-
Notifications
You must be signed in to change notification settings - Fork 377
/
example.py
executable file
·117 lines (99 loc) · 4.27 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
import json
import os
import sys
import time
from pathlib import Path
from typing import Tuple
import fire
import torch
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import LLaMA, ModelArgs, Tokenizer, Transformer
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
adapter_path: str,
local_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
quantizer: bool=False,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert world_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
adapter_checkpoint = torch.load(adapter_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(max_seq_len=max_seq_len, max_batch_size=max_batch_size, quantizer=quantizer, **params)
model_args.adapter_layer = int(adapter_checkpoint["adapter_query.weight"].shape[0] / model_args.adapter_len)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
print(model)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
model.load_state_dict(adapter_checkpoint, strict=False)
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def main(
ckpt_dir: str,
tokenizer_path: str,
adapter_path: str,
temperature: float = 0.1,
top_p: float = 0.75,
max_seq_len: int = 512,
max_batch_size: int = 32,
quantizer: bool = False,
):
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
generator = load(ckpt_dir, tokenizer_path, adapter_path, local_rank, world_size, max_seq_len, max_batch_size, quantizer)
instructs = [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", # noqa: E501
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
]
prompts = [PROMPT_DICT["prompt_no_input"].format_map({"instruction": x, "input": ""}) for x in instructs]
results = generator.generate(prompts, max_gen_len=512, temperature=temperature, top_p=top_p)
for result in results:
print(result)
print("\n==================================\n")
if __name__ == "__main__":
fire.Fire(main)