-
Notifications
You must be signed in to change notification settings - Fork 682
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* feat(SliceOp): slice ops support 2d sbp * fix(SliceOp): fix [B, P] 2d sbp bug * refine error message * fix bug in parallel_num == 1 * add comment * add warning and format * add NOLINT for boxing check * feat(LogicalSliceOps): support all nd_sbp * feat(LogicalSlice): support nd_sbp * add error message * fix(AutoTest): fix auto_test bug in module.parameter pass * auto format by CI * fix(LogicalSliceAssign): skip test when 1n1d * fix SliceParams memset error * remove memset * add CHECK_JUST * fix(*): make sure split_axis >= 0 or equal to SPLIT_AXIS_FOR_NON_SPLIT * remove memset * fix spilit_info.axis bug * feat(LogicalSliceOps): support grad * add logical_slice gradient_funcs * modify as clang-tidy * LogicalSlice ops grad use input nd_sbp Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com> Co-authored-by: Houjiang Chen <chenhoujiangcug@gmail.com> Co-authored-by: oneflow-ci-bot <ci-bot@oneflow.org>
- Loading branch information
1 parent
45cfcb5
commit 83ed0ba
Showing
5 changed files
with
331 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
/* | ||
Copyright 2020 The OneFlow Authors. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
*/ | ||
#include "oneflow/core/framework/op_expr_grad_function.h" | ||
#include "oneflow/core/framework/op_builder.h" | ||
#include "oneflow/core/framework/op_interpreter/op_interpreter_util.h" | ||
#include "oneflow/core/framework/op_expr.h" | ||
#include "oneflow/core/functional/functional.h" | ||
|
||
namespace oneflow { | ||
namespace one { | ||
|
||
struct LogicalSliceCaptureState : public AutoGradCaptureState { | ||
Shape like_shape; | ||
std::vector<int64_t> start; | ||
std::vector<int64_t> stop; | ||
std::vector<int64_t> step; | ||
Symbol<NdSbp> in_sbp; | ||
}; | ||
|
||
class LogicalSlice : public OpExprGradFunction<LogicalSliceCaptureState> { | ||
public: | ||
Maybe<void> Init(const OpExpr& op) override { | ||
const auto* fw_op_expr = dynamic_cast<const UserOpExpr*>(&op); | ||
CHECK_NOTNULL_OR_RETURN(fw_op_expr) << "LogicalSlice op_expr is null"; | ||
base_attrs_ = MakeAttrMapFromUserOpConf(fw_op_expr->proto()); | ||
return Maybe<void>::Ok(); | ||
} | ||
|
||
Maybe<void> Capture(LogicalSliceCaptureState* ctx, const TensorTuple& inputs, | ||
const TensorTuple& outputs, const AttrMap& attrs) const override { | ||
CHECK_EQ_OR_RETURN(inputs.size(), 1) << "LogicalSlice input size must be 1"; | ||
CHECK_EQ_OR_RETURN(outputs.size(), 1) << "LogicalSlice output size must be 1"; | ||
|
||
ComposedAttrMap composed_attrs(attrs, base_attrs_); | ||
ctx->start = JUST(composed_attrs.GetAttr<std::vector<int64_t>>("start")); | ||
ctx->stop = JUST(composed_attrs.GetAttr<std::vector<int64_t>>("stop")); | ||
ctx->step = JUST(composed_attrs.GetAttr<std::vector<int64_t>>("step")); | ||
ctx->like_shape = *(inputs[0]->shape()); | ||
ctx->in_sbp = JUST(inputs[0]->nd_sbp()); | ||
return Maybe<void>::Ok(); | ||
} | ||
|
||
Maybe<void> Apply(const LogicalSliceCaptureState* ctx, const TensorTuple& out_grads, | ||
TensorTuple* in_grads) const override { | ||
in_grads->resize(1); | ||
std::shared_ptr<Tensor> zeros; | ||
if (out_grads[0]->is_local()) { | ||
zeros = JUST(functional::Constant(ctx->like_shape, 0, out_grads[0]->dtype(), | ||
JUST(out_grads[0]->device()))); | ||
} else { | ||
const auto& parallel_desc = JUST(out_grads[0]->parallel_desc()); | ||
