preprocess="feature_selection") + dataset = JointEmbeddingNIPSDataset(args.subtask, root="./data/joint_embedding", preprocess="feature_selection", + span=args.span, selection_threshold=args.selection_threshold) data = dataset.load_data() le = preprocessing.LabelEncoder() labels = le.fit_transform(data.mod["test_sol"].obs["cell_type"]) data.mod["mod2"].obsm["size_factors"] = np.sum(data.mod["mod2"].X.todense(), 1) / 100 - data.mod["mod1"].obsm["size_factors"] = data.mod["mod1"].obs["size_factors"] + # data.mod["mod1"].obsm["size_factors"] = data.mod["mod1"].obs["size_factors"] + data.mod["mod1"].obsm["size_factors"] = np.sum(data.mod["mod1"].X.todense(), 1) / 100 data.mod["mod1"].obsm["labels"] = labels data.set_config(feature_mod=["mod1", "mod2", "mod1", "mod2", "mod1", "mod2"], label_mod="mod1", @@ -131,7 +134,7 @@ def parameter_setting(): adata = adata[adata_sol.obs_names] adata_sol.obsm['X_emb'] = adata.X score = metrics.labeled_clustering_evaluate(adata, adata_sol) - score.update(metrics.integration_openproblems_evaluate(adata_sol)) + # score.update(metrics.integration_openproblems_evaluate(adata_sol)) score.update({ 'seed': args.seed + k, 'subtask': args.subtask, diff --git a/examples/multi_modality/joint_embedding/jae.py b/examples/multi_modality/joint_embedding/jae.py index cca32808..7504f2e7 100644 --- a/examples/multi_modality/joint_embedding/jae.py +++ b/examples/multi_modality/joint_embedding/jae.py @@ -10,8 +10,11 @@ if __name__ == "__main__": parser = argparse.ArgumentParser() - parser.add_argument("-t", "--subtask", default="openproblems_bmmc_cite_phase2", - choices=["openproblems_bmmc_cite_phase2", "openproblems_bmmc_multiome_phase2"]) + parser.add_argument( + "-t", "--subtask", default="openproblems_2022_multi_atac2gex", choices=[ + "openproblems_bmmc_cite_phase2", "openproblems_bmmc_multiome_phase2", "GSE140203_BRAIN_atac2gex", + "GSE140203_SKIN_atac2gex", "openproblems_2022_multi_atac2gex" + ]) parser.add_argument("-d", "--data_folder", default="./data/joint_embedding") parser.add_argument("-pre", "--pretrained_folder", default="./data/joint_embedding/pretrained") parser.add_argument("-csv", "--csv_path", default="decoupled_lsi.csv") @@ -21,7 +24,8 @@ parser.add_argument("-bs", "--batch_size", default=128, type=int) parser.add_argument("-nm", "--normalize", default=1, type=int, choices=[0, 1]) parser.add_argument("--runs", type=int, default=1, help="Number of repetitions") - + parser.add_argument("--span", type=float, default=0.3) + parser.add_argument("--preprocess", default="aux") args = parser.parse_args() device = args.device @@ -30,7 +34,8 @@ rndseed = args.seed set_seed(rndseed) - dataset = JointEmbeddingNIPSDataset(args.subtask, root=args.data_folder, preprocess="aux", normalize=True) + dataset = JointEmbeddingNIPSDataset(args.subtask, root=args.data_folder, preprocess=args.preprocess, normalize=True, + span=args.span) data = dataset.load_data() data.set_config( @@ -39,6 +44,15 @@ feature_channel=["X_pca", "X_pca"], label_channel=["cell_type", "batch_label", "phase_labels", "S_scores", "G2M_scores"], ) + if args.preprocess != "aux": + cell_type_labels = data.data['test_sol'].obs["cell_type"].to_numpy() + cell_type_labels_unique = list(np.unique(cell_type_labels)) + c_labels = np.array([cell_type_labels_unique.index(item) for item in cell_type_labels]) + data.data['mod1'].obsm["cell_type"] = c_labels + data.data["mod1"].obsm["S_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["G2M_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["batch_label"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["phase_labels"] = np.zeros(data.data['mod1'].shape[0]) (X_mod1_train, X_mod2_train), (cell_type, batch_label, phase_label, S_score, G2M_score) = data.get_train_data(return_type="torch") (X_mod1_test, X_mod2_test), (cell_type_test, _, _, _, _) = data.get_test_data(return_type="torch") @@ -61,7 +75,7 @@ print(embeds) score = model.score(X_test, test_id, labels, metric="clustering") - score.update(model.score(X_test, test_id, labels, adata_sol=adata_sol, metric="openproblems")) + # score.update(model.score(X_test, test_id, labels, adata_sol=adata_sol, metric="openproblems")) score.update({ 'seed': args.seed + k, 'subtask': args.subtask, diff --git a/examples/multi_modality/joint_embedding/scmogcn.py b/examples/multi_modality/joint_embedding/scmogcn.py index 0ed73f3f..51e556c2 100644 --- a/examples/multi_modality/joint_embedding/scmogcn.py +++ b/examples/multi_modality/joint_embedding/scmogcn.py @@ -11,8 +11,11 @@ if __name__ == "__main__": parser = argparse.ArgumentParser() - parser.add_argument("-t", "--subtask", default="openproblems_bmmc_cite_phase2", - choices=["openproblems_bmmc_cite_phase2", "openproblems_bmmc_multiome_phase2"]) + parser.add_argument( + "-t", "--subtask", default="openproblems_2022_multi_atac2gex", choices=[ + "openproblems_bmmc_cite_phase2", "openproblems_bmmc_multiome_phase2", "GSE140203_BRAIN_atac2gex", + "GSE140203_SKIN_atac2gex", "openproblems_2022_multi_atac2gex" + ]) parser.add_argument("-d", "--data_folder", default="./data/joint_embedding") parser.add_argument("-pre", "--pretrained_folder", default="./data/joint_embedding/pretrained") parser.add_argument("-csv", "--csv_path", default="decoupled_lsi.csv") @@ -24,7 +27,8 @@ parser.add_argument("-bs", "--batch_size", default=512, type=int) parser.add_argument("-nm", "--normalize", default=1, type=int, choices=[0, 1]) parser.add_argument("--runs", type=int, default=1, help="Number of repetitions") - + parser.add_argument("--span", type=float, default=0.3) + parser.add_argument("--preprocess", default="aux") args = parser.parse_args() device = args.device @@ -33,7 +37,8 @@ rndseed = args.seed set_seed(rndseed) - dataset = JointEmbeddingNIPSDataset(args.subtask, root=args.data_folder, preprocess="aux", normalize=True) + dataset = JointEmbeddingNIPSDataset(args.subtask, root=args.data_folder, preprocess=args.preprocess, normalize=True, + span=args.span) data = dataset.load_data() train_size = len(data.get_split_idx("train")) @@ -45,6 +50,15 @@ feature_channel=["X_pca", "X_pca"], label_channel=["cell_type", "batch_label", "phase_labels", "S_scores", "G2M_scores"], ) + if args.preprocess != "aux": + cell_type_labels = data.data['test_sol'].obs["cell_type"].to_numpy() + cell_type_labels_unique = list(np.unique(cell_type_labels)) + c_labels = np.array([cell_type_labels_unique.index(item) for item in cell_type_labels]) + data.data['mod1'].obsm["cell_type"] = c_labels + data.data["mod1"].obsm["S_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["G2M_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["batch_label"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["phase_labels"] = np.zeros(data.data['mod1'].shape[0]) (x_mod1, x_mod2), (cell_type, batch_label, phase_label, S_score, G2M_score) = data.get_data(return_type="torch") phase_score = torch.cat([S_score[:, None], G2M_score[:, None]], 1) test_id = np.arange(x_mod1.shape[0]) @@ -68,7 +82,7 @@ embeds = model.predict(test_id).cpu().numpy() print(embeds) score = model.score(test_id, labels, metric="clustering") - score.update(model.score(test_id, labels, adata_sol=adata_sol, metric="openproblems")) + # score.update(model.score(test_id, labels, adata_sol=adata_sol, metric="openproblems")) score.update({ 'seed': args.seed + k, 'subtask': args.subtask, diff --git a/examples/multi_modality/joint_embedding/scmvae.py b/examples/multi_modality/joint_embedding/scmvae.py index 65464c0f..c638f35b 100644 --- a/examples/multi_modality/joint_embedding/scmvae.py +++ b/examples/multi_modality/joint_embedding/scmvae.py @@ -32,11 +32,12 @@ def parameter_setting(): parser.add_argument("--epoch_per_test", "-ept", type=int, default=1, help="Epoch per test, must smaller than max iteration.") parser.add_argument("--max_ARI", "-ma", type=int, default=-200, help="initial ARI") - parser.add_argument("-t", "--subtask", default="openproblems_bmmc_cite_phase2") - parser.add_argument("-device", "--device", default="cuda") + parser.add_argument("-t", "--subtask", default="openproblems_2022_multi_atac2gex") + parser.add_argument("-device", "--device", default="cuda:4") parser.add_argument("--final_rate", type=float, default=1e-4) parser.add_argument("--scale_factor", type=float, default=4) - + parser.add_argument("--span", type=float, default=0.3) + parser.add_argument("--selection_threshold", type=int, default=3000) return parser @@ -46,7 +47,8 @@ def parameter_setting(): set_seed(args.seed) assert args.max_iteration > args.epoch_per_test - dataset = JointEmbeddingNIPSDataset(args.subtask, root="./data/joint_embedding", preprocess="feature_selection") + dataset = JointEmbeddingNIPSDataset(args.subtask, root="./data/joint_embedding", preprocess="feature_selection", + span=args.span, selection_threshold=args.selection_threshold) data = dataset.load_data() le = preprocessing.LabelEncoder() @@ -121,7 +123,7 @@ def parameter_setting(): embeds = model.predict(x_test, y_test).cpu().numpy() print(embeds.shape) score = model.score(x_test, y_test, labels) - score.update(model.score(x_test, y_test, labels, adata_sol=data.data['test_sol'], metric="openproblems")) + # score.update(model.score(x_test, y_test, labels, adata_sol=data.data['test_sol'], metric="openproblems")) score.update({ 'seed': args.seed + k, 'subtask': args.subtask, diff --git a/examples/readme.md b/examples/readme.md new file mode 100644 index 00000000..a7b97cae --- /dev/null +++ b/examples/readme.md @@ -0,0 +1,286 @@ +# How to Add New Algorithms to the Auto-Search Framework + +This document explains how to integrate new algorithms into the project's automatic search framework. + +## Implementation Requirements + +### 1. Inherit Base Classes + +New algorithms should inherit from appropriate base classes in `dance.modules.base`: + +```python +from dance.modules.base import ( + BaseClusteringMethod, # Clustering algorithms + BaseClassificationMethod, # Classification algorithms + BaseRegressionMethod, # Regression algorithms + TorchNNPretrain # If pretraining is needed +) + +class YourMethod(BaseClusteringMethod): + """Your method description.""" + pass +``` + +### 2. Implement Required Interfaces + +All algorithms must implement these core interfaces: + +```python +def preprocessing_pipeline(**kwargs) -> BaseTransform: + """Define data preprocessing pipeline""" + ... + +def fit(self, x, y=None, **kwargs): + """Train the model + + Parameters + ---------- + x : array-like + Input features + y : array-like, optional + Labels (required for supervised learning) + """ + ... + +def predict(self, x): + """Predict results + + Parameters + ---------- + x : array-like + Input features + + Returns + ------- + array-like + Prediction results + """ + ... +``` + +The base class provides a default implementation of the `score()` method, which: + +1. Calls `predict()` to get prediction results +1. Calculates scores using predefined evaluation metrics + - Clustering algorithms: ARI (Adjusted Rand Index) + - Classification algorithms: Accuracy + - Regression algorithms: MSE (Mean Squared Error) + +## Directory Structure + +New algorithms should follow this directory structure: + +```plaintext + examples/tuning/ + └── [task_name]_[algorithm_name]/ + ├── main.py # Main execution file + └── [dataset_name]/ # Dataset related configurations + ├── pipeline_params_tuning_config.yaml + └── config_yamls + ├── 0_test_acc_params_tuning_config.yaml + ├── 1_test_acc_params_tuning_config.yaml + └── 2_test_acc_params_tuning_config.yaml +``` + +## Integration Steps + +### 1. Create Algorithm Directory + +Create a new algorithm directory under `examples/tuning/`, named as `[task_name]_[algorithm_name]`. + +### 2. Implement Main Execution File + +Create `main.py` in the algorithm directory with these key components: + +1. **Parameter Configuration** + +```python +parser = argparse.ArgumentParser() +# Add necessary parameters +parser.add_argument("--data_dir", default="../temp_data",help="Directory path containing the input data files") +parser.add_argument("--dataset", type=str, choices=[...],help="Dataset name") +parser.add_argument("--tune_mode", default="pipeline_params", + choices=["pipeline", "params", "pipeline_params"], help="Tuning mode: 'pipeline' for pipeline tuning only, 'params' for parameter tuning only, 'pipeline_params' for both") +parser.add_argument("--sweep_id", type=str, default=None,help="Existing sweep ID to resume. If None, creates a new sweep") +parser.add_argument("--count", type=int, default=2,help="Number of times to run the sweep agent") +parser.add_argument( + "--summary_file_path", + default="results/pipeline/best_test_acc.csv", + type=str, + help="Path to save the summary results file" + ) +parser.add_argument( + "--root_path", + default=str(Path(__file__).resolve().parent), + type=str, + help="Root directory path for saving results and configuration files" + ) +# ... other model-specific parameters ... +args = parser.parse_args() +``` + +2. **Evaluation Function Definition** + +```python +def evaluate_pipeline(tune_mode, pipeline_planer): + # Initialize wandb + wandb.init(settings=wandb.Settings(start_method='thread')) + + # Load data according to the task + dataloader = TaskDataset(args.data_dir, args.dataset) + data = dataloader.load_data(cache=args.cache) + + # Apply preprocessing pipeline + kwargs = {tune_mode: dict(wandb.config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) + preprocessing_pipeline(data) + + # Get processed data + inputs, y = data.get_data(return_type="default") + + # Initialize and train model + model = YourModel(model_params) + model.fit(inputs, y) + + # Evaluate and log results + score = model.score(None, y) + wandb.log({"acc": score}) + wandb.finish() +``` + +3. **Main Program Flow** + +```python +if __name__ == "__main__": + # Initialize pipeline planer + pipeline_planer = PipelinePlaner.from_config_file( + f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") + + # Run hyperparameter search + entity, project, sweep_id = pipeline_planer.wandb_sweep_agent( + evaluate_pipeline, + sweep_id=args.sweep_id, + count=args.count + ) + + # Save results + save_summary_data( + entity, project, sweep_id, + summary_file_path=args.summary_file_path, + root_path=file_root_path + ) + if args.tune_mode == "pipeline" or args.tune_mode == "pipeline_params": + #generate step3_default_params.yaml + get_step3_yaml(result_load_path=f"{args.summary_file_path}", step2_pipeline_planer=pipeline_planer, + conf_load_path=f"{Path(args.root_path).resolve().parent}/step3_default_params.yaml", + root_path=file_root_path, required_funs=["SaveRaw", "UpdateRaw", "NeighborGraph", "SetConfig"], + required_indexes=[2, 5, sys.maxsize - 1, sys.maxsize], metric="acc") + if args.tune_mode == "pipeline_params": + #run step3 + run_step3(file_root_path, evaluate_pipeline, tune_mode="params", step2_pipeline_planer=pipeline_planer) +``` + +### 3. Configuration File Setup + +Create corresponding configuration files in the dataset directory to guide the hyperparameter search process. + +#### Configuration File Types + +- `pipeline_params_tuning_config.yaml`: Main configuration file for joint search +- `config_yamls/*.yaml`: