-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path030-import_physical_data.qmd
executable file
·998 lines (892 loc) · 59.5 KB
/
030-import_physical_data.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
# Soil physical and hydrological properties
```{r, results = "asis", echo = FALSE}
status("drafting")
```
Last update: `r Sys.Date()`
```{r, include=FALSE, message=FALSE, results='hide'}
ls <- c("rgdal", "raster", "tidyverse", "openair", "rgeos", "sf",
"cowplot", "rworldmap", "ggplot2", "terra", "captioner",
"olctools", "vroom", "xlsx", "googledrive", "fastSave")
new.packages <- ls[!(ls %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages, repos="https://cloud.r-project.org")
lapply(ls, require, character.only = TRUE)
```
## Overview
This section describes import steps used to produce a global compilation of soil
laboratory data with physicals and hydraulic soil properties that can be then
used for predictive soil mapping / modeling at global and regional scales.
Read more about computing with soil hydraulic / physical properties in R:
- Gupta, S., Hengl, T., Lehmann, P., Bonetti, S., and Or, D. [**SoilKsatDB: global soil saturated hydraulic conductivity measurements for geoscience applications**](https://doi.org/10.5194/essd-2020-149). Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-149, in review, 2021.
- de Sousa, D. F., Rodrigues, S., de Lima, H. V., & Chagas, L. T. (2020). [R software packages as a tool for evaluating soil physical and hydraulic properties](https://doi.org/10.1016/j.compag.2019.105077). Computers and Electronics in Agriculture, 168, 105077.
## ![alt text](./tex/R_logo.svg.png "Packages in use") Specifications
#### Data standards
```{r librs, include=FALSE}
library(plyr)
library(rgdal)
library(dplyr)
library(raster)
library(tidyverse)
library(rgeos)
#devtools::install_github("tidyverse/readxl")
library(xlsx)
#devtools::install_github('barkasn/fastSave')
library(fastSave)
library(googledrive)
library(cowplot) # for theme_minimal_grid()
library(sf) # for manipulation of simple features objects
library(rworldmap) # for getMap()
library(ggplot2)
library(captioner)
library(uuid)
library(olctools)
fig_nums <- captioner(prefix = "Fig.")
load.pigz("soilhydro.RData")
source('./R/data_functions.R')
```
- Metadata information: ["Soil Survey Investigation Report No. 42."](https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1253872.pdf) and ["Soil Survey Investigation Report No. 45."](https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052226.pdf)
- Model DB: [National Cooperative Soil Survey (NCSS) Soil Characterization Database](https://ncsslabdatamart.sc.egov.usda.gov/)
#### _Target variables:_
```{r}
site.names = c("site_key", "usiteid", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "location_accuracy_min", "location_accuracy_max")
hor.names = c("labsampnum","site_key","layer_sequence","hzn_top","hzn_bot","hzn_desgn","db_13b", "db_od", "COLEws", "w6clod", "w10cld", "w3cld", "w15l2", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "ph_kcl", "ph_h2o", "cec_sum", "cec_nh4", "wpg2", "ksat_lab", "ksat_field")
## target structure:
col.names = c("site_key", "usiteid", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "location_accuracy_min", "location_accuracy_max", "labsampnum", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "db_13b", "db_od", "COLEws", "w6clod", "w10cld", "w3cld", "w15l2", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "ph_kcl", "ph_h2o", "cec_sum", "cec_nh4", "wpg2", "ksat_lab", "ksat_field", "source_db", "confidence_degree", "project_url", "citation_url")