zeros = JUST(functional::ConsistentConstant(ctx->like_shape, 0, out_grads[0]->dtype(), | ||
parallel_desc, *JUST(GetSbpList(ctx->in_sbp)))); | ||
} | ||
(*in_grads)[0] = | ||
JUST(functional::LogicalSliceAssign(zeros, out_grads[0], ctx->start, ctx->stop, ctx->step)); | ||
return Maybe<void>::Ok(); | ||
} | ||
|
||
private: | ||
AttrMap base_attrs_; | ||
}; | ||
|
||
struct LogicalSliceAssignCaptureState : public AutoGradCaptureState { | ||
bool requires_grad_ref = false; | ||
bool requires_grad_value = false; | ||
std::vector<int64_t> start; | ||
std::vector<int64_t> stop; | ||
std::vector<int64_t> step; | ||
Shape value_shape; // used to calculate ref gradient | ||
Symbol<NdSbp> value_sbp; | ||
}; | ||
|
||
class LogicalSliceAssign : public OpExprGradFunction<LogicalSliceAssignCaptureState> { | ||
public: | ||
Maybe<void> Init(const OpExpr& op) override { | ||
const auto* fw_op_expr = dynamic_cast<const UserOpExpr*>(&op); | ||
CHECK_NOTNULL_OR_RETURN(fw_op_expr) << "LogicalSliceAssign op_expr is null"; | ||
|
||
base_attrs_ = MakeAttrMapFromUserOpConf(fw_op_expr->proto()); | ||
return Maybe<void>::Ok(); | ||
} | ||
|
||
Maybe<void> Capture(LogicalSliceAssignCaptureState* ctx, const TensorTuple& inputs, | ||
const TensorTuple& outputs, const AttrMap& attrs) const override { | ||
CHECK_EQ_OR_RETURN(inputs.size(), 2) << "LogicalSliceAssign input size must be 2"; | ||
CHECK_EQ_OR_RETURN(outputs.size(), 1) << "LogicalSliceAssign output size must be 1"; | ||
ctx->requires_grad_ref = inputs[0]->requires_grad(); | ||
ctx->requires_grad_value = inputs[1]->requires_grad(); | ||
if (!ctx->requires_grad_ref && !ctx->requires_grad_value) { return Maybe<void>::Ok(); } | ||
|
||
ComposedAttrMap composed_attrs(attrs, base_attrs_); | ||
ctx->start = JUST(composed_attrs.GetAttr<std::vector<int64_t>>("start")); | ||
ctx->stop = JUST(composed_attrs.GetAttr<std::vector<int64_t>>("stop")); | ||
ctx->step = JUST(composed_attrs.GetAttr<std::vector<int64_t>>("step")); | ||
|
||
if (ctx->requires_grad_ref) { | ||
ctx->value_shape = *(inputs[1]->shape()); | ||
ctx->value_sbp = JUST(inputs[1]->nd_sbp()); | ||
} | ||
return Maybe<void>::Ok(); | ||
} | ||
|
||
Maybe<void> Apply(const LogicalSliceAssignCaptureState* ctx, const TensorTuple& out_grads, | ||
TensorTuple* in_grads) const override { | ||
in_grads->resize(2); | ||
|
||
if (ctx->requires_grad_ref) { | ||
std::shared_ptr<Tensor> zeros; | ||
if (out_grads[0]->is_local()) { | ||
zeros = JUST(functional::Constant(ctx->value_shape, 0, out_grads[0]->dtype(), | ||
JUST(out_grads[0]->device()))); | ||
} else { | ||
const auto& parallel_desc = JUST(out_grads[0]->parallel_desc()); | ||
zeros = | ||
JUST(functional::ConsistentConstant(ctx->value_shape, 0, out_grads[0]->dtype(), | ||
parallel_desc, *JUST(GetSbpList(ctx->value_sbp)))); | ||
} | ||
(*in_grads)[0] = JUST(functional::LogicalSliceAssign( | ||
JUST(functional::Identity(out_grads[0])), zeros, ctx->start, ctx->stop, ctx->step)); | ||
} | ||
if (ctx->requires_grad_value) { | ||
(*in_grads)[1] = JUST(functional::LogicalSlice(out_grads[0], ctx->start, ctx->stop, ctx->step, | ||
/*enable_view_slice=*/false)); | ||
} | ||
return Maybe<void>::Ok(); | ||
} | ||
|
||
private: | ||
AttrMap base_attrs_; | ||
}; | ||
|
||
REGISTER_OP_EXPR_GRAD_FUNCTION("logical_slice_assign", LogicalSliceAssign); | ||
REGISTER_OP_EXPR_GRAD_FUNCTION("logical_slice", LogicalSlice); | ||
|
||
} // namespace one | ||
} // namespace oneflow |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.