Parameter search configuration files automatically generated by the system + +#### Search Modes Explanation + +The system supports three search modes (specified by `tune_mode`): + +1. **pipeline mode** + + - Only searches for optimal preprocessing pipeline combinations + - Uses `pipeline_tuning_config.yaml` + +1. **params mode** + + - Only searches for optimal model parameter combinations + - Uses `params_tuning_config.yaml` + +1. **pipeline_params mode** + + - Performs two-stage joint search + - First stage: searches for optimal preprocessing pipeline + - Second stage: searches for optimal model parameters based on the best pipeline + - System automatically generates parameter search config files (e.g., `config_yamls/0_test_acc_params_tuning_config.yaml`) + +Configuration file example: + +```yaml +# pipeline_params_tuning_config.yaml +type: preprocessor +tune_mode: pipeline_params +pipeline_tuning_top_k: 3 #topk for pipeline tuning to use parameter tuning +parameter_tuning_freq_n: 20 #frequency for parameter tuning +pipeline: + - type: filter.gene + include: + - FilterGenesPercentile + - FilterGenesScanpyOrder + - FilterGenesPlaceHolder + default_params: + FilterGenesScanpyOrder: + order: ["min_counts", "min_cells", "max_counts", "max_cells"] + min_counts: 0.01 + max_counts: 0.99 + min_cells: 0.01 + max_cells: 0.99 + - type: feature.cell + include: + - WeightedFeaturePCA + - WeightedFeatureSVD + - CellPCA + - CellSVD + - GaussRandProjFeature # Registered custom preprocessing func + - FeatureCellPlaceHolder + params: + out: feature.cell + log_level: INFO + default_params: + WeightedFeaturePCA: + split_name: train + WeightedFeatureSVD: + split_name: train + - type: misc + target: SetConfig + params: + config_dict: + feature_channel: feature.cell + label_channel: cell_type +wandb: + entity: xxxxx + project: xxxxx + method: grid #try grid to provide a comprehensive search + metric: + name: acc # val/acc + goal: maximize +``` + +### 4. Run Tests + +After integration, test using these commands: + +```bash + # Search preprocessing pipeline only + python main.py --tune_mode pipeline + # Search model parameters only + python main.py --tune_mode params + # Joint search + python main.py --tune_mode pipeline_params +``` + +## Notes + +1. Ensure the model implements `fit()` and `score()` interfaces +1. wandb configuration should correspond to model parameters +1. Recommend testing on small datasets first + +## Examples + +Refer to `examples/tuning/cluster_graphsc` and `examples/tuning/cta_celltypist` implementations. diff --git a/examples/result_analysis/get_important_pattern.py b/examples/result_analysis/get_important_pattern.py new file mode 100644 index 00000000..3db84b95 --- /dev/null +++ b/examples/result_analysis/get_important_pattern.py @@ -0,0 +1,384 @@ +# metric_name = "test_acc" +# ascending = False +import argparse +import itertools +import pathlib +from collections import Counter +from copy import deepcopy +from itertools import combinations +from os import X_OK +from pathlib import Path +from venv import logger + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import scikit_posthocs as sp +import seaborn as sns +import shapiq +from mlxtend.frequent_patterns import apriori +from mlxtend.preprocessing import TransactionEncoder +from networkx import parse_adjlist +from scipy import cluster, stats +from scipy.stats import pointbiserialr +from sklearn.compose import ColumnTransformer +from sklearn.ensemble import RandomForestRegressor +from sklearn.model_selection import GridSearchCV, KFold, LeaveOneOut, cross_val_score +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import OneHotEncoder +from typing_extensions import deprecated + + +#use get_important_pattern_sweep.py +#Negative pattern, just need to change the order +def get_important_pattern(test_accs, ascending, vis=True, alpha=0.05, title=""): + """Identify important patterns in test accuracies using statistical tests. + + Given multiple groups of test accuracies, this function performs Kruskal-Wallis test followed by + Dunn's post-hoc test to identify statistically significant differences between groups. The results + are then used to rank the groups based on their relative performance. + + Parameters + ---------- + test_accs + List of test accuracy groups to compare. + ascending + Boolean indicating whether to sort results in ascending order. + vis + Whether to visualize the results using box plots. + alpha + Significance level for statistical tests. + title + Title for the visualization plot. + + Returns + ------- + list + List of ranks indicating the relative importance of each group. + + """ + + if vis: + fig = plt.figure(figsize=(12, 4)) + sns.boxplot(data=test_accs) + plt.xticks(list(range(len(test_accs))), [f"{i}" for i in range(len(test_accs))]) + plt.title(title) + plt.show() + _, p_value = stats.kruskal(*test_accs) + if p_value < alpha: + medians = [np.median(group) for group in test_accs] + data = test_accs + p_values_matrix = sp.posthoc_dunn(a=data, p_adjust="bonferroni") + sorted_indices = np.argsort(np.argsort([-x for x in medians] if ascending else medians)) + ranks = { + index: { + "rank": rank, + "before": None, + "after": [], + "real_rank": rank + } + for index, rank in enumerate(sorted_indices) + } + for (rank1, rank2) in combinations(range(max(sorted_indices) + 1), 2): + for idx1 in [index for index, value in ranks.items() if value["rank"] == rank1]: + for idx2 in [index for index, value in ranks.items() if value["rank"] == rank2]: + if p_values_matrix.iloc[idx1, idx2] > alpha: + if ranks[idx2]["before"] is None: + ranks[idx1]["after"].append(idx2) + ranks[idx2]["before"] = idx1 + + def change_real_rank(rank_item, real_rank): + rank_item["real_rank"] = real_rank + for idx in rank_item["after"]: + change_real_rank(ranks[idx], real_rank) + + for rank_item in ranks.values(): + if rank_item["before"] is None: + for idx in rank_item["after"]: + change_real_rank(ranks[idx], rank_item["real_rank"]) + return [v["real_rank"] for k, v in ranks.items()] + else: + if vis: + print("No significant differences found between the groups.") + return [] + + +def are_all_elements_same_direct(list_2d): + first_element = None + for sublist in list_2d: + for element in sublist: + if first_element is None: + first_element = element + elif element != first_element: + return False + return True if first_element is not None else True + + +def get_frequent_itemsets(step2_data, metric_name, ascending, threshold_per=0.1, multi_mod=False): + """Extract frequent patterns from top performing pipeline configurations. + + Given a DataFrame containing pipeline configurations and their performance metrics, this function + identifies frequent patterns in the top performing configurations using the Apriori algorithm. + + Parameters + ---------- + step2_data + DataFrame containing pipeline configurations and metrics. + metric_name + Name of the performance metric to optimize. + ascending + Boolean indicating whether to sort in ascending order. + threshold_per + Percentage of top configurations to consider. + multi_mod + Whether to use multiple modalities (not implemented). + + Returns + ------- + list + List of dictionaries containing frequent itemsets and their support values. + + """ + if multi_mod: + raise NotImplementedError("need multimod") + threshold = int(len(step2_data) * threshold_per) + step2_data.loc[:, metric_name] = step2_data.loc[:, metric_name].astype(float) + df_sorted = step2_data.sort_values(metric_name, ascending=ascending) + top_10_percent = df_sorted.head(threshold) + columns = sorted([col for col in step2_data.columns if col.startswith("pipeline")]) + transactions = top_10_percent[columns].values.tolist() + te = TransactionEncoder() + te_ary = te.fit(transactions).transform(transactions) + df = pd.DataFrame(te_ary, columns=te.columns_) + frequent_itemsets = apriori(df, use_colnames=True, min_support=0.3) + # print(frequent_itemsets) + # rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.5) + frequent_itemsets['itemsets'] = frequent_itemsets['itemsets'].apply(lambda x: tuple(x)) + return frequent_itemsets.to_dict(orient='records') + + +def get_significant_top_n_zscore(data, n=3, threshold=1.0, ascending=False): + if not data: + return [] + n = max(1, n) + mean = np.mean(data) + std = np.std(data) + if std == 0: + return sorted(data, reverse=not ascending)[:n] + z_scores = [(x, (x - mean) / std) for x in data] + significant_values = [x for x, z in z_scores if z > threshold] + significant_values_sorted = sorted(significant_values, reverse=not ascending) + if len(significant_values_sorted) < n: + remaining = sorted(data, reverse=not ascending)[:n - len(significant_values_sorted)] + significant_values_sorted.extend(remaining) + return significant_values_sorted[:n] + + +def get_test_acc_and_names(step2_data, metric_name): + + def replace_nan_in_2d(lst): #nan should be an extreme value rather than being directly deleted + return [[np.nan if item == 'NaN' else item for item in sublist] for sublist in lst] + + columns = sorted([col for col in step2_data.columns if col.startswith("pipeline")]) + test_accs = [] + test_acc_names = [] + for r in range(1, len(columns) + 1): + for com in itertools.combinations(columns, r): + test_accs_arrays = [] + groups = step2_data.groupby(by=list(com)) + if len(groups) == 1: + continue + for g in groups: + test_accs_arrays.append({"name": g[0], metric_name: list(g[1][metric_name])}) + test_accs += [i[metric_name] for i in test_accs_arrays] + test_acc_names += [i["name"] for i in test_accs_arrays] + # if are_all_elements_same_direct(test_accs): + # continue + test_accs = replace_nan_in_2d(test_accs) + return test_accs, test_acc_names + + +@deprecated("not used") +def get_com_all(step2_data, metric_name, ascending, vis=True, alpha=0.05): + ans_all = [] + test_accs, test_acc_names = get_test_acc_and_names(step2_data, metric_name) + final_ranks = get_important_pattern(test_accs, ascending, alpha=alpha, title="all_pattern", vis=vis) + if len(final_ranks) > 0: + max_rank = max(final_ranks) + max_rank_count = final_ranks.count(max_rank) + if max_rank_count < len(final_ranks) / 2: + for index, (test_acc_name, rank) in enumerate(zip(test_acc_names, final_ranks)): + if rank == max_rank: + if vis: + print(f"index={index},name={test_acc_name},rank={rank}") + ans_all.append(test_acc_name if isinstance(test_acc_name, tuple) else (test_acc_name, )) + return ans_all + + +def get_significant_items(data): + abs_values = np.abs(list(data.values())) + percentile = 60 + threshold = np.percentile(abs_values, percentile) + significant_items = {k: v for k, v in data.items() if abs(v) >= threshold} + return significant_items + + +def get_forest_model_pattern(step2_data, metric_name): + """Analyze feature importance using Random Forest and SHAP values. + + Given pipeline configurations and their performance metrics, this function trains a Random Forest model + and uses SHAP values to identify important feature interactions. It also computes point-biserial + correlations to validate the importance of identified patterns.The reason for using the random forest model can be found at https://docs.wandb.ai/guides/app/features/panels/parameter-importance/ + For calculations of arbitrary-order Shapley interactions, see https://github.com/mmschlk/shapiq + + Parameters + ---------- + step2_data + DataFrame containing pipeline configurations and metrics. + metric_name + Target metric to predict. + + Returns + ------- + dict + Dictionary containing: + - Important feature interactions and their SHAP values + - Point-biserial correlation statistics + - Best model parameters and MSE + + """ + columns = sorted( + [col for col in step2_data.columns if (col.startswith("pipeline") or col.startswith("run_kwargs_pipeline"))]) + X = step2_data.loc[:, columns] + y = step2_data.loc[:, metric_name] + preprocessor = ColumnTransformer(transformers=[('onehot', OneHotEncoder(drop='first', handle_unknown='ignore'), + columns) # drop='first' to prevent dummy variable trap + ]) + pipeline = Pipeline(steps=[('preprocessor', preprocessor), + ('regressor', + RandomForestRegressor(n_estimators=100, max_depth=5, min_samples_split=2, + min_samples_leaf=1, random_state=42))]) + + param_grid = { + 'regressor__n_estimators': [10, 50, 100, 200], + 'regressor__max_depth': [3, 5, 7], + 'regressor__min_samples_split': [2, 5], + 'regressor__min_samples_leaf': [1, 2] + } + loo = LeaveOneOut() + + grid_search = GridSearchCV( + estimator=pipeline, + param_grid=param_grid, + cv=loo, + scoring='neg_mean_squared_error', + n_jobs=-1, + verbose=1, + refit=True # Ensure the best model is retrained on all data + ) + grid_search.fit(X, y) + best_pipeline = grid_search.best_estimator_ + model = best_pipeline.named_steps['regressor'] + X_preprocessed = best_pipeline.named_steps['preprocessor'].transform(X) + feature_names = best_pipeline.named_steps['preprocessor'].get_feature_names_out(columns) + logger.info(f"X.columns={X.columns}") + logger.info(f"feature_names={feature_names}") + explainer = shapiq.TreeExplainer( + model=model, index="k-SII", max_order=3 + ) # Consider why there are no negative values, possibly to prevent cancellation of positive and negative values + list_of_interaction_values = explainer.explain_X(X_preprocessed.toarray(), n_jobs=96, random_state=42) + plt.cla() + ax = shapiq.plot.bar_plot(list_of_interaction_values, feature_names=feature_names, max_display=None, show=False, + need_abbreviate=False) + ax.yaxis.get_major_locator().MAXTICKS = 1000000 + plt.show() + rects = ax.containers[0] + yticklabels = ax.get_yticklabels() # Need to verify if labels and rectangles overlap + shap_ans = {} + for rect, label in zip(rects, yticklabels): + xy = rect.get_xy() + height = rect.get_height() + width = rect.get_width() + k = label.get_text() + v = width + if k in shap_ans: + raise RuntimeError("Features should not be repeated") + shap_ans[k] = v + + ans = get_significant_items(shap_ans) # Check if it's really a pattern, the results seem not good, need to verify + preprocessed_df = pd.DataFrame(X_preprocessed.toarray(), index=X.index, + columns=best_pipeline.named_steps['preprocessor'].get_feature_names_out(columns)) + preprocessed_df[metric_name] = step2_data[metric_name] + preprocessed_df_copy = deepcopy(preprocessed_df) + real_ans = {} + new_columns = {} + for k, v in ans.items(): + feature_name = k.split(' x ') + one_col = f"{','.join(feature_name)}__all__one" + new_columns[one_col] = preprocessed_df_copy[feature_name].eq(1).all(axis=1) + # method='pearson' + # pearson_corr = preprocessed_df_copy.loc[:,one_col].corr(preprocessed_df_copy.loc[:,metric_name], method=method) + r_pb, p_value = pointbiserialr(new_columns[one_col].astype('category'), preprocessed_df_copy.loc[:, + metric_name]) + real_ans[k] = {"shapiq": v, "pointbiserialr": {"r_pb": r_pb, "p_value": p_value}} + preprocessed_df_copy = pd.concat([preprocessed_df_copy, pd.DataFrame(new_columns)], axis=1) + real_ans["best_params"] = grid_search.best_params_ + real_ans["best_mse"] = -grid_search.best_score_ + return real_ans + + +def summary_pattern(data_path, metric_name, ascending, alpha=0.05, vis=False): + step2_origin_data = pd.read_csv(data_path) + step2_data = step2_origin_data.dropna() + com_ans = get_com_all(step2_data, metric_name, ascending, vis=vis, alpha=alpha) + apr_ans = get_frequent_itemsets(step2_data, metric_name, ascending) + return list(set(com_ans) & set(apr_ans)) + + +# def list_files(directory,file_name="best_test_acc.csv",save_path="summary_file"): +# ans=[] +# path = Path(directory) +# for file_path in path.rglob('*'): +# if file_path.is_file(): +# if file_path.name==file_name: +# algorithm,dataset=file_path.relative_to(directory).parts[:2] +# ans.append({"algorithm":algorithm,"dataset":dataset,"summary_pattern":summary_pattern(file_path)}) +# pd.DataFrame(ans).to_csv(save_path) +def list_files(directories, metric_name, ascending, file_name="best_test_acc.csv", alpha=0.05, vis=False): + ans_all = [] + for directory in directories: + path = Path(directory) + for file_path in path.rglob('*'): + if file_path.is_file(): + if file_path.name == file_name: + print(file_path) + dataset = file_path.parent + method = file_path.parent.parent + ans = summary_pattern(file_path, metric_name, ascending, alpha=alpha, vis=vis) + with open(Path(file_path.parent.resolve(), "pipeline_summary_pattern.txt"), 'w') as f: + f.write(str(ans)) + ans_all.append({"dataset": dataset, "method": method, "ans": ans}) + return ans_all + + +# if __name__ == "__main__": +# directories = [] +# parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) +# parser.add_argument("task", default="cluster") +# parser.add_argument("metric_name", default="acc") +# parser.add_argument("ascending", default=False) +# args = parser.parse_args() +# task = args.task +# metric_name = args.metric_name +# ascending = args.ascending +# file_root = Path(__file__).resolve().parent.parent / "tuning" +# for path in file_root.iterdir(): +# if path.is_dir(): +# if str(path.name).startswith(task): +# directories.append(path) +# ans_all = list_files(directories, metric_name, ascending) +# df = pd.DataFrame(ans_all) +# pivot_df = df.pivot(index="dataset", columns="method", values="ans") +# pivot_df.to_csv(f"{task}_pattern.csv") + +# # print(summary_pattern("/home/zyxing/dance/examples/tuning/cta_actinn/328_138/results/pipeline/best_test_acc.csv",alpha=0.3,vis=True)) diff --git a/examples/result_analysis/get_important_pattern_sweep.py b/examples/result_analysis/get_important_pattern_sweep.py new file mode 100644 index 00000000..04ab85f3 --- /dev/null +++ b/examples/result_analysis/get_important_pattern_sweep.py @@ -0,0 +1,235 @@ +import argparse +import json +import sys +from pathlib import Path +from turtle import pos + +import pandas as pd +import requests +from get_important_pattern import get_com_all, get_forest_model_pattern, get_frequent_itemsets +from numpy import choose + +from dance.settings import ATLASDIR + +sys.path.append(str(ATLASDIR)) +from get_result_web import spilt_web + +from dance.pipeline import flatten_dict +from dance.utils import try_import + +# Define basic configuration parameters +entity = "xzy11632" +project = "dance-dev" +# # List of tasks to analyze +# # tasks = ["cell type annotation new", "clustering", "imputation_new", "spatial domain", "cell type deconvolution"] +# tasks = ['joint embedding'] +# # Corresponding metrics for each task +# # mertic_names = ["test_acc", "acc", "MRE", "ARI", "MSE"] +# mertic_names = ["ARI"] +# ascendings = [False] +# # Whether higher values are better for each metric +# # ascendings = [False, False, True, False, True] +metrics_dict = [{ + "task": "cell type annotation new", + "metric": "test_acc", + "ascending": False +}, { + "task": "clustering", + "metric": "acc", + "ascending": False +}, { + "task": "imputation_new", + "metric": "MRE", + "ascending": True +}, { + "task": "spatial domain", + "metric": "ARI", + "ascending": False +}, { + "task": "cell type deconvolution", + "metric": "MSE", + "ascending": True +}, { + "task": "joint embedding", + "metric": "ARI", + "ascending": False +}] +tasks = [d["task"] for d in metrics_dict] +mertic_names = [d["metric"] for d in metrics_dict] +ascendings = [d["ascending"] for d in metrics_dict] + +multi_mod = False +if multi_mod: + raise NotImplementedError("multi mod") + +parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) +parser.add_argument("--positive", action='store_true') +parser.add_argument("--only_apr", action='store_true') +parser.add_argument("--choose_tasks", nargs="+", default=tasks) +args = parser.parse_args() +choose_tasks = args.choose_tasks +positive = args.positive +only_apr = args.only_apr +if not positive: + assert only_apr + ascendings = [not item for item in ascendings] +file_root = Path(__file__).resolve().parent +prefix = f'https://wandb.ai/{entity}/{project}' +runs_sum = 0 +wandb = try_import("wandb") + + +def get_additional_sweep(sweep_id): + """Recursively retrieve all related sweep IDs from a given sweep. + + Given a sweep ID, this function recursively finds all related sweep IDs by examining the command + arguments of the runs within each sweep. It handles cases where sweeps may have prior runs or + additional sweep references. + + Parameters + ---------- + sweep_id : str + The initial sweep ID to start the search from. + + Returns + ------- + list + A list containing all related sweep IDs, including the input sweep_id. + + """ + sweep = wandb.Api().sweep(f"{entity}/{project}/{sweep_id}") + additional_sweep_ids = [sweep_id] + #last run command + run = next((t_run for t_run in sweep.runs if t_run.state == "finished"), None) + if run is None: # check summary data count, note aznph5wt, quantities may be inconsistent + return additional_sweep_ids + run_id = run.id + web_abs = requests.get(f"https://api.wandb.ai/files/{run.entity}/{run.project}/{run_id}/wandb-metadata.json") + args = dict(web_abs.json())["args"] + for i in range(len(args)): + if args[i] == '--additional_sweep_ids': + if i + 1 < len(args): + additional_sweep_ids += get_additional_sweep(args[i + 1]) + return additional_sweep_ids + + +def summary_pattern(step2_origin_data, metric_name, ascending, alpha=0.05, vis=False): + """Analyze patterns in pipeline configurations and their impact on performance + metrics. + + This function examines the relationship between pipeline configurations and their corresponding + performance metrics. It handles missing values differently based on whether higher or lower + metric values are better, and can optionally visualize the results. + + Parameters + ---------- + step2_origin_data : pd.DataFrame + DataFrame containing pipeline configurations and their results. + metric_name : str + Name of the performance metric to analyze. + ascending : bool + Whether higher metric values indicate better performance. + alpha : float, optional + Significance level for statistical tests, by default 0.05. + vis : bool, optional + Whether to generate visualizations, by default False. + + Returns + ------- + dict + A dictionary containing either: + - Error message if all metric values are NaN + - Pattern analysis results including forest model and/or APR analysis + + """ + columns = sorted([ + col for col in step2_origin_data.columns + if (col.startswith("pipeline") or col.startswith("run_kwargs_pipeline")) + ]) + step2_data = step2_origin_data.loc[:, columns + [metric_name]] + # com_ans = get_com_all(step2_data, metric_name, ascending, vis=vis, alpha=alpha) + step2_data[metric_name] = step2_data[metric_name].astype(float) + if not ascending: + min_metric = step2_data[metric_name].min() + if pd.isna(min_metric): + return { + "error": + f"All {metric_name} values are NaN and the minimum cannot be calculated. Please check your data." + } + step2_data[metric_name] = step2_data[metric_name].fillna(0) #if ascending=False + else: + max_metric = step2_data[metric_name].max() + if pd.isna(max_metric): + return { + "error": + f"All {metric_name} values are NaN and the maximum cannot be calculated. Please check your data." + } + print(f"\nmax {metric_name}:{max_metric}") + buffer_percentage = 0.2 # 20% + replacement = max_metric * (1 + buffer_percentage) + step2_data[metric_name] = step2_data[metric_name].fillna(replacement) + apr_ans = get_frequent_itemsets(step2_data, metric_name, ascending) + if positive and not only_apr: + return {"forest_model": get_forest_model_pattern(step2_data, metric_name), "apr_ans": apr_ans} + else: + return {"apr_ans": apr_ans} + + +if __name__ == "__main__": + start = False + ans_all = [] + for i, task in enumerate(tasks): + # Skip tasks not in choose_tasks list + if task not in choose_tasks: + continue + + # Read and preprocess results from Excel file + data = pd.read_excel(file_root / "results.xlsx", sheet_name=task, dtype=str) + data = data.ffill().set_index(['Methods']) + + # Iterate through each method and dataset combination + for row_idx in range(data.shape[0]): + for col_idx in range(data.shape[1]): + # Extract metadata + method = data.index[row_idx] + dataset = data.columns[col_idx] + value = data.iloc[row_idx, col_idx] + step_name = data.iloc[row_idx]["Unnamed: 1"] + if method == "Scmvae" and dataset == "Dataset3:openproblems_2022_multi_atac2gex": + start = True + if not start: + continue + # if method != "Scgnn2": + # continue + if isinstance(value, str) and value.startswith(prefix) and ( + str(step_name).lower() == "step2" or str(step_name).lower() == "step 2"): #TODO add step3 + sweep_url = value + else: + continue + _, _, sweep_id = spilt_web(sweep_url) + sweep_ids = get_additional_sweep(sweep_id) + summary_data = [] + for sweep_id in sweep_ids: + sweep = wandb.Api().sweep(f"{entity}/{project}/{sweep_id}") + for run in sweep.runs: + result = dict(run.summary._json_dict).copy() + result.update(run.config) + result.update({"id": run.id}) + summary_data.append(flatten_dict(result)) # get result and config + ans = pd.DataFrame(summary_data).set_index(["id"]) + ans.sort_index(axis=1, inplace=True) + ans_single = { + "task": task, + "dataset": dataset, + "method": method, + "pattern": summary_pattern(ans, mertic_names[i], ascendings[i]) + } + with open( + f"dance_auto_preprocess/patterns/{'only_apr_' if only_apr else ''}{'neg_' if not positive else ''}{task}_{dataset}_{method}_pattern.json", + "w") as f: + json.dump(ans_single, f, indent=2) + ans_all.append(ans_single) + print(dataset) + print(method) + with open(f"pattern.json", "w") as f: + json.dump(ans_all, f, indent=2) diff --git a/examples/result_analysis/get_num.py b/examples/result_analysis/get_num.py new file mode 100644 index 00000000..2432ae38 --- /dev/null +++ b/examples/result_analysis/get_num.py @@ -0,0 +1,49 @@ +"""Count the total number of experiment runs across different tasks in W&B project. + +This script analyzes experiment results stored in a W&B project by: +1. Reading task data from Excel sheets +2. Extracting sweep URLs for each task +3. Querying W&B API to count runs in each sweep +4. Computing the total number of experimental runs + +Parameters +---------- +None + +Returns +------- +int + Total number of runs across all tasks and sweeps + +""" + +import sys +from pathlib import Path + +import pandas as pd + +sys.path.append("..") +import urllib + +from get_result_web import spilt_web + +from dance.utils import try_import + +wandb = try_import("wandb") +entity = "xzy11632" +project = "dance-dev" +tasks = ["cell type annotation new", "clustering", "imputation_new", "spatial domain", "cell type deconvolution"] +file_root = Path(__file__).resolve().parent +prefix = 'https://wandb.ai/xzy11632/dance-dev' + +runs_sum = 0 + +for task in tasks: + data = pd.read_excel(file_root / "results.xlsx", sheet_name=task, dtype=str) + matched_list = data.applymap(lambda x: x if isinstance(x, str) and x.startswith(prefix) else None).stack().tolist() + for sweep_url in matched_list: + _, _, sweep_id = spilt_web(sweep_url) + print(sweep_id) + sweep = wandb.Api().sweep(f"{entity}/{project}/{sweep_id}") + runs_sum += (len(sweep.runs)) +print(runs_sum) diff --git a/examples/single_modality/clustering/graphsc.py b/examples/single_modality/clustering/graphsc.py index b1d72cef..af2c7576 100644 --- a/examples/single_modality/clustering/graphsc.py +++ b/examples/single_modality/clustering/graphsc.py @@ -37,7 +37,7 @@ parser.add_argument("-data", "--dataset", default="10X_PBMC", choices=["10X_PBMC", "mouse_bladder_cell", "mouse_ES_cell", "worm_neuron_cell"]) parser.add_argument("--seed", type=int, default=0, help="Initial seed random, offset for each repeatition") - parser.add_argument("--num_runs", type=int, default=1, help="Number of repetitions") + parser.add_argument("--num_runs", type=int, default=5, help="Number of repetitions") parser.add_argument("--cache", action="store_true", help="Cache processed data.") args = parser.parse_args() aris = [] diff --git a/examples/single_modality/imputation/graphsci.py b/examples/single_modality/imputation/graphsci.py index c107614d..be3a272b 100644 --- a/examples/single_modality/imputation/graphsci.py +++ b/examples/single_modality/imputation/graphsci.py @@ -32,7 +32,7 @@ parser.add_argument("--cache", action="store_true", help="Cache processed data.") parser.add_argument("--mask", type=bool, default=True, help="Mask data for validation.") parser.add_argument("--seed", type=int, default=0, help="Initial seed random, offset for each repeatition") - parser.add_argument("--num_runs", type=int, default=1, help="Number of repetitions") + parser.add_argument("--num_runs", type=int, default=5, help="Number of repetitions") params = parser.parse_args() print(vars(params)) rmses = [] diff --git a/examples/tuning/cta_actinn/main.py b/examples/tuning/cta_actinn/main.py index 506f71b9..230b3295 100644 --- a/examples/tuning/cta_actinn/main.py +++ b/examples/tuning/cta_actinn/main.py @@ -30,7 +30,7 @@ parser.add_argument("--num_epochs", type=int, default=50, help="Number of epochs") parser.add_argument("--print_cost", action="store_true", help="Print cost when training") parser.add_argument("--species", default="mouse") - parser.add_argument("--test_dataset", nargs="+", default=[1759], help="List of testing dataset ids.") + parser.add_argument("--test_dataset", nargs="+", default=[], help="List of testing dataset ids.") parser.add_argument("--tissue", default="Spleen") parser.add_argument("--train_dataset", nargs="+", default=[1970], help="List of training dataset ids.") parser.add_argument("--valid_dataset", nargs="+", default=None, help="List of valid dataset ids.") @@ -41,19 +41,21 @@ parser.add_argument("--sweep_id", type=str, default=None) parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + parser.add_argument("--filetype", default="csv") args = parser.parse_args() logger.setLevel(args.log_level) logger.info(f"\n{pprint.pformat(vars(args))}") file_root_path = Path( args.root_path, "_".join([ "-".join([str(num) for num in dataset]) - for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] if dataset is not None + for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] + if (dataset is not None and dataset != []) ])).resolve() logger.info(f"\n files is saved in {file_root_path}") pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") logger.setLevel(args.log_level) - logger.info(f"Running SVM with the