```
- `db_13b`: Bulk density (33kPa) in g/cm3 for <2mm soil fraction,
- `db`: Bulk density (unknown method) in g/cm3 for <2mm soil fraction,
- `COLEws`: Coefficient of Linear Extensibility (COLE) whole soil in ratio for <2mm soil fraction,
- `w6clod`: Water Content 6 kPa <2mm in % wt for <2mm soil fraction,
- `w10cld`: Water Content 10 kPa <2mm in % wt for <2mm soil fraction,
- `w3cld`: Water Content 33 kPa <2mm in % vol for <2mm soil fraction (Field Capacity),
- `w15l2`: Water Content 1500 kPa <2mm in % vol for <2mm soil fraction (Permanent Wilting Point),
- `w15bfm`: Water Content 1500 kPa moist <2mm in % wt for <2mm soil fraction,
- `adod`: Air-Dry/Oven-Dry in ratio for <2mm soil fraction,
- `wrd_ws13`: Water Retention Difference whole soil, 1500-kPa suction and an upper limit of usually 33-kPa in cm3 / cm-3 for <2mm soil fraction,
- `cec7_cly`: CEC-7/Clay ratio in ratio for <2mm soil fraction,
- `w15cly`: CEC/Clay ratio at 1500 kPa in ratio for <2mm soil fraction,
- `tex_psda`: Texture Determined, PSDA in factor for <2mm soil fraction,
- `clay_tot_psa`: Total Clay, <0.002 mm (<2 µm) in % wt for <2mm soil fraction,
- `silt_tot_psa`: Total Silt, 0.002-0.05 mm in % wt for <2mm soil fraction,
- `sand_tot_psa`: Total Sand, 0.05-2.0 mm in % wt for <2mm soil fraction,
- `wpg2`: Coarse fragments >2-mm weight fraction in % wt for <2mm soil fraction,
- `hzn_top`: The top (upper) depth of the layer in centimeters. in cm for <2mm soil fraction,
- `hzn_bot`: The bottom (lower) depth of the layer in centimeters. in cm for <2mm soil fraction,
- `oc_v`: Organic carbon (unknown method) in % wt for <2mm soil fraction,
- `ph_kcl`: pH, 1N KCl in ratio for <2mm soil fraction,
- `ph_h2o_v`: pH in water (unknown method) for <2mm soil fraction,
- `cec_sum`: Sum of Cations (CEC-8.2) in cmol(+)/kg for <2mm soil fraction,
- `cec_nh4`: NH4OAc, pH 7 (CEC-7) in cmol(+)/kg for <2mm soil fraction,
- `ksat_field`: Field-estimated Saturated Hydraulic Conductivity in cm/day for <2mm soil fraction,
- `ksat_lab`: Laboratory-estimated Saturated Hydraulic Conductivity in cm/day for <2mm soil fraction,
Same variable names have been adjusted (e.g. `ph_h2o` to `ph_h2o_na`) to include `unknown method` so that variables from different laboratory methods can be seamlessly merged.
Conversion between VWC and MWC is based on the formula [@landon1991handbook; @benham1998field; @vanReeuwijk1993procedures]:
- VWC (%v/v) = MWC (% by weight ) * bulk density (kg/m3)
## ![alt text](./tex/R_logo.svg.png "Data import") Data import
#### NCSS Characterization Database
- National Cooperative Soil Survey, (2020). [National Cooperative Soil Survey Characterization Database](http://ncsslabdatamart.sc.egov.usda.gov/). http://ncsslabdatamart.sc.egov.usda.gov/
```{r}
if(!exists("hydrosprops.NCSS")){
ncss.site <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_Site_Location.csv", stringsAsFactors = FALSE)
#str(ncss.site)
## Location accuracy unknown but we assume 100m
ncss.site$location_accuracy_max = NA
ncss.site$location_accuracy_min = 100
ncss.layer <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_Layer.csv", stringsAsFactors = FALSE)
ncss.bdm <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_Bulk_Density_and_Moisture.csv", stringsAsFactors = FALSE)
#summary(as.factor(ncss.bdm$prep_code))
ncss.bdm.0 <- ncss.bdm[ncss.bdm$prep_code=="S",]
#summary(ncss.bdm.0$db_od)
