-
Notifications
You must be signed in to change notification settings - Fork 682
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add primitive matmul test * use dynamic shape * refine Co-authored-by: ZZK <42901638+MARD1NO@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
- Loading branch information
1 parent
195162b
commit 0d33e09
Showing
1 changed file
with
119 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
/* | ||
Copyright 2020 The OneFlow Authors. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
*/ | ||
#include <gtest/gtest.h> | ||
#include "oneflow/core/ep/test/primitive/primitive_test.h" | ||
#include "oneflow/core/ep/include/primitive/memset.h" | ||
#include "oneflow/core/ep/include/primitive/memcpy.h" | ||
#include "oneflow/core/ep/include/primitive/matmul.h" | ||
#include <unsupported/Eigen/CXX11/Tensor> | ||
|
||
namespace oneflow { | ||
|
||
namespace ep { | ||
|
||
namespace primitive { | ||
|
||
namespace test { | ||
|
||
namespace { | ||
|
||
template<DataType data_type, typename T> | ||
void TestMatmul(DeviceManagerRegistry* registry, const std::set<DeviceType>& device_types, int m, | ||
int k, int n, bool transpose_a, bool transpose_b) { | ||
using Matrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; | ||
Matrix a = Matrix::Random(m, k); | ||
Matrix b = Matrix::Random(k, n); | ||
Matrix c = a * b; | ||
Matrix a_transpose = a.transpose(); | ||
Matrix b_transpose = b.transpose(); | ||
|
||
int64_t a_size = m * k * sizeof(T); | ||
int64_t b_size = k * n * sizeof(T); | ||
int64_t c_size = m * n * sizeof(T); | ||
|
||
for (const auto& device_type : device_types) { | ||
if (device_type == DeviceType::kCPU && data_type == DataType::kFloat16) { | ||
// CPU matmul not support float16 | ||
continue; | ||
} | ||
auto device = registry->GetDevice(device_type, 0); | ||
ep::test::PinnedMemoryGuard input_a(device.get(), a_size); | ||
ep::test::PinnedMemoryGuard input_b(device.get(), b_size); | ||
if (transpose_a) { | ||
std::memcpy(input_a.ptr(), a_transpose.data(), a_size); | ||
} else { | ||
std::memcpy(input_a.ptr(), a.data(), a_size); | ||
} | ||
if (transpose_b) { | ||
std::memcpy(input_b.ptr(), b_transpose.data(), b_size); | ||
} else { | ||
std::memcpy(input_b.ptr(), b.data(), b_size); | ||
} | ||
ep::test::PinnedMemoryGuard output(device.get(), c_size); | ||
ep::test::DeviceMemoryGuard device_a(device.get(), a_size); | ||
ep::test::DeviceMemoryGuard device_b(device.get(), b_size); | ||
ep::test::DeviceMemoryGuard device_c(device.get(), c_size); | ||
ep::test::StreamGuard stream(device.get()); | ||
std::unique_ptr<Memcpy> h2d = NewPrimitive<MemcpyFactory>(device_type, MemcpyKind::kHtoD); | ||
std::unique_ptr<Memcpy> d2h = NewPrimitive<MemcpyFactory>(device_type, MemcpyKind::kDtoH); | ||
const auto trans_a = transpose_a ? BlasTransposeType::T : BlasTransposeType::N; | ||
const auto trans_b = transpose_b ? BlasTransposeType::T : BlasTransposeType::N; | ||
std::unique_ptr<Matmul> matmul = | ||
NewPrimitive<MatmulFactory>(device_type, data_type, trans_a, trans_b); | ||
ASSERT_TRUE(d2h.operator bool()); | ||
ASSERT_TRUE(h2d.operator bool()); | ||
ASSERT_TRUE(matmul.operator bool()); | ||
h2d->Launch(stream.stream(), device_a.ptr(), input_a.ptr(), a_size); | ||
h2d->Launch(stream.stream(), device_b.ptr(), input_b.ptr(), b_size); | ||
matmul->Launch(stream.stream(), m, n, k, 1.0, device_a.ptr(), device_b.ptr(), 0.0, | ||
device_c.ptr()); | ||
d2h->Launch(stream.stream(), output.ptr(), device_c.ptr(), c_size); | ||
CHECK_JUST(stream.stream()->Sync()); | ||
auto res = Eigen::Map<Matrix, Eigen::Unaligned>(reinterpret_cast<T*>(output.ptr()), m, n); | ||
ASSERT_TRUE(c.template isApprox(res, static_cast<T>(0.001))); | ||
} | ||
} | ||
|
||
template<DataType data_type, typename T> | ||
void TestMatmul(DeviceManagerRegistry* registry, const std::set<DeviceType>& device_types, int m, | ||
int k, int n) { | ||
TestMatmul<data_type, T>(registry, device_types, m, k, n, false, false); | ||
TestMatmul<data_type, T>(registry, device_types, m, k, n, true, false); | ||
TestMatmul<data_type, T>(registry, device_types, m, k, n, false, true); | ||
TestMatmul<data_type, T>(registry, device_types, m, k, n, true, true); | ||
} | ||
|
||
template<DataType data_type, typename T> | ||
void TestMatmul(DeviceManagerRegistry* registry, const std::set<DeviceType>& device_types) { | ||
TestMatmul<data_type, T>(registry, device_types, 64, 16, 8); | ||
TestMatmul<data_type, T>(registry, device_types, 16, 7, 12); | ||
} | ||
|
||
} // namespace | ||
|
||
TEST_F(PrimitiveTest, TestMatmul) { | ||
TestMatmul<DataType::kDouble, double>(&device_manager_registry_, available_device_types_); | ||
TestMatmul<DataType::kFloat, float>(&device_manager_registry_, available_device_types_); | ||
TestMatmul<DataType::kFloat16, Eigen::half>(&device_manager_registry_, available_device_types_); | ||
} | ||
|
||
} // namespace test | ||
|
||
} // namespace primitive | ||
|
||
} // namespace ep | ||
|
||
} // namespace oneflow |