following parameters:\n{pprint.pformat(vars(args))}") + logger.info(f"Running ACTINN with the following parameters:\n{pprint.pformat(vars(args))}") def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): wandb.init(settings=wandb.Settings(start_method='thread')) @@ -68,7 +70,7 @@ def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer) # Load data and perform necessary preprocessing data = CellTypeAnnotationDataset(train_dataset=args.train_dataset, test_dataset=args.test_dataset, valid_dataset=args.valid_dataset, data_dir="./temp_data", tissue=args.tissue, - species=args.species).load_data() + species=args.species, filetype=args.filetype).load_data() print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") preprocessing_pipeline(data) diff --git a/examples/tuning/cta_celltypist/main.py b/examples/tuning/cta_celltypist/main.py index d3539816..58870699 100644 --- a/examples/tuning/cta_celltypist/main.py +++ b/examples/tuning/cta_celltypist/main.py @@ -12,7 +12,7 @@ from dance import logger from dance.datasets.singlemodality import CellTypeAnnotationDataset from dance.modules.single_modality.cell_type_annotation.celltypist import Celltypist -from dance.pipeline import PipelinePlaner, get_step3_yaml, run_step3, save_summary_data +from dance.pipeline import Pipeline, PipelinePlaner, get_step3_yaml, run_step3, save_summary_data from dance.typing import LogLevel from dance.utils import set_seed @@ -25,7 +25,7 @@ help="Whether to refine the predicted labels via majority voting after over-clustering.") parser.add_argument("--n_jobs", type=int, help="Number of jobs", default=10) parser.add_argument("--species", default="mouse", type=str) - parser.add_argument("--test_dataset", nargs="+", default=[1759], help="List of testing dataset ids.") + parser.add_argument("--test_dataset", nargs="+", default=[], help="List of testing dataset ids.") parser.add_argument("--tissue", default="Spleen", type=str) parser.add_argument("--train_dataset", nargs="+", default=[1970], help="List of training dataset ids.") parser.add_argument("--valid_dataset", nargs="+", default=None, help="List of valid dataset ids.") @@ -38,33 +38,44 @@ parser.add_argument("--sweep_id", type=str, default=None) parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + parser.add_argument("--filetype", default="csv") args = parser.parse_args() logger.setLevel(args.log_level) logger.info(f"Running Celltypist with the following parameters:\n{pprint.pformat(vars(args))}") + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" + # os.environ["WANDB_AGENT_DISABLE_FLAPPING"]="true" file_root_path = Path( args.root_path, "_".join([ "-".join([str(num) for num in dataset]) - for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] if dataset is not None + for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] + if (dataset is not None and dataset != []) ])).resolve() logger.info(f"\n files is saved in {file_root_path}") MAINDIR = Path(__file__).resolve().parent pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") - os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): wandb.init(settings=wandb.Settings(start_method='thread')) set_seed(args.seed) + if "run_kwargs" in pipeline_planer.config and tune_mode == "params": + wandb_config = dict(wandb.config) + config = {'pipeline': wandb_config["run_kwargs"], "type": "preprocessor"} + preprocessing_pipeline = Pipeline(config) + else: + # Prepare preprocessing pipeline and apply it to data + kwargs = {tune_mode: dict(wandb.config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) # Initialize model and get model specific preprocessing pipeline model = Celltypist(majority_voting=args.majority_voting) # Prepare preprocessing pipeline and apply it to data - kwargs = {tune_mode: dict(wandb.config)} - preprocessing_pipeline = pipeline_planer.generate(**kwargs) + # kwargs = {tune_mode: dict(wandb.config)} + # preprocessing_pipeline = pipeline_planer.generate(**kwargs) # Load data and perform necessary preprocessing data = CellTypeAnnotationDataset(train_dataset=args.train_dataset, test_dataset=args.test_dataset, species=args.species, tissue=args.tissue, valid_dataset=args.valid_dataset, - data_dir="../temp_data").load_data() + data_dir="../temp_data", filetype=args.filetype).load_data() print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") preprocessing_pipeline(data) diff --git a/examples/tuning/cta_scdeepsort/main.py b/examples/tuning/cta_scdeepsort/main.py index 86cc5d52..85fe697e 100644 --- a/examples/tuning/cta_scdeepsort/main.py +++ b/examples/tuning/cta_scdeepsort/main.py @@ -1,5 +1,6 @@ import argparse import gc +import os import pprint import sys from pathlib import Path @@ -29,10 +30,10 @@ parser.add_argument("--n_epochs", type=int, default=100, help="number of training epochs") parser.add_argument("--n_layers", type=int, default=1, help="number of hidden gcn layers") parser.add_argument("--species", default="mouse", type=str) - parser.add_argument("--test_dataset", nargs="+", type=int, default=[1759], help="Testing dataset IDs") + parser.add_argument("--test_dataset", nargs="+", type=int, default=[], help="Testing dataset IDs") parser.add_argument("--test_rate", type=float, default=0.2) parser.add_argument("--tissue", default="Spleen", type=str) - parser.add_argument("--train_dataset", nargs="+", type=int, default=[1970], help="List of training dataset ids.") + parser.add_argument("--train_dataset", nargs="+", default=[1970], help="List of training dataset ids.") parser.add_argument("--valid_dataset", nargs="+", default=None, help="List of valid dataset ids.") parser.add_argument("--weight_decay", type=float, default=5e-4, help="Weight for L2 loss") parser.add_argument("--seed", type=int, default=42) @@ -42,17 +43,20 @@ parser.add_argument("--sweep_id", type=str, default=None) parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) - + parser.add_argument("--filetype", default="csv") args = parser.parse_args() logger.setLevel(args.log_level) + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" logger.info(f"Running ScDeepSort with the following parameters:\n{pprint.pformat(vars(args))}") file_root_path = Path( args.root_path, "_".join([ "-".join([str(num) for num in dataset]) - for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] if dataset is not None + for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] + if (dataset is not None and dataset != []) ])).resolve() logger.info(f"\n files is saved in {file_root_path}") pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): wandb.init(settings=wandb.Settings(start_method='thread')) @@ -61,7 +65,7 @@ def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer) # Load data and perform necessary preprocessing data = CellTypeAnnotationDataset(species=args.species, tissue=args.tissue, test_dataset=args.test_dataset, train_dataset=args.train_dataset, valid_dataset=args.valid_dataset, - data_dir="../temp_data").load_data() + data_dir="../temp_data", filetype=args.filetype).load_data() # Prepare preprocessing pipeline and apply it to data kwargs = {tune_mode: dict(wandb.config)} preprocessing_pipeline = pipeline_planer.generate(**kwargs) diff --git a/examples/tuning/cta_singlecellnet/main.py b/examples/tuning/cta_singlecellnet/main.py index 892c6633..bfe8bb88 100644 --- a/examples/tuning/cta_singlecellnet/main.py +++ b/examples/tuning/cta_singlecellnet/main.py @@ -11,7 +11,7 @@ from dance import logger from dance.datasets.singlemodality import CellTypeAnnotationDataset from dance.modules.single_modality.cell_type_annotation.singlecellnet import SingleCellNet -from dance.pipeline import PipelinePlaner, get_step3_yaml, run_step3, save_summary_data +from dance.pipeline import Pipeline, PipelinePlaner, get_step3_yaml, run_step3, save_summary_data from dance.typing import LogLevel from dance.utils import set_seed @@ -28,10 +28,9 @@ parser.add_argument("--num_trees", type=int, default=1000) parser.add_argument("--species", default="mouse", type=str) parser.add_argument("--stratify", type=bool, default=True) - parser.add_argument("--test_dataset", type=int, nargs="+", default=[1759], - help="List testing training dataset ids.") + parser.add_argument("--test_dataset", nargs="+", default=[], help="List testing training dataset ids.") parser.add_argument("--tissue", default="Spleen", type=str) - parser.add_argument("--train_dataset", type=int, nargs="+", default=[1970], help="List of training dataset ids.") + parser.add_argument("--train_dataset", nargs="+", default=[1970], help="List of training dataset ids.") parser.add_argument("--valid_dataset", nargs="+", default=None, help="List of valid dataset ids.") parser.add_argument("--seed", type=int, default=10) @@ -40,13 +39,15 @@ parser.add_argument("--sweep_id", type=str, default=None) parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + parser.add_argument("--filetype", default="csv") args = parser.parse_args() logger.setLevel(args.log_level) logger.info(f"{pprint.pformat(vars(args))}") file_root_path = Path( args.root_path, "_".join([ "-".join([str(num) for num in dataset]) - for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] if dataset is not None + for dataset in [args.train_dataset, args.valid_dataset, args.test_dataset] + if (dataset is not None and dataset != []) ])).resolve() logger.info(f"\n files is saved in {file_root_path}") pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") @@ -55,16 +56,24 @@ def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): wandb.init(settings=wandb.Settings(start_method='thread')) set_seed(args.seed) - + if "run_kwargs" in pipeline_planer.config and tune_mode == "params": + wandb_config = dict(wandb.config) + config = {'pipeline': wandb_config["run_kwargs"], "type": "preprocessor"} + preprocessing_pipeline = Pipeline(config) + + else: + # Prepare preprocessing pipeline and apply it to data + kwargs = {tune_mode: dict(wandb.config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) # Initialize model and get model specific preprocessing pipeline model = SingleCellNet(num_trees=args.num_trees) # Load data and perform necessary preprocessing data = CellTypeAnnotationDataset(train_dataset=args.train_dataset, test_dataset=args.test_dataset, species=args.species, tissue=args.tissue, valid_dataset=args.valid_dataset, - data_dir="../temp_data").load_data(cache=args.cache) - kwargs = {tune_mode: dict(wandb.config)} - preprocessing_pipeline = pipeline_planer.generate(**kwargs) + data_dir="../temp_data", filetype=args.filetype).load_data(cache=args.cache) + # kwargs = {tune_mode: dict(wandb.config)} + # preprocessing_pipeline = pipeline_planer.generate(**kwargs) print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") preprocessing_pipeline(data) diff --git a/examples/tuning/domain_stagate/main.py b/examples/tuning/domain_stagate/main.py index caf9d012..d89b07ea 100644 --- a/examples/tuning/domain_stagate/main.py +++ b/examples/tuning/domain_stagate/main.py @@ -30,6 +30,7 @@ parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) parser.add_argument("--data_dir", type=str, default='../temp_data', help='test directory') parser.add_argument("--sample_file", type=str, default=None) + parser.add_argument("--device", type=str, default="cpu", help="Computation device") parser.add_argument('--additional_sweep_ids', action='append', type=str, help='get prior runs') os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" args = parser.parse_args() @@ -58,7 +59,7 @@ def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer) edge_list_array = np.vstack(np.nonzero(adj)) # Train and evaluate model - model = Stagate([x.shape[1]] + args.hidden_dims) + model = Stagate([x.shape[1]] + args.hidden_dims, device=args.device) score = model.fit_score((x, edge_list_array), y, epochs=args.epochs, random_state=args.seed) wandb.log({"ARI": score}) gc.collect() diff --git a/examples/tuning/get_important_pattern.py b/examples/tuning/get_important_pattern.py deleted file mode 100644 index 39fcfb2f..00000000 --- a/examples/tuning/get_important_pattern.py +++ /dev/null @@ -1,146 +0,0 @@ -import itertools -import pathlib -from itertools import combinations -from pathlib import Path - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -import scikit_posthocs as sp -import seaborn as sns -from mlxtend.frequent_patterns import apriori -from mlxtend.preprocessing import TransactionEncoder -from networkx import parse_adjlist -from scipy import stats - -metric_name = "acc" -ascending = False - - -def get_important_pattern(test_accs, vis=True, alpha=0.8, title=""): - medians = [np.median(group) for group in test_accs] - _, p_value = stats.kruskal(*test_accs) - if vis: - fig = plt.figure(figsize=(12, 4)) - sns.boxplot(data=test_accs) - plt.xticks(list(range(len(test_accs))), [f"{i}" for i in range(len(test_accs))]) - plt.title(title) - plt.show() - if p_value < alpha: - data = test_accs - p_values_matrix = sp.posthoc_dunn(a=data) - sorted_indices = np.argsort(np.argsort(medians * -1 if ascending else medians)) - ranks = { - index: { - "rank": rank, - "before": None, - "after": [], - "real_rank": rank - } - for index, rank in enumerate(sorted_indices) - } - for (rank1, rank2) in combinations(range(max(sorted_indices) + 1), 2): - for idx1 in [index for index, value in ranks.items() if value["rank"] == rank1]: - for idx2 in [index for index, value in ranks.items() if value["rank"] == rank2]: - if p_values_matrix.iloc[idx1, idx2] > alpha: - if ranks[idx2]["before"] is None: - ranks[idx1]["after"].append(idx2) - ranks[idx2]["before"] = idx1 - - def change_real_rank(rank_item, real_rank): - rank_item["real_rank"] = real_rank - for idx in rank_item["after"]: - change_real_rank(ranks[idx], real_rank) - - for rank_item in ranks.values(): - if rank_item["before"] is None: - for idx in rank_item["after"]: - change_real_rank(ranks[idx], rank_item["real_rank"]) - return [v["real_rank"] for k, v in ranks.items()] - else: - if vis: - print("No significant differences found between the groups.") - return [] - - -def get_com(step2_data, r=2, alpha=0.8, columns=None, vis=True): - ans = [] - for com in itertools.combinations(columns, r): - test_accs_arrays = [] - for g in step2_data.groupby(by=list(com)): - test_accs_arrays.append({"name": g[0], metric_name: list(g[1][metric_name])}) - test_accs = [i[metric_name] for i in test_accs_arrays] - test_acc_names = [i["name"] for i in test_accs_arrays] - final_ranks = get_important_pattern(test_accs, alpha=alpha, title=" ".join(list(com)), vis=vis) - if len(final_ranks) > 0: - max_rank = max(final_ranks) - max_rank_count = final_ranks.count(max_rank) - if max_rank_count < len(final_ranks) / 2: - for index, (test_acc_name, rank) in enumerate(zip(test_acc_names, final_ranks)): - if rank == max_rank: - if vis: - print(f"index={index},name={test_acc_name},rank={rank}") - ans.append(test_acc_name if isinstance(test_acc_name, tuple) else (test_acc_name, )) - return ans - - -def get_frequent_itemsets(step2_data, threshold_per=0.1): - threshold = int(len(step2_data) * threshold_per) - df_sorted = step2_data.sort_values(metric_name, ascending=ascending) - top_10_percent = df_sorted.head(threshold) - columns = sorted([col for col in