## 0 values --- error!
ncss.carb <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_Carbon_and_Extractions.csv", stringsAsFactors = FALSE)
ncss.organic <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_Organic.csv", stringsAsFactors = FALSE)
ncss.pH <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_pH_and_Carbonates.csv", stringsAsFactors = FALSE)
#str(ncss.pH)
#summary(!is.na(ncss.pH$ph_h2o))
ncss.PSDA <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_PSDA_and_Rock_Fragments.csv", stringsAsFactors = FALSE)
ncss.CEC <- read.csv("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_CEC_and_Bases.csv")
ncss.horizons <- plyr::join_all(list(ncss.bdm.0, ncss.layer, ncss.carb, ncss.organic, ncss.pH, ncss.PSDA, ncss.CEC), type = "left", by="labsampnum")
#head(ncss.horizons)
nrow(ncss.horizons)
ncss.horizons$ksat_lab = NA; ncss.horizons$ksat_field = NA
hydrosprops.NCSS = plyr::join(ncss.site[,site.names], ncss.horizons[,hor.names], by="site_key")
## soil organic carbon:
#summary(!is.na(hydrosprops.NCSS$oc))
#summary(!is.na(hydrosprops.NCSS$ph_h2o))
#summary(!is.na(hydrosprops.NCSS$ph_kcl))
hydrosprops.NCSS$source_db = "USDA_NCSS"
#str(hydrosprops.NCSS)
#hist(hydrosprops.NCSS$w3cld[hydrosprops.NCSS$w3cld<150], breaks=45, col="gray")
## ERROR: MANY VALUES >100%
## fills in missing BD values using formula from Köchy, Hiederer, and Freibauer (2015)
db.f = ifelse(is.na(hydrosprops.NCSS$db_13b), -0.31*log(hydrosprops.NCSS$oc)+1.38, hydrosprops.NCSS$db_13b)
db.f[db.f<0.02 | db.f>2.87] = NA
## Convert to volumetric % to match most of world data sets:
hydrosprops.NCSS$w3cld = hydrosprops.NCSS$w3cld * db.f
hydrosprops.NCSS$w15l2 = hydrosprops.NCSS$w15l2 * db.f
hydrosprops.NCSS$w10cld = hydrosprops.NCSS$w10cld * db.f
#summary(as.factor(hydrosprops.NCSS$tex_psda))
## texture classes need to be cleaned up!
## check WRC values for sandy soils
#hydrosprops.NCSS[which(!is.na(hydrosprops.NCSS$w3cld) & hydrosprops.NCSS$sand_tot_psa>95)[1:10],]
## check WRC values for ORGANIC soils
#hydrosprops.NCSS[which(!is.na(hydrosprops.NCSS$w3cld) & hydrosprops.NCSS$oc>12)[1:10],]
## w3cld > 100?
hydrosprops.NCSS$confidence_degree = 1
hydrosprops.NCSS$project_url = "http://ncsslabdatamart.sc.egov.usda.gov/"
hydrosprops.NCSS$citation_url = "https://doi.org/10.2136/sssaj2016.11.0386n"
hydrosprops.NCSS = complete.vars(hydrosprops.NCSS)
saveRDS.gz(hydrosprops.NCSS, "/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/hydrosprops.NCSS.rds")
}
dim(hydrosprops.NCSS)
```
#### Africa soil profiles database
- Leenaars, J. G., Van OOstrum, A. J. M., & Ruiperez Gonzalez, M. (2014). [Africa soil profiles database version 1.2. A compilation of georeferenced and standardized legacy soil profile data for Sub-Saharan Africa (with dataset)](https://www.isric.org/projects/africa-soil-profiles-database-afsp). Wageningen: ISRIC Report 2014/01; 2014.
```{r}
if(!exists("hydrosprops.AfSPDB")){
require(foreign)
afspdb.profiles <- read.dbf("/mnt/diskstation/data/Soil_points/AF/AfSIS_SPDB/AfSP012Qry_Profiles.dbf", as.is=TRUE)
## approximate location error
afspdb.profiles$location_accuracy_min = afspdb.profiles$XYAccur * 1e5
afspdb.profiles$location_accuracy_min = ifelse(afspdb.profiles$location_accuracy_min < 20, NA, afspdb.profiles$location_accuracy_min)
afspdb.profiles$location_accuracy_max = NA
afspdb.layers <- read.dbf("/mnt/diskstation/data/Soil_points/AF/AfSIS_SPDB/AfSP012Qry_Layers.dbf", as.is=TRUE)
## select columns of interest:
afspdb.s.lst <- c("ProfileID", "usiteid", "T_Year", "X_LonDD", "Y_LatDD", "location_accuracy_min", "location_accuracy_max")
## Convert to weight content
#summary(afspdb.layers$BlkDens)
