-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathutils.py
56 lines (49 loc) · 2.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import collections
import os
from torch.utils.data import DataLoader, ConcatDataset
from models_resnet import Resnet18_md, Resnet50_md, ResnetModel
from data_loader import KittiLoader
from transforms import image_transforms
def to_device(input, device):
if torch.is_tensor(input):
return input.to(device=device)
elif isinstance(input, str):
return input
elif isinstance(input, collections.Mapping):
return {k: to_device(sample, device=device) for k, sample in input.items()}
elif isinstance(input, collections.Sequence):
return [to_device(sample, device=device) for sample in input]
else:
raise TypeError(f"Input must contain tensor, dict or list, found {type(input)}")
def get_model(model, input_channels=3, pretrained=False):
if model == 'resnet50_md':
out_model = Resnet50_md(input_channels)
elif model == 'resnet18_md':
out_model = Resnet18_md(input_channels)
else:
out_model = ResnetModel(input_channels, encoder=model, pretrained=pretrained)
return out_model
def prepare_dataloader(data_directory, mode, augment_parameters,
do_augmentation, batch_size, size, num_workers):
data_dirs = os.listdir(data_directory)
data_transform = image_transforms(
mode=mode,
augment_parameters=augment_parameters,
do_augmentation=do_augmentation,
size = size)
datasets = [KittiLoader(os.path.join(data_directory,
data_dir), mode, transform=data_transform)
for data_dir in data_dirs]
dataset = ConcatDataset(datasets)
n_img = len(dataset)
print('Use a dataset with', n_img, 'images')
if mode == 'train':
loader = DataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=num_workers,
pin_memory=True)
else:
loader = DataLoader(dataset, batch_size=batch_size,
shuffle=False, num_workers=num_workers,
pin_memory=True)
return n_img, loader