step2_data.columns if col.startswith("pipeline")]) - transactions = top_10_percent[columns].values.tolist() - te = TransactionEncoder() - te_ary = te.fit(transactions).transform(transactions) - df = pd.DataFrame(te_ary, columns=te.columns_) - frequent_itemsets = apriori(df, min_support=0.3, use_colnames=True) - # print(frequent_itemsets) - # rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.5) - return [tuple(a) for a in frequent_itemsets["itemsets"]] - - -def get_com_all(step2_data, vis=True, alpha=0.8): - ans = [] - columns = sorted([col for col in step2_data.columns if col.startswith("pipeline")]) - for i in range(1, len(columns)): - ans += get_com(step2_data, i, columns=columns, vis=vis, alpha=alpha) - return ans - - -def summary_pattern(data_path, alpha=0.8, vis=False): - step2_origin_data = pd.read_csv(data_path) - step2_data = step2_origin_data.dropna() - com_ans = get_com_all(step2_data, vis=vis, alpha=alpha) - apr_ans = get_frequent_itemsets(step2_data) - return list(set(com_ans) & set(apr_ans)) - - -# def list_files(directory,file_name="best_test_acc.csv",save_path="summary_file"): -# ans=[] -# path = Path(directory) -# for file_path in path.rglob('*'): -# if file_path.is_file(): -# if file_path.name==file_name: -# algorithm,dataset=file_path.relative_to(directory).parts[:2] -# ans.append({"algorithm":algorithm,"dataset":dataset,"summary_pattern":summary_pattern(file_path)}) -# pd.DataFrame(ans).to_csv(save_path) -def list_files(directories, file_name="best_test_acc.csv", alpha=0.8, vis=False): - for directory in directories: - path = Path(directory) - for file_path in path.rglob('*'): - if file_path.is_file(): - if file_path.name == file_name: - print(file_path) - with open(Path(file_path.parent.resolve(), "pipeline_summary_pattern.txt"), 'w') as f: - f.write(str(summary_pattern(file_path, alpha=alpha, vis=vis))) - - -if __name__ == "__main__": - directories = [] - for path in Path('/home/zyxing/dance/examples/tuning').iterdir(): - if path.is_dir(): - if str(path.name).startswith("cluster"): - directories.append(path) - list_files(directories) - - # print(summary_pattern("/home/zyxing/dance/examples/tuning/cta_scdeepsort/328_138/results/pipeline/best_test_acc.csv",alpha=0.3,vis=True)) diff --git a/examples/tuning/joint_embedding_dcca/main.py b/examples/tuning/joint_embedding_dcca/main.py new file mode 100644 index 00000000..42465bcb --- /dev/null +++ b/examples/tuning/joint_embedding_dcca/main.py @@ -0,0 +1,226 @@ +import argparse +import gc +import os +import pprint +import sys +from copy import deepcopy +from pathlib import Path + +import anndata as ad +import numpy as np +import pandas as pd +import scipy +import torch +import torch.utils.data as data_utils +import wandb +from sklearn import preprocessing + +import dance.utils.metrics as metrics +from dance import logger +from dance.datasets.multimodality import JointEmbeddingNIPSDataset +from dance.modules.multi_modality.joint_embedding.dcca import DCCA +from dance.pipeline import PipelinePlaner, get_step3_yaml, run_step3, save_summary_data +from dance.utils import set_seed + + +def parameter_setting(): + parser = argparse.ArgumentParser(description="Single cell Multi-omics data analysis") + + parser.add_argument("--latent_fusion", "-olf1", type=str, default="First_simulate_fusion.csv", + help="fusion latent code file") + parser.add_argument("--latent_1", "-ol1", type=str, default="scRNA_latent_combine.csv", + help="first latent code file") + parser.add_argument("--latent_2", "-ol2", type=str, default="scATAC_latent.csv", help="seconde latent code file") + parser.add_argument("--denoised_1", "-od1", type=str, default="scRNA_seq_denoised.csv", + help="outfile for denoised file1") + parser.add_argument("--normalized_1", "-on1", type=str, default="scRNA_seq_normalized_combine.tsv", + help="outfile for normalized file1") + parser.add_argument("--denoised_2", "-od2", type=str, default="scATAC_seq_denoised.csv", + help="outfile for denoised file2") + + parser.add_argument("--workdir", "-wk", type=str, default="./new_test/", help="work path") + parser.add_argument("--outdir", "-od", type=str, default="./new_test/", help="Output path") + + parser.add_argument("--lr", type=float, default=1E-3, help="Learning rate") + parser.add_argument("--weight_decay", type=float, default=1e-6, help="weight decay") + parser.add_argument("--eps", type=float, default=0.01, help="eps") + + parser.add_argument("--batch_size", "-b", type=int, default=64, help="Batch size") + + parser.add_argument("--seed", type=int, default=1, help="Random seed for repeat results") + parser.add_argument("--runs", type=int, default=1, help="Number of repetitions") + parser.add_argument("--latent", "-l", type=int, default=10, help="latent layer dim") + parser.add_argument("--max_epoch", "-me", type=int, default=10, help="Max epoches") + parser.add_argument("--max_iteration", "-mi", type=int, default=3000, help="Max iteration") + parser.add_argument("--anneal_epoch", "-ae", type=int, default=200, help="Anneal epoch") + parser.add_argument("--epoch_per_test", "-ept", type=int, default=5, help="Epoch per test") + parser.add_argument("--max_ARI", "-ma", type=int, default=-200, help="initial ARI") + parser.add_argument("-t", "--subtask", default="openproblems_bmmc_cite_phase2") + parser.add_argument("-device", "--device", default="cuda") + parser.add_argument("--final_rate", type=float, default=1e-4) + parser.add_argument("--scale_factor", type=float, default=4) + + parser.add_argument("--cache", action="store_true", help="Cache processed data.") + parser.add_argument("--tune_mode", default="pipeline_params", choices=["pipeline", "params", "pipeline_params"]) + parser.add_argument("--count", type=int, default=2) + parser.add_argument("--sweep_id", type=str, default=None) + parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) + parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + return parser + + +if __name__ == "__main__": + parser = parameter_setting() + args = parser.parse_args() + + args.sf1 = 5 + args.sf2 = 1 + args.cluster1 = args.cluster2 = 4 + args.lr1 = 0.01 + args.flr1 = 0.001 + args.lr2 = 0.005 + args.flr2 = 0.0005 + + res = None + logger.info(f"\n{pprint.pformat(vars(args))}") + file_root_path = Path(args.root_path, args.subtask).resolve() + logger.info(f"\n files is saved in {file_root_path}") + pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" + + def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): + wandb.init(settings=wandb.Settings(start_method='thread')) + set_seed(args.seed) + # model = DCCA(layer_e_1=[Nfeature1, 128], hidden1_1=128, Zdim_1=4, layer_d_1=[4, 128], hidden2_1=128, + # layer_e_2=[Nfeature2, 1500, 128], hidden1_2=128, Zdim_2=4, layer_d_2=[4], hidden2_2=4, args=args, + # Type_1="NB", Type_2="Bernoulli", ground_truth1=torch.cat([train_labels, test_labels]), cycle=1, + # attention_loss="Eucli") # yapf: disable + wandb_config = wandb.config + if "run_kwargs" in pipeline_planer.config: + if any(d == dict(wandb.config["run_kwargs"]) for d in pipeline_planer.config.run_kwargs): + wandb_config = wandb_config["run_kwargs"] + else: + wandb.log({"skip": 1}) + wandb.finish() + return + try: + dataset = JointEmbeddingNIPSDataset(args.subtask, root="./data/joint_embedding") + data = dataset.load_data() + # Prepare preprocessing pipeline and apply it to data + kwargs = {tune_mode: dict(wandb_config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) + print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") + preprocessing_pipeline(data) + le = preprocessing.LabelEncoder() + labels = le.fit_transform(data.mod["test_sol"].obs["cell_type"]) + data.mod["mod2"].obsm["size_factors"] = np.sum(data.mod["mod2"].X.todense() if scipy.sparse.issparse(data.mod["mod2"].X) else data.mod["mod2"].X, 1) / 100 + # data.mod["mod1"].obsm["size_factors"] = data.mod["mod1"].obs["size_factors"] + data.mod["mod1"].obsm["size_factors"] = np.sum(data.mod["mod1"].X.todense() if scipy.sparse.issparse(data.mod["mod1"].X) else data.mod["mod1"].X, 1) / 100 + data.mod["mod1"].obsm["labels"] = labels + + # data.set_config(feature_mod=["mod1", "mod2", "mod1", "mod2", "mod1", "mod2"], label_mod="mod1", + # feature_channel_type=["layers", "layers", None, None, "obsm", "obsm"], + # feature_channel=["counts", "counts", None, None, "size_factors", + # "size_factors"], label_channel="labels") + # TODO Feels like counts in layers should be raw + # TODO Indeed feels like counts in layers should be raw, not sure how big the reverse impact would be + (x_train, y_train, x_train_raw, y_train_raw, x_train_size, + y_train_size), train_labels = data.get_train_data(return_type="torch") + (x_test, y_test, x_test_raw, y_test_raw, x_test_size, + y_test_size), test_labels = data.get_test_data(return_type="torch") + train_idx=data.get_split_idx("train") + test_idx=data.get_split_idx("test") + Nfeature1 = x_train.shape[1] + Nfeature2 = y_train.shape[1] + + device = torch.device(args.device) + train = data_utils.TensorDataset(x_train.float(), x_train_raw, x_train_size.float(), y_train.float(), y_train_raw, + y_train_size.float()) + + train_loader = data_utils.DataLoader(train, batch_size=args.batch_size, shuffle=True) + + test = data_utils.TensorDataset(x_test.float(), x_test_raw, x_test_size.float(), y_test.float(), y_test_raw, + y_test_size.float()) + + test_loader = data_utils.DataLoader(test, batch_size=args.batch_size, shuffle=False) + + total = data_utils.TensorDataset( + torch.cat([x_train, x_test]).float(), torch.cat([x_train_raw, x_test_raw]), + torch.cat([x_train_size, x_test_size]).float(), + torch.cat([y_train, y_test]).float(), torch.cat([y_train_raw, y_test_raw]), + torch.cat([y_train_size, y_test_size]).float()) + + total_loader = data_utils.DataLoader(total, batch_size=args.batch_size, shuffle=False) + model = DCCA(layer_e_1=[Nfeature1, 128], hidden1_1=128, Zdim_1=50, layer_d_1=[50, 128], hidden2_1=128, + layer_e_2=[Nfeature2, 1500, 128], hidden1_2=128, Zdim_2=50, layer_d_2=[50], hidden2_2=50, + args=args, ground_truth1=torch.cat([train_labels, test_labels]), Type_1="NB", Type_2="Bernoulli", + cycle=1, attention_loss="Eucli").to(device) + model.to(device) + model.fit(train_loader, test_loader, total_loader, "RNA") + + emb1, emb2 = model.predict(total_loader) + embeds = np.concatenate([emb1, emb2], 1) + print(embeds) + + adata = ad.AnnData( + X=embeds, + obs=data.mod["mod1"].obs, + ) + adata_sol = data.mod["test_sol"] + adata = adata[adata_sol.obs_names] + adata_sol.obsm['X_emb'] = adata.X + score = metrics.labeled_clustering_evaluate(adata, adata_sol) + # score.update(metrics.integration_openproblems_evaluate(adata_sol)) + # score.update({ + # 'seed': args.seed + k, + # 'subtask': args.subtask, + # 'method': 'dcca', + # }) + + # if res is not None: + # res = res.append(score, ignore_index=True) + # else: + # for s in score: + # score[s] = [score[s]] + # res = pd.DataFrame(score) + score["ARI"]=score["dance_ari"] + del score["dance_ari"] + wandb.log(score.copy()) + wandb.finish() + finally: + # del data,model,adata_sol,adata,embeds,emb1, emb2,total_loader,total,test_loader,test,train_loader,train,Nfeature2,Nfeature1 + # del x_train, y_train, x_train_raw, y_train_raw, x_train_size,y_train_size,train_labels,x_test, y_test, x_test_raw, y_test_raw, x_test_size,y_test_size, test_labels + # del labels,le,dataset,score + # variables_to_delete=["data","model","adata_sol","adata","embeds","emb1", "emb2","total_loader","total,test_loader","test,train_loader","train","Nfeature2","Nfeature1","x_train", "y_train", "x_train_raw", "y_train_raw", "x_train_size","y_train_size","train_labels","x_test", "y_test"," x_test_raw", y_test_raw, x_test_size,y_test_size, test_labels,labels,le,dataset,score] + locals_keys=list(locals().keys()) + for var in locals_keys: + try: + exec(f"del {var}") + logger.info(f"Deleted '{var}'") + except NameError: + logger.info(f"Variable '{var}' does not exist, continuing...") + torch.cuda.empty_cache() + gc.collect() + # This is mainly caused by these commands not being executed when errors occur, I think + + + entity, project, sweep_id = pipeline_planer.wandb_sweep_agent( + evaluate_pipeline, sweep_id=args.sweep_id, count=args.count) #Score can be recorded for each epoch + save_summary_data(entity, project, sweep_id, summary_file_path=args.summary_file_path, root_path=file_root_path) + if args.tune_mode == "pipeline" or args.tune_mode == "pipeline_params": + get_step3_yaml(result_load_path=f"{args.summary_file_path}", step2_pipeline_planer=pipeline_planer, + conf_load_path=f"{Path(args.root_path).resolve().parent}/step3_default_params.yaml", + root_path=file_root_path, required_funs=["AlignMod","FilterCellsCommonMod","FilterCellsCommonMod","SetConfig"], + required_indexes=[2,11,14,sys.maxsize], metric="ARI") + if args.tune_mode == "pipeline_params": + run_step3(file_root_path, evaluate_pipeline, tune_mode="params", step2_pipeline_planer=pipeline_planer) + +"""To reproduce DCCA on other samples, please refer to command lines belows: + +GEX-ADT: +$ python dcca.py --subtask openproblems_bmmc_cite_phase2 --device cuda + +GEX-ATAC: +$ python dcca.py --subtask openproblems_bmmc_multiome_phase2 --device cuda + +""" diff --git a/examples/tuning/joint_embedding_jae/main.py b/examples/tuning/joint_embedding_jae/main.py new file mode 100644 index 00000000..0c5d283b --- /dev/null +++ b/examples/tuning/joint_embedding_jae/main.py @@ -0,0 +1,151 @@ +import argparse +import gc +import os +import pprint +import sys +from pathlib import Path + +import numpy as np +import pandas as pd +import torch +import wandb + +from dance import logger +from dance.datasets.multimodality import JointEmbeddingNIPSDataset +from dance.modules.multi_modality.joint_embedding.jae import JAEWrapper +from dance.pipeline import PipelinePlaner, get_step3_yaml, run_step3, save_summary_data +from dance.utils import set_seed + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "-t", "--subtask", default="openproblems_bmmc_cite_phase2", choices=[ + "GSE140203_BRAIN_atac2gex", "GSE140203_SKIN_atac2gex", "openproblems_bmmc_cite_phase2", + "openproblems_bmmc_multiome_phase2", "openproblems_2022_multi_atac2gex" + ]) + parser.add_argument("-d", "--data_folder", default="./data/joint_embedding") + parser.add_argument("-pre", "--pretrained_folder", default="./data/joint_embedding/pretrained") + parser.add_argument("-csv", "--csv_path", default="decoupled_lsi.csv") + parser.add_argument("-seed", "--seed", default=1, type=int) + parser.add_argument("-cpu", "--cpus", default=1, type=int) + parser.add_argument("-device", "--device", default="cuda") + parser.add_argument("-bs", "--batch_size", default=128, type=int) + parser.add_argument("-nm", "--normalize", default=1, type=int, choices=[0, 1]) + parser.add_argument("--runs", type=int, default=1, help="Number of repetitions") + parser.add_argument("--preprocess", type=str, default=None) + + parser.add_argument("--cache", action="store_true", help="Cache processed data.") + parser.add_argument("--tune_mode", default="pipeline_params", choices=["pipeline", "params", "pipeline_params"]) + parser.add_argument("--count", type=int, default=2) + parser.add_argument("--sweep_id", type=str, default=None) + parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) + parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + + args = parser.parse_args() + + device = args.device + pre_normalize = bool(args.normalize) + torch.set_num_threads(args.cpus) + rndseed = args.seed + set_seed(rndseed) + + res = None + logger.info(f"\n{pprint.pformat(vars(args))}") + file_root_path = Path(args.root_path, args.subtask).resolve() + logger.info(f"\n files is saved in {file_root_path}") + pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" + + def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): + wandb.init(settings=wandb.Settings(start_method='thread')) + set_seed(args.seed) + wandb_config = wandb.config + if "run_kwargs" in pipeline_planer.config: + if any(d == dict(wandb.config["run_kwargs"]) for d in pipeline_planer.config.run_kwargs): + wandb_config = wandb_config["run_kwargs"] + else: + wandb.log({"skip": 1}) + wandb.finish() + return + try: + dataset = JointEmbeddingNIPSDataset(args.subtask, root=args.data_folder, preprocess=args.preprocess) + data = dataset.load_data() + # Prepare preprocessing pipeline and apply it to data + kwargs = {tune_mode: dict(wandb_config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) + print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") + preprocessing_pipeline(data) + if args.preprocess != "aux": + cell_type_labels = data.data['test_sol'].obs["cell_type"].to_numpy() + cell_type_labels_unique = list(np.unique(cell_type_labels)) + c_labels = np.array([cell_type_labels_unique.index(item) for item in cell_type_labels]) + data.data['mod1'].obsm["cell_type"] = c_labels + data.data["mod1"].obsm["S_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["G2M_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["batch_label"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["phase_labels"] = np.zeros(data.data['mod1'].shape[0]) + (X_mod1_train, X_mod2_train), (cell_type, batch_label, phase_label, S_score, + G2M_score) = data.get_train_data(return_type="torch") + (X_mod1_test, X_mod2_test), (cell_type_test, _, _, _, _) = data.get_test_data(return_type="torch") + X_train = torch.cat([X_mod1_train, X_mod2_train], dim=1) + phase_score = torch.cat([S_score[:, None], G2M_score[:, None]], 1) + X_test = torch.cat([X_mod1_test, X_mod2_test], dim=1) + X_test = torch.cat([X_train, X_test]).float().to(device) + test_id = np.arange(X_test.shape[0]) + labels = torch.cat([cell_type, cell_type_test]).numpy() + adata_sol = data.data['test_sol'] # [data._split_idx_dict['test']] + + model = JAEWrapper(args, num_celL_types=int(cell_type.max() + 1), num_batches=int(batch_label.max() + 1), + num_phases=phase_score.shape[1], num_features=X_train.shape[1]) + model.fit(X_train, cell_type, batch_label, phase_score, max_epochs=50) + + embeds = model.predict(X_test, test_id).cpu().numpy() + print(embeds) + + score = model.score(X_test, test_id, labels, metric="clustering") + # score.update(model.score(X_test, test_id, labels, adata_sol=adata_sol, metric="openproblems")) + score.update({ + 'subtask': args.subtask, + 'method': 'jae', + }) + score["ARI"] = score["dance_ari"] + del score["dance_ari"] + wandb.log(score) + wandb.finish() + finally: + # del data,model,adata_sol,adata,embeds,emb1, emb2,total_loader,total,test_loader,test,train_loader,train,Nfeature2,Nfeature1 + # del x_train, y_train, x_train_raw, y_train_raw, x_train_size,y_train_size,train_labels,x_test, y_test, x_test_raw, y_test_raw, x_test_size,y_test_size, test_labels + # del labels,le,dataset,score + # variables_to_delete=["data","model","adata_sol","adata","embeds","emb1", "emb2","total_loader","total,test_loader","test,train_loader","train","Nfeature2","Nfeature1","x_train", "y_train", "x_train_raw", "y_train_raw", "x_train_size","y_train_size","train_labels","x_test", "y_test"," x_test_raw", y_test_raw, x_test_size,y_test_size, test_labels,labels,le,dataset,score] + locals_keys = list(locals().keys()) + for var in locals_keys: + try: + exec(f"del {var}") + logger.info(f"Deleted '{var}'") + + except NameError: + logger.info(f"Variable '{var}' does not exist, continuing...") + torch.cuda.empty_cache() + gc.collect() + + entity, project, sweep_id = pipeline_planer.wandb_sweep_agent( + evaluate_pipeline, sweep_id=args.sweep_id, count=args.count) #Score can be recorded for each epoch + save_summary_data(entity, project, sweep_id, summary_file_path=args.summary_file_path, root_path=file_root_path) + if args.tune_mode == "pipeline" or args.tune_mode == "pipeline_params": + get_step3_yaml(result_load_path=f"{args.summary_file_path}", step2_pipeline_planer=pipeline_planer, + conf_load_path=f"{Path(args.root_path).resolve().parent}/step3_default_params.yaml", + root_path=file_root_path, + required_funs=["AlignMod", "FilterCellsCommonMod", "FilterCellsCommonMod", + "SetConfig"], required_indexes=[2, 11, 14, sys.maxsize], + metric="ARI") # need to delete required_funs and required_indexes + if args.tune_mode == "pipeline_params": + run_step3(file_root_path, evaluate_pipeline, tune_mode="params", step2_pipeline_planer=pipeline_planer) +"""To reproduce JAE on other samples, please refer to command lines belows: + +GEX-ADT: +$ python jae.py --subtask openproblems_bmmc_cite_phase2 --device cuda + +GEX-ATAC: +$ python jae.py --subtask openproblems_bmmc_multiome_phase2 --device cuda + +""" diff --git a/examples/tuning/joint_embedding_scmogcn/main.py b/examples/tuning/joint_embedding_scmogcn/main.py new file mode 100644 index 00000000..d860be0e --- /dev/null +++ b/examples/tuning/joint_embedding_scmogcn/main.py @@ -0,0 +1,176 @@ +import argparse +import gc +import os +import pprint +import sys +from pathlib import Path + +import numpy as np +import pandas as pd +import torch +import wandb + +from dance import logger +from dance.datasets.multimodality import JointEmbeddingNIPSDataset +from dance.modules.multi_modality.joint_embedding.scmogcn import ScMoGCNWrapper +from dance.pipeline import PipelinePlaner, get_step3_yaml, run_step3, save_summary_data +from dance.transforms.graph.cell_feature_graph import CellFeatureBipartiteGraph +from dance.utils import set_seed + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "-t", "--subtask", default="openproblems_bmmc_cite_phase2", choices=[ + "GSE140203_BRAIN_atac2gex", "openproblems_bmmc_cite_phase2", "openproblems_bmmc_multiome_phase2", + "GSE140203_SKIN_atac2gex", "openproblems_2022_multi_atac2gex" + ]) + parser.add_argument("-d", "--data_folder", default="./data/joint_embedding") + parser.add_argument("-pre", "--pretrained_folder", default="./data/joint_embedding/pretrained") + parser.add_argument("-csv", "--csv_path", default="decoupled_lsi.csv") + parser.add_argument("-l", "--layers", default=3, type=int, choices=[3, 4, 5, 6, 7]) + parser.add_argument("-dis", "--disable_propagation", default=0, type=int, choices=[0, 1, 2]) + parser.add_argument("-seed", "--seed", default=1, type=int) + parser.add_argument("-cpu", "--cpus", default=1, type=int) + parser.add_argument("-device", "--device", default="cuda") + parser.add_argument("-bs", "--batch_size", default=512, type=int) + parser.add_argument("-nm", "--normalize", default=1, type=int, choices=[0, 1]) + parser.add_argument("--runs", type=int, default=1, help="Number of repetitions") + parser.add_argument("--preprocess", type=str, default=None) + + parser.add_argument("--cache", action="store_true", help="Cache processed data.") + parser.add_argument("--tune_mode", default="pipeline_params", choices=["pipeline", "params", "pipeline_params"]) + parser.add_argument("--count", type=int, default=2) + parser.add_argument("--sweep_id", type=str, default=None) + parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) + parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + + args = parser.parse_args() + + device = args.device + pre_normalize = bool(args.normalize) + torch.set_num_threads(args.cpus) + rndseed = args.seed + set_seed(rndseed) + + res = None + logger.info(f"\n{pprint.pformat(vars(args))}") + file_root_path = Path(args.root_path, args.subtask).resolve() + logger.info(f"\n files is saved in {file_root_path}") + pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" + os.environ["CUDA_LAUNCH_BLOCKING"] = "1" + os.environ["WANDB_AGENT_DISABLE_FLAPPING"] = "True" + + def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): + wandb.init(settings=wandb.Settings(start_method='thread')) + set_seed(args.seed) + wandb_config = wandb.config + if "run_kwargs" in pipeline_planer.config: + if any(d == dict(wandb.config["run_kwargs"]) for d in pipeline_planer.config.run_kwargs): + wandb_config = wandb_config["run_kwargs"] + else: + wandb.log({"skip": 1}) + wandb.finish() + return + try: + dataset = JointEmbeddingNIPSDataset(args.subtask, root=args.data_folder, preprocess=args.preprocess) + data = dataset.load_data() + # Prepare preprocessing pipeline and apply it to data + kwargs = {tune_mode: dict(wandb_config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) + print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") + preprocessing_pipeline(data) + # train_idx=list(set(data.mod["meta1"].obs_names) & set(data.mod["mod1"].obs_names)) + train_name = [item for item in data.mod["mod1"].obs_names if item in data.mod["meta1"].obs_names] + train_idx = [data.mod["mod1"].obs_names.get_loc(name) for name in train_name] + test_idx = list({i for i in range(data.mod["mod1"].shape[0])}.difference(set(train_idx))) + + # train_size=data.mod["meta1"].shape[0] + # test_size=data.mod["mod1"].shape[0]-train_size + data.set_split_idx("train", train_idx) + data.set_split_idx("test", test_idx) + if args.preprocess != "aux": + cell_type_labels = data.data['test_sol'].obs["cell_type"].to_numpy() + cell_type_labels_unique = list(np.unique(cell_type_labels)) + c_labels = np.array([cell_type_labels_unique.index(item) for item in cell_type_labels]) + data.data['mod1'].obsm["cell_type"] = c_labels + data.data["mod1"].obsm["S_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["G2M_scores"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["batch_label"] = np.zeros(data.data['mod1'].shape[0]) + data.data["mod1"].obsm["phase_labels"] = np.zeros(data.data['mod1'].shape[0]) + + # train_size = len(data.get_split_idx("train")) + # In theory, meta1 should include all content from the first half of mod1, the order might have been shuffled during processing + data = CellFeatureBipartiteGraph(cell_feature_channel="feature.cell", mod="mod1")(data) + data = CellFeatureBipartiteGraph(cell_feature_channel="feature.cell", mod="mod2")(data) + # data.set_config( + # feature_mod=["mod1", "mod2"], + # label_mod=["mod1", "mod1", "mod1", "mod1", "mod1"], + # feature_channel=["X_pca", "X_pca"], + # label_channel=["cell_type", "batch_label", "phase_labels", "S_scores", "G2M_scores"], + # ) + (x_mod1, x_mod2), (cell_type, batch_label, phase_label, S_score, + G2M_score) = data.get_data(return_type="torch") + phase_score = torch.cat([S_score[:, None], G2M_score[:, None]], 1) + test_id = np.arange(x_mod1.shape[0]) + labels = cell_type.numpy() + adata_sol = data.data['test_sol'] # [data._split_idx_dict['test']] + model = ScMoGCNWrapper(args, num_celL_types=int(cell_type.max() + 1), + num_batches=int(batch_label.max() + 1), num_phases=phase_score.shape[1], + num_features=x_mod1.shape[1] + x_mod2.shape[1]) + model.fit( + g_mod1=data.data["mod1"].uns["g"], + g_mod2=data.data["mod2"].uns["g"], + train_size=train_idx, + cell_type=cell_type, + batch_label=batch_label, + phase_score=phase_score, + ) + + embeds = model.predict(test_id).cpu().numpy() + score = model.score(test_id, labels, metric="clustering") + # score.update(model.score(test_id, labels, adata_sol=adata_sol, metric="openproblems")) + score.update({ + 'subtask': args.subtask, + 'method': 'scmogcn', + }) + + score["ARI"] = score["dance_ari"] + del score["dance_ari"] + wandb.log(score) + wandb.finish() + finally: + # del data,model,adata_sol,adata,embeds,emb1, emb2,total_loader,total,test_loader,test,train_loader,train,Nfeature2,Nfeature1 + # del x_train, y_train, x_train_raw, y_train_raw, x_train_size,y_train_size,train_labels,x_test, y_test, x_test_raw, y_test_raw, x_test_size,y_test_size, test_labels + # del labels,le,dataset,score + # variables_to_delete=["data","model","adata_sol","adata","embeds","emb1", "emb2","total_loader","total,test_loader","test,train_loader","train","Nfeature2","Nfeature1","x_train", "y_train", "x_train_raw", "y_train_raw", "x_train_size","y_train_size","train_labels","x_test", "y_test"," x_test_raw", y_test_raw, x_test_size,y_test_size, test_labels,labels,le,dataset,score] + locals_keys = list(locals().keys()) + for var in locals_keys: + try: + exec(f"del {var}") + logger.info(f"Deleted '{var}'") + except NameError: + logger.info(f"Variable '{var}' does not exist, continuing...") + torch.cuda.empty_cache() + gc.collect() + + entity, project, sweep_id = pipeline_planer.wandb_sweep_agent( + evaluate_pipeline, sweep_id=args.sweep_id, count=args.count) #Score can be recorded for each epoch + save_summary_data(entity, project, sweep_id, summary_file_path=args.summary_file_path, root_path=file_root_path) + if args.tune_mode == "pipeline" or args.tune_mode == "pipeline_params": + get_step3_yaml(result_load_path=f"{args.summary_file_path}", step2_pipeline_planer=pipeline_planer, + conf_load_path=f"{Path(args.root_path).resolve().parent}/step3_default_params.yaml", + root_path=file_root_path, + required_funs=["AlignMod", "FilterCellsCommonMod", "FilterCellsCommonMod", + "SetConfig"], required_indexes=[2, 11, 14, sys.maxsize], metric="ARI") + if args.tune_mode == "pipeline_params": + run_step3(file_root_path, evaluate_pipeline, tune_mode="params", step2_pipeline_planer=pipeline_planer) +"""To reproduce scMoGCN on other samples, please refer to command lines belows: + +GEX-ADT: +$ python scmogcn.py --subtask openproblems_bmmc_cite_phase2 --device cuda + +GEX-ATAC: +$ python scmogcn.py --subtask openproblems_bmmc_multiome_phase2 --device cuda + +""" diff --git a/examples/tuning/joint_embedding_scmvae/main.py b/examples/tuning/joint_embedding_scmvae/main.py new file mode 100644 index 00000000..5c1e264c --- /dev/null +++ b/examples/tuning/joint_embedding_scmvae/main.py @@ -0,0 +1,215 @@ +import argparse +import gc +import os +import pprint +import sys +from pathlib import Path + +import numpy as np +import pandas as pd +import torch +import torch.utils.data as data_utils +import wandb +from sklearn import preprocessing + +from dance import logger +from dance.datasets.multimodality import JointEmbeddingNIPSDataset +from dance.modules.multi_modality.joint_embedding.scmvae import scMVAE +from dance.pipeline import PipelinePlaner, get_step3_yaml, run_step3, save_summary_data +from dance.transforms.preprocess import calculate_log_library_size +from dance.utils import set_seed + + +def parameter_setting(): + parser = argparse.ArgumentParser(description="Single cell Multi-omics data analysis") + + parser.add_argument("--workdir", "-wk", type=str, default="./new_test", help="work path") + parser.add_argument("--outdir", "-od", type=str, default="./new_test", help="Output