## select layers
afspdb.h.lst <- c("LayerID", "ProfileID", "LayerNr", "UpDpth", "LowDpth", "HorDes", "db_13b", "BlkDens", "COLEws", "VMCpF18", "VMCpF20", "VMCpF25", "VMCpF42", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "LabTxtr", "Clay", "Silt", "Sand", "OrgC", "PHKCl", "PHH2O", "CecSoil", "cec_nh4", "CfPc", "ksat_lab", "ksat_field")
## add missing columns
for(j in c("usiteid")){ afspdb.profiles[,j] = NA }
for(j in c("db_13b", "COLEws", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "cec_nh4", "ksat_lab", "ksat_field")){ afspdb.layers[,j] = NA }
hydrosprops.AfSPDB = plyr::join(afspdb.profiles[,afspdb.s.lst], afspdb.layers[,afspdb.h.lst])
for(j in 1:ncol(hydrosprops.AfSPDB)){
if(is.numeric(hydrosprops.AfSPDB[,j])) { hydrosprops.AfSPDB[,j] <- ifelse(hydrosprops.AfSPDB[,j] < -200, NA, hydrosprops.AfSPDB[,j]) }
}
hydrosprops.AfSPDB$source_db = "AfSPDB"
hydrosprops.AfSPDB$confidence_degree = 5
hydrosprops.AfSPDB$OrgC = hydrosprops.AfSPDB$OrgC/10
#summary(hydrosprops.AfSPDB$OrgC)
hydrosprops.AfSPDB$project_url = "https://www.isric.org/projects/africa-soil-profiles-database-afsp"
hydrosprops.AfSPDB$citation_url = "https://www.isric.org/sites/default/files/isric_report_2014_01.pdf"
hydrosprops.AfSPDB = complete.vars(hydrosprops.AfSPDB, sel = c("VMCpF25", "VMCpF42"), coords = c("X_LonDD", "Y_LatDD"))
saveRDS.gz(hydrosprops.AfSPDB, "/mnt/diskstation/data/Soil_points/AF/AfSIS_SPDB/hydrosprops.AfSPDB.rds")
}
dim(hydrosprops.AfSPDB)
```
#### ISRIC ISIS
- Batjes, N. H. (1995). [A homogenized soil data file for global environmental research: A subset of FAO, ISRIC and NRCS profiles (Version 1.0) (No. 95/10b)](https://www.isric.org/sites/default/files/isric_report_1995_10b.pdf). ISRIC.
- Van de Ven, T., & Tempel, P. (1994). ISIS 4.0: ISRIC Soil Information System: User Manual. ISRIC.
```{r}
if(!exists("hydrosprops.ISIS")){
isis.xy <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_ISIS/Sites.csv", stringsAsFactors = FALSE)
#str(isis.xy)
isis.des <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_ISIS/SitedescriptionResults.csv", stringsAsFactors = FALSE)
isis.site <- data.frame(site_key=isis.xy$Id, usiteid=paste(isis.xy$CountryISO, isis.xy$SiteNumber, sep=""))
id0.lst = c(236,235,224)
nm0.lst = c("longitude_decimal_degrees", "latitude_decimal_degrees", "site_obsdate")
isis.site.l = plyr::join_all(lapply(1:length(id0.lst), function(i){plyr::rename(subset(isis.des, ValueId==id0.lst[i])[,c("SampleId","Value")], replace=c("SampleId"="site_key", "Value"=paste(nm0.lst[i])))}), type = "full")
isis.site.df = join(isis.site, isis.site.l)
for(j in nm0.lst){ isis.site.df[,j] <- as.numeric(isis.site.df[,j]) }
isis.site.df[isis.site.df$usiteid=="CI2","latitude_decimal_degrees"] = 5.883333
#str(isis.site.df)
isis.site.df$location_accuracy_min = 100
isis.site.df$location_accuracy_max = NA
isis.smp <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_ISIS/AnalyticalSamples.csv", stringsAsFactors = FALSE)
isis.ana <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_ISIS/AnalyticalResults.csv", stringsAsFactors = FALSE)
#str(isis.ana)
isis.class <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_ISIS/ClassificationResults.csv", stringsAsFactors = FALSE)
isis.hor <- data.frame(labsampnum=isis.smp$Id, hzn_top=isis.smp$Top, hzn_bot=isis.smp$Bottom, site_key=isis.smp$SiteId)
isis.hor$hzn_bot <- as.numeric(gsub(">", "", isis.hor$hzn_bot))
#str(isis.hor)
id.lst = c(1,2,22,4,28,31,32,14,34,38,39,42)
nm.lst = c("ph_h2o","ph_kcl","wpg2","oc","sand_tot_psa","silt_tot_psa","clay_tot_psa","cec_sum","db_od","w10cld","w3cld", "w15l2")
#str(as.numeric(isis.ana$Value[isis.ana$ValueId==38]))
isis.hor.l = plyr::join_all(lapply(1:length(id.lst), function(i){plyr::rename(subset(isis.ana, ValueId==id.lst[i])[,c("SampleId","Value")], replace=c("SampleId"="labsampnum", "Value"=paste(nm.lst[i])))}), type = "full")
