Skip to content

Commit

Permalink
align torch new tensor (#7973)
Browse files Browse the repository at this point in the history
* align torch new tensor

* refine

* refine

* change test case name

* change device type

* fix test case

* fix test case

* fix import error

Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
  • Loading branch information
liufengwei0103 and mergify[bot] authored Apr 16, 2022
1 parent ec7c43b commit 7d91ecc
Show file tree
Hide file tree
Showing 2 changed files with 94 additions and 0 deletions.
26 changes: 26 additions & 0 deletions python/oneflow/framework/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -1052,6 +1052,31 @@ def _isinf(self):
return flow.isinf(self)


def _new_tensor(
self, data, dtype=None, device=None, requires_grad=False, placement=None, sbp=None
):
if dtype is None:
dtype = self.dtype
if self.is_local:
assert (
placement is None and sbp is None
), "self is local tensor, placement and sbp are expected to be None."
if device is None:
device = self.device
return flow.tensor(
data, dtype=dtype, device=device, requires_grad=requires_grad
)
else:
assert device is None, "self is global tensor, device is expected to be None."
if placement is None:
placement = self.placement
if sbp is None:
sbp = self.sbp
return flow.tensor(
data, dtype=dtype, placement=placement, sbp=sbp, requires_grad=requires_grad
)


def RegisterMethods():
Tensor.__mul__ = lambda self, other: self.mul(other)
Tensor.__rmul__ = lambda self, other: self.mul(other)
Expand Down Expand Up @@ -1266,6 +1291,7 @@ def RegisterMethods():
Tensor.to_consistent = _to_consistent
Tensor.isnan = _isnan
Tensor.isinf = _isinf
Tensor.new_tensor = _new_tensor


def register_tensor_op(op_name):
Expand Down
68 changes: 68 additions & 0 deletions python/oneflow/test/tensor/test_new_tensor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import unittest
import numpy as np
import oneflow as flow
import oneflow.unittest


class TestNewTensor(flow.unittest.TestCase):
@flow.unittest.skip_unless_1n1d()
def test_new_tensor_local_mode_with_default_args(test_case):
tensor = flow.randn(5)
data = [[1, 2], [3, 4]]
new_tensor = tensor.new_tensor(data)
test_case.assertEqual(new_tensor.dtype, tensor.dtype)
test_case.assertEqual(new_tensor.device, tensor.device)

@unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases")
@flow.unittest.skip_unless_1n1d()
def test_new_tensor_local_mode_with_spec_args(test_case):
tensor = flow.randn(5)
data = [[1, 2], [3, 4]]
new_tensor = tensor.new_tensor(data, flow.int64, "cuda")
test_case.assertEqual(new_tensor.dtype, flow.int64)
test_case.assertEqual(new_tensor.device, flow.device("cuda"))

@flow.unittest.skip_unless_1n2d()
def test_new_tensor_global_mode_with_default_args(test_case):
placement = flow.placement(type="cpu", ranks=[0, 1])
sbp = flow.sbp.split(0)
tensor = flow.randn(4, 4, placement=placement, sbp=sbp)
data = [[1, 2], [3, 4]]
new_tensor = tensor.new_tensor(data)
test_case.assertEqual(new_tensor.dtype, tensor.dtype)
test_case.assertEqual(new_tensor.placement, placement)
test_case.assertEqual(new_tensor.sbp, (sbp,))

@unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases")
@flow.unittest.skip_unless_1n2d()
def test_new_tensor_global_mode_with_spec_args(test_case):
placement = flow.placement(type="cuda", ranks=[0, 1])
sbp = flow.sbp.split(0)
tensor = flow.randn(4, 4, placement=placement, sbp=sbp)
data = [[1, 2], [3, 4]]
new_tensor = tensor.new_tensor(
data, placement=placement, sbp=flow.sbp.broadcast
)
test_case.assertEqual(new_tensor.dtype, tensor.dtype)
test_case.assertEqual(new_tensor.placement, placement)
test_case.assertEqual(new_tensor.sbp, (flow.sbp.broadcast,))


if __name__ == "__main__":
unittest.main()

0 comments on commit 7d91ecc

Please sign in to comment.