path") + + parser.add_argument("--lr", type=float, default=1E-3, help="Learning rate") + parser.add_argument("--weight_decay", type=float, default=1e-6, help="weight decay") + parser.add_argument("--eps", type=float, default=0.01, help="eps") + parser.add_argument("--runs", type=int, default=1, help="Number of repetitions") + + parser.add_argument("--batch_size", "-b", type=int, default=64, help="Batch size") + parser.add_argument('-seed', '--seed', type=int, default=1, help='Random seed for repeat results') + parser.add_argument("--latent", "-l", type=int, default=10, help="latent layer dim") + parser.add_argument("--max_epoch", "-me", type=int, default=25, help="Max epoches") + parser.add_argument("--max_iteration", "-mi", type=int, default=3000, help="Max iteration") + parser.add_argument("--anneal_epoch", "-ae", type=int, default=200, help="Anneal epoch") + parser.add_argument("--epoch_per_test", "-ept", type=int, default=1, + help="Epoch per test, must smaller than max iteration.") + parser.add_argument("--max_ARI", "-ma", type=int, default=-200, help="initial ARI") + parser.add_argument("-t", "--subtask", default="openproblems_bmmc_cite_phase2") + parser.add_argument("-device", "--device", default="cuda") + parser.add_argument("--final_rate", type=float, default=1e-4) + parser.add_argument("--scale_factor", type=float, default=4) + + parser.add_argument("--cache", action="store_true", help="Cache processed data.") + parser.add_argument("--tune_mode", default="pipeline_params", choices=["pipeline", "params", "pipeline_params"]) + parser.add_argument("--count", type=int, default=2) + parser.add_argument("--sweep_id", type=str, default=None) + parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) + parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + + return parser + + +if __name__ == "__main__": + parser = parameter_setting() + args = parser.parse_args() + assert args.max_iteration > args.epoch_per_test + device = torch.device(args.device) + args.lr = 0.001 + args.anneal_epoch = 200 + res = None + logger.info(f"\n{pprint.pformat(vars(args))}") + file_root_path = Path(args.root_path, args.subtask).resolve() + logger.info(f"\n files is saved in {file_root_path}") + pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" + + def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): + wandb.init(settings=wandb.Settings(start_method='thread')) + set_seed(args.seed) + wandb_config = wandb.config + try: + wandb_config = wandb.config + if "run_kwargs" in pipeline_planer.config: + if any(d == dict(wandb.config["run_kwargs"]) for d in pipeline_planer.config.run_kwargs): + wandb_config = wandb_config["run_kwargs"] + else: + wandb.log({"skip": 1}) + wandb.finish() + return + dataset = JointEmbeddingNIPSDataset(args.subtask, root="./data/joint_embedding") + data = dataset.load_data() + + le = preprocessing.LabelEncoder() + labels = le.fit_transform(data.mod["test_sol"].obs["cell_type"]) + data.mod["mod1"].obsm["labels"] = labels + + # Prepare preprocessing pipeline and apply it to data + kwargs = {tune_mode: dict(wandb_config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) + print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") + preprocessing_pipeline(data) + # train_name=[item for item in data.mod["mod1"].obs_names if item in data.mod["meta1"].obs_names] + # train_idx= [data.mod["mod1"].obs_names.get_loc(name) for name in train_name] + # test_idx=list(set([i for i in range(data.mod["mod1"].shape[0])]).difference(set(train_idx))) + # data.set_split_idx("train",train_idx) + # data.set_split_idx("test",test_idx) + + (x_train, y_train, x_train_raw, y_train_raw), _ = data.get_train_data(return_type="torch") + (x_test, y_test, x_test_raw, y_test_raw), labels = data.get_test_data(return_type="torch") + + train_size = len(x_train) + test_size = len(x_test) + train_idx = np.arange(train_size) + test_idx = np.arange(test_size) + train_size + + # x_train,y_train,x_test,y_test,labels=torch.nan_to_num(x_train),torch.nan_to_num(y_train),torch.nan_to_num(x_test),torch.nan_to_num(y_test),torch.nan_to_num(labels) + lib_mean1, lib_var1 = calculate_log_library_size(np.concatenate([x_train.numpy(), x_test.numpy()])) + lib_mean2, lib_var2 = calculate_log_library_size(np.concatenate([y_train.numpy(), y_test.numpy()])) + lib_mean1 = torch.from_numpy(lib_mean1) + lib_var1 = torch.from_numpy(lib_var1) + lib_mean2 = torch.from_numpy(lib_mean2) + lib_var2 = torch.from_numpy(lib_var2) + + Nfeature1 = x_train.shape[1] + Nfeature2 = y_train.shape[1] + + temp = lib_mean1[train_idx] + train = data_utils.TensorDataset(x_train, lib_mean1[train_idx], lib_var1[train_idx], lib_mean2[train_idx], + lib_var2[train_idx], y_train) + + valid = data_utils.TensorDataset(x_test, lib_mean1[test_idx], lib_var1[test_idx], lib_mean2[test_idx], + lib_var2[test_idx], y_test) + + total = data_utils.TensorDataset(torch.cat([x_train, x_test]), torch.cat([y_train, y_test])) + total = data_utils.TensorDataset(torch.cat([x_train, x_test]), torch.cat([y_train, y_test])) + + total_loader = data_utils.DataLoader(total, batch_size=args.batch_size, shuffle=False) + total_loader = data_utils.DataLoader(total, batch_size=args.batch_size, shuffle=False) + + x_test = torch.cat([x_train, x_test]) + y_test = torch.cat([y_train, y_test]) + labels = torch.from_numpy(le.fit_transform(data.mod["test_sol"].obs["cell_type"]) + ) # This might be problematic, likely due to dimensionality reduction issues + model = scMVAE( + encoder_1=[Nfeature1, 1024, 128, 128], + hidden_1=128, + Z_DIMS=22, + decoder_share=[22, 128, 256], + share_hidden=128, + decoder_1=[128, 128, 1024], + hidden_2=1024, + encoder_l=[Nfeature1, 128], + hidden3=128, + encoder_2=[Nfeature2, 1024, 128, 128], + hidden_4=128, + encoder_l1=[Nfeature2, 128], + hidden3_1=128, + decoder_2=[128, 128, 1024], + hidden_5=1024, + drop_rate=0.1, + log_variational=True, + Type="ZINB", + device=device, + n_centroids=22, + penality="GMM", + model=1, + ) + model.to(device) + model.init_gmm_params(total_loader) + model.fit(args, train, valid, args.final_rate, args.scale_factor, device) + # embeds = model.predict(x_test, y_test).cpu().numpy() + score = model.score(x_test, y_test, labels) + # score.update(model.score(x_test, y_test, labels, adata_sol=data.data['test_sol'], metric="openproblems")) + score["ARI"] = score["dance_ari"] + del score["dance_ari"] + wandb.log(score) + wandb.finish() + finally: + locals_keys = list(locals().keys()) + for var in locals_keys: + try: + exec(f"del {var}") + logger.info(f"Deleted '{var}'") + except NameError: + logger.info(f"Variable '{var}' does not exist, continuing...") + torch.cuda.empty_cache() + gc.collect() + # score.update({ + # 'seed': args.seed + k, + # 'subtask': args.subtask, + # 'method': 'scmvae', + # }) + + # if res is not None: + # res = res.append(score, ignore_index=True) + # else: + # for s in score: + # score[s] = [score[s]] + # res = pd.DataFrame(score) + + entity, project, sweep_id = pipeline_planer.wandb_sweep_agent( + evaluate_pipeline, sweep_id=args.sweep_id, count=args.count) #Score can be recorded for each epoch + save_summary_data(entity, project, sweep_id, summary_file_path=args.summary_file_path, root_path=file_root_path) + if args.tune_mode == "pipeline" or args.tune_mode == "pipeline_params": + get_step3_yaml(result_load_path=f"{args.summary_file_path}", step2_pipeline_planer=pipeline_planer, + conf_load_path=f"{Path(args.root_path).resolve().parent}/step3_default_params.yaml", + root_path=file_root_path, + required_funs=["AlignMod", "FilterCellsCommonMod", "FilterCellsCommonMod", + "SetConfig"], required_indexes=[2, 11, 14, sys.maxsize], metric="ARI") + if args.tune_mode == "pipeline_params": + run_step3(file_root_path, evaluate_pipeline, tune_mode="params", step2_pipeline_planer=pipeline_planer) +"""To reproduce scMVAE on other samples, please refer to command lines belows: + +GEX-ADT: +$ python scmvae.py --subtask openproblems_bmmc_cite_phase2 --device cuda + +GEX-ATAC: +$ python scmvae.py --subtask openproblems_bmmc_multiome_phase2 --device cuda + +""" diff --git a/examples/tuning/predict_modality_babel/main.py b/examples/tuning/predict_modality_babel/main.py new file mode 100644 index 00000000..97062150 --- /dev/null +++ b/examples/tuning/predict_modality_babel/main.py @@ -0,0 +1,114 @@ +import argparse +import logging +import os +import sys +from pathlib import Path + +import pandas as pd +import torch +import wandb + +from dance import logger +from dance.datasets.multimodality import ModalityPredictionDataset +from dance.modules.multi_modality.predict_modality.babel import BabelWrapper +from dance.pipeline import PipelinePlaner, get_step3_yaml, run_step3, save_summary_data +from dance.utils import set_seed + +if __name__ == "__main__": + OPTIMIZER_DICT = { + "adam": torch.optim.Adam, + "rmsprop": torch.optim.RMSprop, + } + parser = argparse.ArgumentParser() + parser.add_argument("-t", "--subtask", default="openproblems_bmmc_cite_phase2_rna") + parser.add_argument("-device", "--device", default="cuda") + parser.add_argument("-cpu", "--cpus", default=1, type=int) + parser.add_argument("-seed", "--seed", default=1, type=int) + parser.add_argument("--runs", type=int, default=1, help="Number of repetitions") + parser.add_argument("-m", "--model_folder", default="./models") + parser.add_argument("--outdir", "-o", default="./logs", help="Directory to output to") + parser.add_argument("--lossweight", type=float, default=1., help="Relative loss weight") + parser.add_argument("--lr", "-l", type=float, default=0.01, help="Learning rate") + parser.add_argument("--batchsize", "-b", type=int, default=64, help="Batch size") + parser.add_argument("--hidden", type=int, default=64, help="Hidden dimensions") + parser.add_argument("--earlystop", type=int, default=20, help="Early stopping after N epochs") + parser.add_argument("--naive", "-n", action="store_true", help="Use a naive model instead of lego model") + parser.add_argument("--resume", action="store_true") + parser.add_argument("--max_epochs", type=int, default=500) + + parser.add_argument("--cache", action="store_true", help="Cache processed data.") + parser.add_argument("--tune_mode", default="pipeline_params", choices=["pipeline", "params", "pipeline_params"]) + parser.add_argument("--count", type=int, default=2) + parser.add_argument("--sweep_id", type=str, default=None) + parser.add_argument("--summary_file_path", default="results/pipeline/best_test_acc.csv", type=str) + parser.add_argument("--root_path", default=str(Path(__file__).resolve().parent), type=str) + args = parser.parse_args() + args.resume = True + + torch.set_num_threads(args.cpus) + args.outdir = os.path.abspath(args.outdir) + os.makedirs(args.model_folder, exist_ok=True) + os.makedirs(args.outdir, exist_ok=True) + # Specify output log file + fh = logging.FileHandler(f"{args.outdir}/training_{args.subtask}_{args.seed}.log", "w") + fh.setLevel(logging.INFO) + logger.addHandler(fh) + file_root_path = Path(args.root_path, args.subtask).resolve() + logger.info(f"\n files is saved in {file_root_path}") + pipeline_planer = PipelinePlaner.from_config_file(f"{file_root_path}/{args.tune_mode}_tuning_config.yaml") + os.environ["WANDB_AGENT_MAX_INITIAL_FAILURES"] = "2000" + for arg in vars(args): + logger.info(f"Parameter {arg}: {getattr(args, arg)}") + + def evaluate_pipeline(tune_mode=args.tune_mode, pipeline_planer=pipeline_planer): + wandb.init(settings=wandb.Settings(start_method='thread')) + rndseed = args.seed + set_seed(rndseed) + dataset = ModalityPredictionDataset(args.subtask, preprocess=None) + data = dataset.load_data() + # Prepare preprocessing pipeline and apply it to data + kwargs = {tune_mode: dict(wandb.config)} + preprocessing_pipeline = pipeline_planer.generate(**kwargs) + print(f"Pipeline config:\n{preprocessing_pipeline.to_yaml()}") + preprocessing_pipeline(data) + + # Obtain training and testing data + x_train, y_train = data.get_train_data(return_type="torch") + x_test, y_test = data.get_test_data(return_type="torch") + x_train, y_train, x_test, y_test = x_train.float(), y_train.float(), x_test.float(), y_test.float() + # Train and evaluate the model + # Just realized some algorithms can do dimensionality reduction while others cannot, so it depends on the algorithm + model = BabelWrapper(args, dim_in=x_train.shape[1], dim_out=y_train.shape[1]) + model.fit(x_train, y_train, val_ratio=0.15) + wandb.log({'rmse': model.score(x_test, y_test)}) + wandb.finish() + + entity, project, sweep_id = pipeline_planer.wandb_sweep_agent( + evaluate_pipeline, sweep_id=args.sweep_id, count=args.count) #Score can be recorded for each epoch + save_summary_data(entity, project, sweep_id, summary_file_path=args.summary_file_path, root_path=file_root_path) + if args.tune_mode == "pipeline" or args.tune_mode == "pipeline_params": + get_step3_yaml(result_load_path=f"{args.summary_file_path}", step2_pipeline_planer=pipeline_planer, + conf_load_path=f"{Path(args.root_path).resolve().parent}/step3_default_params.yaml", + root_path=file_root_path, + required_funs=["AlignMod", "FilterCellsCommonMod", "FilterCellsCommonMod", + "SetConfig"], required_indexes=[2, 11, 14, sys.maxsize], metric="ARI") + if args.tune_mode == "pipeline_params": + run_step3(file_root_path, evaluate_pipeline, tune_mode="params", step2_pipeline_planer=pipeline_planer) +"""To reproduce BABEL on other samples, please refer to command lines belows: + +GEX to ADT (subset): +$ python babel.py --subtask openproblems_bmmc_cite_phase2_rna_subset --device cuda + +GEX to ADT: +$ python babel.py --subtask openproblems_bmmc_cite_phase2_rna --device cuda + +ADT to GEX: +$ python babel.py --subtask openproblems_bmmc_cite_phase2_mod2 --device cuda + +GEX to ATAC: +$ python babel.py --subtask openproblems_bmmc_multiome_phase2_rna --device cuda + +ATAC to GEX: +$ python babel.py --subtask openproblems_bmmc_multiome_phase2_mod2 --device cuda + +""" diff --git a/examples/tuning/step3_default_params.yaml b/examples/tuning/step3_default_params.yaml index 2a010328..aaca441b 100644 --- a/examples/tuning/step3_default_params.yaml +++ b/examples/tuning/step3_default_params.yaml @@ -54,6 +54,8 @@ pipeline: values: [null, 1e3, 1e4, 1e5, 1e6] max_fraction: values: [0.01, 0.05, 0.5, 0.7, 1.0] + - type: normalize + target: tfidfTransform - type: normalize target: NormalizePlaceHolder - type: filter.gene @@ -217,19 +219,21 @@ pipeline: - [max_genes, max_counts, min_counts, min_genes] - [max_genes, max_counts, min_genes, min_counts] min_counts: - min: 3 - max: 1000 + min: 0.0 # Change occurs when joint embedding + max: 0.05 min_genes: min: 0.0 max: 0.05 max_counts: - min: 10000 - max: 100000 + min: 0.95 + max: 1.0 max_genes: min: 0.95 max: 1.0 - type: filter.cell target: FilterCellsPlaceHolder + - type: filter.cell + target: FilterCellsCommonMod - type: feature.cell target: CellPCA params: @@ -246,6 +250,14 @@ pipeline: n_components: min: 100 max: 1000 + - type: feature.cell + target: SparsePCA + params: + out: feature.cell + params_to_tune: + n_components: + min: 100 + max: 1000 - type: feature.cell target: WeightedFeaturePCA params: diff --git a/requirements.txt b/requirements.txt index