#summary(as.numeric(isis.hor.l$w3cld))
isis.hor.df = join(isis.hor, isis.hor.l)
isis.hor.df = isis.hor.df[!duplicated(isis.hor.df$labsampnum),]
#summary(as.numeric(isis.hor.df$w3cld))
for(j in nm.lst){ isis.hor.df[,j] <- as.numeric(isis.hor.df[,j]) }
#str(isis.hor.df)
## add missing columns
for(j in c("layer_sequence", "hzn_desgn", "tex_psda", "COLEws", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "cec_nh4", "db_13b", "w6clod", "ksat_lab", "ksat_field")){ isis.hor.df[,j] = NA }
which(!hor.names %in% names(isis.hor.df))
hydrosprops.ISIS <- join(isis.site.df[,site.names], isis.hor.df[,hor.names], type="left")
hydrosprops.ISIS$source_db = "ISRIC_ISIS"
hydrosprops.ISIS$confidence_degree = 1
hydrosprops.ISIS$project_url = "https://isis.isric.org"
hydrosprops.ISIS$citation_url = "https://www.isric.org/sites/default/files/isric_report_1995_10b.pdf"
hydrosprops.ISIS = complete.vars(hydrosprops.ISIS)
saveRDS.gz(hydrosprops.ISIS, "/mnt/diskstation/data/Soil_points/INT/ISRIC_ISIS/hydrosprops.ISIS.rds")
}
dim(hydrosprops.ISIS)
```
#### ISRIC WISE
- Batjes, N.H. (2019). [Harmonized soil profile data for applications at global and continental scales: updates to the WISE database](http://dx.doi.org/10.1111/j.1475-2743.2009.00202.x). Soil Use and Management 5:124–127.
```{r}
if(!exists("hydrosprops.WISE")){
wise.SITE <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_WISE/WISE3_SITE.csv", stringsAsFactors=FALSE)
#summary(as.factor(wise.SITE$LONLAT_ACC))
wise.SITE$location_accuracy_min = ifelse(wise.SITE$LONLAT_ACC=="D", 1e5/2, ifelse(wise.SITE$LONLAT_ACC=="S", 30, ifelse(wise.SITE$LONLAT_ACC=="M", 1800/2, NA)))
wise.SITE$location_accuracy_max = NA
wise.HORIZON <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_WISE/WISE3_HORIZON.csv")
wise.s.lst <- c("WISE3_id", "SOURCE_ID", "DATEYR", "LONDD", "LATDD", "location_accuracy_min", "location_accuracy_max")
## Volumetric values
#summary(wise.HORIZON$BULKDENS)
#summary(wise.HORIZON$VMC1)
wise.HORIZON$WISE3_id = wise.HORIZON$WISE3_ID
wise.h.lst <- c("labsampnum", "WISE3_id", "HONU", "TOPDEP", "BOTDEP", "DESIG", "db_13b", "BULKDENS", "COLEws", "w6clod", "VMC1", "VMC2", "VMC3", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "CLAY", "SILT", "SAND", "ORGC", "PHKCL", "PHH2O", "CECSOIL", "cec_nh4", "GRAVEL", "ksat_lab", "ksat_field")
## add missing columns
for(j in c("labsampnum", "db_13b", "COLEws", "w15bfm", "w6clod", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "cec_nh4", "ksat_lab", "ksat_field")){ wise.HORIZON[,j] = NA }
hydrosprops.WISE = plyr::join(wise.SITE[,wise.s.lst], wise.HORIZON[,wise.h.lst])
for(j in 1:ncol(hydrosprops.WISE)){
if(is.numeric(hydrosprops.WISE[,j])) { hydrosprops.WISE[,j] <- ifelse(hydrosprops.WISE[,j] < -200, NA, hydrosprops.WISE[,j]) }
}
hydrosprops.WISE$ORGC = hydrosprops.WISE$ORGC/10
hydrosprops.WISE$source_db = "ISRIC_WISE"
hydrosprops.WISE$project_url = "https://isric.org"
hydrosprops.WISE$citation_url = "http://dx.doi.org/10.1111/j.1475-2743.2009.00202.x"
hydrosprops.WISE <- complete.vars(hydrosprops.WISE, sel=c("VMC2", "VMC3"), coords = c("LONDD", "LATDD"))
hydrosprops.WISE$confidence_degree = 5
#summary(hydrosprops.WISE$VMC3)
saveRDS.gz(hydrosprops.WISE, "/mnt/diskstation/data/Soil_points/INT/ISRIC_WISE/hydrosprops.WISE.rds")
}
dim(hydrosprops.WISE)
```
#### Fine Root Ecology Database (FRED)
- Iversen CM, Powell AS, McCormack ML, Blackwood CB, Freschet GT, Kattge J, Roumet C, Stover DB, Soudzilovskaia NA, Valverde-Barrantes OJ, van Bodegom PM, Violle C. 2018. Fine-Root Ecology Database (FRED): A Global Collection of Root Trait Data with Coincident Site, Vegetation, Edaphic, and Climatic Data, Version 2. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. Access on-line at: https://doi.org/10.25581/ornlsfa.012/1417481.
```{r}
if(!exists("hydrosprops.FRED")){
fred = read.csv("/mnt/diskstation/data/Soil_points/INT/FRED/FRED2_20180518.csv", skip = 5, header=FALSE)
names(fred) = names(read.csv("/mnt/diskstation/data/Soil_points/INT/FRED/FRED2_20180518.csv", nrows=1, header=TRUE))
fred.h.lst = c("Notes_Row.ID", "Data.source_DOI", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "location_accuracy_min", "location_accuracy_max", "labsampnum", "layer_sequence", "hzn_top", "hzn_bot", "Soil.horizon", "db_13b", "Soil.bulk.density", "COLEws", "w6clod", "w10cld", "Soil.water_Volumetric.content", "w15l2", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "Soil.texture", "Soil.texture_Fraction.clay", "Soil.texture_Fraction.silt", "Soil.texture_Fraction.sand", "Soil.organic.C.content", "ph_kcl", "Soil.pH_Water", "Soil.cation.exchange.capacity..CEC.", "cec_nh4", "wpg2", "ksat_lab", "ksat_field")
#summary(fred$Soil.water_Volumetric.content)
#summary(fred$Soil.water_Storage.capacity)
fred$site_obsdate = rowMeans(fred[,c("Sample.collection_Year.ending.collection", "Sample.collection_Year.beginning.collection")], na.rm=TRUE)
#summary(fred$site_obsdate)
fred$longitude_decimal_degrees = ifelse(is.na(fred$Longitude), fred$Longitude_Estimated, fred$Longitude)
fred$latitude_decimal_degrees = ifelse(is.na(fred$Latitude), fred$Latitude_Estimated, fred$Latitude)
#summary(as.factor(fred$Soil.horizon))
fred$hzn_bot = ifelse(is.na(fred$Soil.depth_Lower.sampling.depth), fred$Soil.depth - 5, fred$Soil.depth_Lower.sampling.depth)
fred$hzn_top = ifelse(is.na(fred$Soil.depth_Upper.sampling.depth), fred$Soil.depth + 5, fred$Soil.depth_Upper.sampling.depth)
x.na = fred.h.lst[which(!fred.h.lst %in% names(fred))]
if(length(x.na)>0){ for(i in x.na){ fred[,i] = NA } }
hydrosprops.FRED = fred[,fred.h.lst]
#plot(hydrosprops.FRED[,4:5])
hydrosprops.FRED$source_db = "FRED"
hydrosprops.FRED$confidence_degree = 5
hydrosprops.FRED$project_url = "https://roots.ornl.gov/"
hydrosprops.FRED$citation_url = "https://doi.org/10.25581/ornlsfa.012/1417481"
hydrosprops.FRED = complete.vars(hydrosprops.FRED, sel = c("Soil.water_Volumetric.content", "Soil.texture_Fraction.clay"))
saveRDS.gz(hydrosprops.FRED, "/mnt/diskstation/data/Soil_points/INT/FRED/hydrosprops.FRED.rds")
}
dim(hydrosprops.FRED)
```
#### EGRPR
- [Russian Federation: The Unified State Register of Soil Resources (EGRPR)](http://egrpr.esoil.ru/).