c58e5232..0e92f42a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -11,6 +11,7 @@ numpy==1.26.4 omegaconf==2.3.0 opencv-python==4.9.0.80 openpyxl==3.1.2 +pot==0.9.4 pandas==2.2.2 # pandas==1.5.3 # scib 1.1.4 requires pandas<2 pyro-ppl==1.9.0 @@ -26,3 +27,5 @@ threadpoolctl==3.5.0 tifffile==2024.2.12 torchnmf==0.3.5 tqdm==4.66.2 +anndata==0.10.8 +wandb==0.16.3 diff --git a/tests/atlas/test_anndata_similarity.py b/tests/atlas/test_anndata_similarity.py new file mode 100644 index 00000000..083177d6 --- /dev/null +++ b/tests/atlas/test_anndata_similarity.py @@ -0,0 +1,110 @@ +# test_anndata_similarity.py + +import numpy as np +import pytest +import scanpy as sc +from anndata import AnnData +from scipy import sparse + +from dance.atlas.sc_similarity.anndata_similarity import AnnDataSimilarity + + +@pytest.fixture +def test_data(): + """Create test AnnData objects.""" + n_cells = 20 + n_genes = 40 + + X1 = np.random.negative_binomial(n=5, p=0.3, size=(n_cells, n_genes)) + X2 = np.random.negative_binomial(n=5, p=0.3, size=(n_cells, n_genes)) + + X1[np.random.random(X1.shape) > 0.5] = 0 + X2[np.random.random(X2.shape) > 0.5] = 0 + X1 = sparse.csr_matrix(X1) + X2 = sparse.csr_matrix(X2) + + obs1 = { + 'celltype': ['type1'] * n_cells, + 'nnz': [X1[i].count_nonzero() for i in range(n_cells)], + 'n_measured_vars': [n_genes] * n_cells, + 'assay': ['assay1'] * n_cells, + 'tissue': ['tissue1'] * n_cells + } + + obs2 = { + 'celltype': ['type2'] * n_cells, + 'nnz': [X2[i].count_nonzero() for i in range(n_cells)], + 'n_measured_vars': [n_genes] * n_cells, + 'assay': ['assay2'] * n_cells, + 'tissue': ['tissue2'] * n_cells + } + + adata1 = AnnData(X1, obs=obs1) + adata2 = AnnData(X2, obs=obs2) + + # Perform standard single-cell data preprocessing + for adata in [adata1, adata2]: + sc.pp.normalize_total(adata, target_sum=1e4) + sc.pp.log1p(adata) + + return adata1, adata2 + + +def test_similarity_computation(test_data): + """Test the correctness of similarity computation.""" + adata1, adata2 = test_data + + # Initialize similarity calculator + similarity_calculator = AnnDataSimilarity(adata1, adata2, sample_size=2, init_random_state=42, n_runs=1) + + # Calculate similarity + similarity_matrices = similarity_calculator.get_similarity_matrix_A2B(methods=[ + 'wasserstein', 'Hausdorff', 'chamfer', 'energy', 'sinkhorn2', 'bures', 'spectral', 'common_genes_num', + 'metadata_sim', 'mmd' + ]) + for k, v in similarity_matrices.items(): + print(k, v) + + # Verify result format and basic properties + assert isinstance(similarity_matrices, dict) + assert all(0 <= v <= 1 for k, v in similarity_matrices.items() if k not in ['common_genes_num', 'bures']) + + # Verify specific metrics + assert similarity_matrices['common_genes_num'] >= 0 # At least 0 common genes + + +def test_preprocess(test_data): + """Test data preprocessing functionality.""" + adata1, adata2 = test_data + + calculator = AnnDataSimilarity(adata1, adata2) + calculator.preprocess() + + # Verify gene filtering + assert len(calculator.common_genes) > 0 + assert all(gene in calculator.origin_adata1.var_names for gene in calculator.common_genes) + assert all(gene in calculator.origin_adata2.var_names for gene in calculator.common_genes) + + +def test_sample_cells(test_data): + """Test cell sampling functionality.""" + adata1, adata2 = test_data + sample_size = 1 + + calculator = AnnDataSimilarity(adata1, adata2, sample_size=sample_size) + calculator.adata1 = calculator.origin_adata1.copy() + calculator.adata2 = calculator.origin_adata2.copy() + calculator.sample_cells(random_state=42) + + # Verify sample size + assert calculator.sampled_adata1.n_obs == sample_size + assert calculator.sampled_adata2.n_obs == sample_size + + +@pytest.mark.xfail(raises=ValueError, strict=True) +def test_invalid_method(test_data): + """Test invalid similarity computation method.""" + adata1, adata2 = test_data + calculator = AnnDataSimilarity(adata1, adata2) + + calculator.compute_similarity(random_state=42, methods=['invalid_method']) diff --git a/tests/atlas/test_atlas.py b/tests/atlas/test_atlas.py new file mode 100644 index 00000000..6faaf9c5 --- /dev/null +++ b/tests/atlas/test_atlas.py @@ -0,0 +1,70 @@ +"""Test suite for the Atlas similarity calculation functionality. + +This test verifies that the main function correctly returns: +1. The most similar dataset from the atlas +2. Its corresponding configuration settings +3. The similarity score + +""" + +import json +import sys + +import pandas as pd + +from dance.settings import ATLASDIR, DANCEDIR, SIMILARITYDIR + +sys.path.append(str(ATLASDIR)) +from demos.main import main + +from dance import logger + + +def test_main(): + # Construct test parameters with a sample Brain tissue dataset + class Args: + tissue = "Brain" + data_dir = str(DANCEDIR / "examples/tuning/temp_data/train/human") + source_file = "human_Brain364348b4-bc34-4fe1-a851-60d99e36cafa_data" + + args = Args() + logger.info(f"testing main with args: {args}") + source_id = "3643" + + # Execute main function with test parameters + ans_file, ans_conf, ans_value = main(args) + + # Verify return value types and ranges + assert isinstance(ans_file, str), "ans_file should be a string type" + assert isinstance(ans_value, float), "ans_value should be a float type" + assert 0 <= ans_value <= 1, "Similarity value should be between 0 and 1" + + # Verify configuration dictionary structure and content + expected_methods = ["cta_celltypist", "cta_scdeepsort", "cta_singlecellnet", "cta_actinn"] + assert isinstance(ans_conf, dict), "ans_conf should be a dictionary type" + assert set(ans_conf.keys()) == set(expected_methods), "ans_conf should contain all expected methods" + assert all(isinstance(v, str) for v in ans_conf.values()), "All configuration values should be string type" + + # Verify consistency with Excel spreadsheet results + data = pd.read_excel(SIMILARITYDIR / f"data/new_sim/{args.tissue.lower()}_similarity.xlsx", sheet_name=source_id, + index_col=0) + reduce_error = False + in_query = True + # Read weights + with open( + SIMILARITYDIR / + f"data/similarity_weights_results/{'reduce_error_' if reduce_error else ''}{'in_query_' if in_query else ''}sim_dict.json", + encoding='utf-8') as f: + sim_dict = json.load(f) + feature_name = sim_dict[args.tissue.lower()]["feature_name"] + w1 = sim_dict[args.tissue.lower()]["weight1"] + w2 = 1 - w1 + + # Calculate similarity in Excel + data.loc["similarity"] = data.loc[feature_name] * w1 + data.loc["metadata_sim"] * w2 + expected_file = data.loc["similarity"].idxmax() + expected_value = data.loc["similarity", expected_file] + + # Verify result consistency with Excel + assert abs(ans_value - expected_value) < 1e-4, "Calculated similarity value does not match Excel value" + assert ans_file == expected_file, "Selected most similar dataset does not match Excel result" diff --git a/tests/test_get_result_web.py b/tests/test_get_result_web.py new file mode 100644 index 00000000..2096e17e --- /dev/null +++ b/tests/test_get_result_web.py @@ -0,0 +1,154 @@ +import sys +from pathlib import Path +from unittest.mock import patch + +import pandas as pd +import pytest + +from dance.settings import DANCEDIR + +sys.path.append(str(DANCEDIR)) +from examples.atlas.get_result_web import check_exist, check_identical_strings, spilt_web, write_ans + + +# Test check_identical_strings function +def test_check_identical_strings(): + # Test case for identical strings + assert check_identical_strings(["test", "test", "test"]) == "test" + + # Test case for empty list + with pytest.raises(ValueError, match="The list is empty"): + check_identical_strings([]) + + # Test case for different strings + with pytest.raises(ValueError, match="Different strings found"): + check_identical_strings(["test1", "test2"]) + + +# Test spilt_web function +def test_spilt_web(): + # Test valid URL + url = "https://wandb.ai/user123/project456/sweeps/abc789" + result = spilt_web(url) + assert result == ("user123", "project456", "abc789") + + # Test invalid URL + invalid_url = "https://invalid-url.com" + assert spilt_web(invalid_url) is None + + +# Test check_exist function +def test_check_exist(tmp_path): + # Create temporary test directory + results_dir = tmp_path / "results" / "params" + results_dir.mkdir(parents=True) + + # Test empty directory + assert check_exist(str(tmp_path)) is False + + # Create test files + (results_dir / "file1.txt").touch() + (results_dir / "file2.txt").touch() + + # Test case with multiple files + assert check_exist(str(tmp_path)) is True + + +# Create test fixed data +@pytest.fixture +def sample_df(): + return pd.DataFrame({"id": ["run1", "run2", "run3"], "metric": [0.8, 0.9, 0.7]}) + + +# use mock to simulate wandb API +@pytest.fixture +def mock_wandb(mocker): + mock_api = mocker.patch("wandb.Api") + # set mock return values + return mock_api + + +# Add a mock fixture to simulate ATLASDIR +@pytest.fixture(autouse=True) +def mock_settings(tmp_path, monkeypatch): + """Mock ATLASDIR and METADIR settings for tests.""" + # Create temporary directory + mock_atlas_dir = tmp_path / "atlas" + mock_meta_dir = tmp_path / "meta" + mock_atlas_dir.mkdir(parents=True) + mock_meta_dir.mkdir(parents=True) + + # Set environment variables + monkeypatch.setenv("ATLAS_DIR", str(mock_atlas_dir)) + monkeypatch.setenv("META_DIR", str(mock_meta_dir)) + + # If import directly from dance.settings, also replace these values + monkeypatch.setattr("examples.atlas.get_result_web.ATLASDIR", mock_atlas_dir) + monkeypatch.setattr("examples.atlas.get_result_web.METADIR", mock_meta_dir) + + return mock_atlas_dir + + +def test_write_ans(mock_settings): + sweep_results_dir = mock_settings / "sweep_results" + sweep_results_dir.mkdir(parents=True) + output_file = sweep_results_dir / "heart_ans.csv" + + # Create initial data + existing_data = pd.DataFrame({ + 'Dataset_id': ['dataset1', 'dataset2'], + 'cta_actinn': ['url1', 'url2'], + 'cta_actinn_best_yaml': ['yaml1', 'yaml2'], + 'cta_actinn_best_res': [0.8, 0.7] + }) + existing_data.to_csv(output_file) + + # Test data: include lower score and higher score + new_data = pd.DataFrame({ + 'Dataset_id': ['dataset1', 'dataset2'], + 'cta_actinn': ['url1_new', 'url2_new'], + 'cta_actinn_best_yaml': ['yaml1_new', 'yaml2_new'], + 'cta_actinn_best_res': [0.9, 0.6] # dataset1 higher score, dataset2 lower score + }) + + write_ans("heart", new_data, output_file) + + # Verify results + result_df = pd.read_csv(output_file) + + # Verify high score update success + dataset1_row = result_df[result_df['Dataset_id'] == 'dataset1'].iloc[0] + assert dataset1_row['cta_actinn_best_res'] == 0.9 + assert dataset1_row['cta_actinn'] == 'url1_new' + assert dataset1_row['cta_actinn_best_yaml'] == 'yaml1_new' + + # Verify low score remains unchanged + dataset2_row = result_df[result_df['Dataset_id'] == 'dataset2'].iloc[0] + assert dataset2_row['cta_actinn_best_res'] == 0.7 + assert dataset2_row['cta_actinn'] == 'url2' + assert dataset2_row['cta_actinn_best_yaml'] == 'yaml2' + + +# Test completely new data write (file does not exist) +def test_write_ans_new_file(mock_settings): + # Use mock_settings instead of creating new temporary directory + sweep_results_dir = mock_settings / "sweep_results" + sweep_results_dir.mkdir(parents=True) + output_file = sweep_results_dir / "new_heart_ans.csv" + + new_data = pd.DataFrame({ + 'Dataset_id': ['dataset1', 'dataset2'], + 'cta_actinn': ['url1', 'url2'], + 'cta_actinn_best_yaml': ['yaml1', 'yaml2'], + 'cta_actinn_best_res': [0.8, 0.9] + }) + + # Test write to new file + + # Verify file is created and contains correct data + write_ans("heart", new_data, output_file) + assert output_file.exists() + + written_df = pd.read_csv(output_file, index_col='Dataset_id') + assert len(written_df) == 2 + assert all(written_df.index == ['dataset1', 'dataset2']) diff --git a/tests/test_mudata_to_anndata.py b/tests/test_mudata_to_anndata.py new file mode 100644 index 00000000..1949eb75 --- /dev/null +++ b/tests/test_mudata_to_anndata.py @@ -0,0 +1,99 @@ +import anndata +import mudata +import numpy as np +import pytest + +from dance.data.base import Data +from dance.utils.wrappers import add_mod_and_transform + + +@pytest.fixture +def mock_mudata(): + """Create a MuData object for testing.""" + adata1 = anndata.AnnData(X=np.array([[1, 2], [3, 4]])) + adata2 = anndata.AnnData(X=np.array([[5, 6], [7, 8]])) + return Data(data=mudata.MuData({'mod1': adata1, 'mod2': adata2})) + + +@add_mod_and_transform +class SampleClass: + """Example class for testing the decorator.""" + + def __init__(self, x=10, **kwargs): + self.x = x + + def __call__(self, data, *args, **kwargs): + # Multiply the data by self.x + if isinstance(data.data, anndata.AnnData): + data.data.X = data.data.X * self.x + return data + + +def test_class_init_with_mod(): + """Test class initialization with mod parameter.""" + obj = SampleClass(x=10, mod="mod1") + assert obj.x == 10 + assert obj.mod == "mod1" + + +def test_class_init_without_mod(): + """Test class initialization without mod parameter.""" + obj = SampleClass(x=10) + assert obj.x == 10 + assert obj.mod is None + + +def test_class_call_with_anndata(): + """Test calling with AnnData object.""" + obj = SampleClass(x=3) + original_data = np.array([[1, 2], [3, 4]]) + adata = Data(data=anndata.AnnData(X=original_data.copy())) + result = obj(adata) + # Verify data is multiplied by x=3 + assert np.array_equal(result.data.X, original_data * 3) + + +def test_class_call_with_mudata_and_mod(mock_mudata): + """Test calling with MuData object and mod parameter to verify that only the + specified modality is modified.""" + obj = SampleClass(x=2, mod="mod1") + # Store original data for both modalities + original_mod1 = mock_mudata.data.mod["mod1"].X.copy() + original_mod2 = mock_mudata.data.mod["mod2"].X.copy() + + obj(mock_mudata) + + # Verify mod1 data is multiplied by x=2 + assert np.array_equal(mock_mudata.data.mod["mod1"].X, original_mod1 * 2) + # Verify mod2 data remains unchanged + assert np.array_equal(mock_mudata.data.mod["mod2"].X, original_mod2) + + +def test_class_call_with_mudata_without_mod(mock_mudata): + """Test calling with MuData object but without mod parameter.""" + obj = SampleClass(x=10) + result = obj(mock_mudata) + assert result is mock_mudata + + +def test_class_call_with_mudata_invalid_mod(mock_mudata): + """Test using invalid mod parameter.""" + obj = SampleClass(x=10, mod="invalid_mod") + with pytest.raises(KeyError): + obj(mock_mudata) + + +def test_decorator_preserves_metadata(): + """Test if the decorator preserves the original class metadata.""" + assert hasattr(SampleClass, 'add_mod_and_transform') + assert SampleClass.__init__.__doc__ == SampleClass.__init__.__wrapped__.__doc__ + assert SampleClass.__call__.__doc__ == SampleClass.__call__.__wrapped__.__doc__ + + +def test_class_call_with_additional_args(mock_mudata): + """Test calling with additional arguments.""" + obj = SampleClass(x=10, mod="mod1") + original_data = mock_mudata.data.mod["mod1"].copy() + obj(mock_mudata, extra_arg="test") + # Verify original data is modified correctly + assert np.array_equal(mock_mudata.data.mod["mod1"].X, original_data.X * 10)