```{r}
if(!exists("hydrosprops.EGRPR")){
russ.HOR = read.csv("/mnt/diskstation/data/Soil_points/Russia/EGRPR/Russia_EGRPR_soil_pedons.csv")
russ.HOR$SOURCEID = paste(russ.HOR$CardID, russ.HOR$SOIL_ID, sep="_")
russ.HOR$SNDPPT <- russ.HOR$TEXTSAF + russ.HOR$TEXSCM
russ.HOR$SLTPPT <- russ.HOR$TEXTSIC + russ.HOR$TEXTSIM + 0.8 * russ.HOR$TEXTSIF
russ.HOR$CLYPPT <- russ.HOR$TEXTCL + 0.2 * russ.HOR$TEXTSIF
## Correct texture fractions:
sumTex <- rowSums(russ.HOR[,c("SLTPPT","CLYPPT","SNDPPT")])
russ.HOR$SNDPPT <- russ.HOR$SNDPPT / ((sumTex - russ.HOR$CLYPPT) /(100 - russ.HOR$CLYPPT))
russ.HOR$SLTPPT <- russ.HOR$SLTPPT / ((sumTex - russ.HOR$CLYPPT) /(100 - russ.HOR$CLYPPT))
russ.HOR$oc <- russ.HOR$ORGMAT/1.724
## add missing columns
for(j in c("site_obsdate", "location_accuracy_min", "location_accuracy_max", "labsampnum", "db_13b", "COLEws", "w15bfm", "w6clod", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "cec_nh4", "wpg2", "ksat_lab", "ksat_field")){ russ.HOR[,j] = NA }
russ.sel.h = c("SOURCEID", "SOIL_ID", "site_obsdate", "LONG", "LAT", "location_accuracy_min", "location_accuracy_max", "labsampnum", "HORNMB", "HORTOP", "HORBOT", "HISMMN", "db_13b", "DVOL", "COLEws", "w6clod", "WR10", "WR33", "WR1500", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "CLYPPT", "SLTPPT", "SNDPPT", "oc", "PHSLT", "PHH2O", "CECST", "cec_nh4", "wpg2","ksat_lab", "ksat_field")
hydrosprops.EGRPR = russ.HOR[,russ.sel.h]
hydrosprops.EGRPR$source_db = "Russia_EGRPR"
hydrosprops.EGRPR$confidence_degree = 2
hydrosprops.EGRPR$project_url = "http://egrpr.esoil.ru/"
hydrosprops.EGRPR$citation_url = "https://doi.org/10.19047/0136-1694-2016-86-115-123"
hydrosprops.EGRPR <- complete.vars(hydrosprops.EGRPR, sel=c("WR33", "WR1500"), coords = c("LONG", "LAT"))
#summary(hydrosprops.EGRPR$WR1500)
saveRDS.gz(hydrosprops.EGRPR, "/mnt/diskstation/data/Soil_points/Russia/EGRPR/hydrosprops.EGRPR.rds")
}
dim(hydrosprops.EGRPR)
```
#### SPADE-2
- Hannam J.A., Hollis, J.M., Jones, R.J.A., Bellamy, P.H., Hayes, S.E., Holden, A., Van Liedekerke, M.H. and Montanarella, L. (2009). [SPADE-2: The soil profile analytical database for Europe, Version 2.0 Beta Version March 2009](https://esdac.jrc.ec.europa.eu/content/soil-profile-analytical-database-2). Unpublished Report, 27pp.
- Kristensen, J. A., Balstrøm, T., Jones, R. J. A., Jones, A., Montanarella, L., Panagos, P., and Breuning-Madsen, H.: Development of a harmonised soil profile analytical database for Europe: a resource for supporting regional soil management, SOIL, 5, 289–301, https://doi.org/10.5194/soil-5-289-2019, 2019.
```{r}
if(!exists("hydrosprops.SPADE2")){
spade.PLOT <- read.csv("/mnt/diskstation/data/Soil_points/EU/SPADE/DAT_PLOT.csv")
#str(spade.PLOT)
spade.HOR <- read.csv("/mnt/diskstation/data/Soil_points/EU/SPADE/DAT_HOR.csv")
spade.PLOT = spade.PLOT[!spade.PLOT$LON_COOR_V>180 & spade.PLOT$LAT_COOR_V>20,]
#plot(spade.PLOT[,c("LON_COOR_V","LAT_COOR_V")])
spade.PLOT$location_accuracy_min = 100
spade.PLOT$location_accuracy_max = NA
#site.names = c("site_key", "usiteid", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees")
spade.PLOT$ProfileID = paste(spade.PLOT$CNTY_C, spade.PLOT$PLOT_ID, sep="_")
spade.PLOT$T_Year = 2009
spade.s.lst <- c("PLOT_ID", "ProfileID", "T_Year", "LON_COOR_V", "LAT_COOR_V", "location_accuracy_min", "location_accuracy_max")
## standardize:
spade.HOR$SLTPPT <- spade.HOR$SILT1_V + spade.HOR$SILT2_V
spade.HOR$SNDPPT <- spade.HOR$SAND1_V + spade.HOR$SAND2_V + spade.HOR$SAND3_V
spade.HOR$PHIKCL <- NA
spade.HOR$PHIKCL[which(spade.HOR$PH_M %in% "A14")] <- spade.HOR$PH_V[which(spade.HOR$PH_M %in% "A14")]
spade.HOR$PHIHO5 <- NA
spade.HOR$PHIHO5[which(spade.HOR$PH_M %in% "A12")] <- spade.HOR$PH_V[which(spade.HOR$PH_M %in% "A12")]
#summary(spade.HOR$BD_V)
for(j in c("site_obsdate", "layer_sequence", "db_13b", "COLEws", "w15bfm", "w6clod", "w10cld", "adod", "wrd_ws13", "w15bfm", "cec7_cly", "w15cly", "tex_psda", "cec_nh4", "ksat_lab", "ksat_field")){ spade.HOR[,j] = NA }
spade.h.lst = c("HOR_ID","PLOT_ID","layer_sequence","HOR_BEG_V","HOR_END_V","HOR_NAME","db_13b", "BD_V", "COLEws", "w6clod", "w10cld", "WCFC_V", "WC4_V", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "CLAY_V", "SLTPPT", "SNDPPT", "OC_V", "PHIKCL", "PHIHO5", "CEC_V", "cec_nh4", "GRAV_C", "ksat_lab", "ksat_field")
hydrosprops.SPADE2 = plyr::join(spade.PLOT[,spade.s.lst], spade.HOR[,spade.h.lst])
hydrosprops.SPADE2$source_db = "SPADE2"
hydrosprops.SPADE2$confidence_degree = 15
hydrosprops.SPADE2$project_url = "https://esdac.jrc.ec.europa.eu/content/soil-profile-analytical-database-2"
hydrosprops.SPADE2$citation_url = "https://doi.org/10.1016/j.landusepol.2011.07.003"
hydrosprops.SPADE2 <- complete.vars(hydrosprops.SPADE2, sel=c("WCFC_V", "WC4_V"), coords = c("LON_COOR_V","LAT_COOR_V"))
#summary(hydrosprops.SPADE2$WC4_V)
#summary(is.na(hydrosprops.SPADE2$WC4_V))
#hist(hydrosprops.SPADE2$WC4_V, breaks=45, col="gray")
saveRDS.gz(hydrosprops.SPADE2, "/mnt/diskstation/data/Soil_points/EU/SPADE/hydrosprops.SPADE2.rds")
}
dim(hydrosprops.SPADE2)
```
#### Canada National Pedon Database
- [Agriculture and Agri-Food Canada National Pedon Database](https://open.canada.ca/data/en/dataset/6457fad6-b6f5-47a3-9bd1-ad14aea4b9e0).
```{r}
if(!exists("hydrosprops.NPDB")){
NPDB.nm = c("NPDB_V2_sum_source_info.csv","NPDB_V2_sum_chemical.csv", "NPDB_V2_sum_horizons_raw.csv", "NPDB_V2_sum_physical.csv")
NPDB.HOR = plyr::join_all(lapply(paste0("/mnt/diskstation/data/Soil_points/Canada/NPDB/", NPDB.nm), read.csv), type = "full")
#str(NPDB.HOR)
#summary(NPDB.HOR$BULK_DEN)
## 0 values -> ERROR!
## add missing columns
NPDB.HOR$HISMMN = paste0(NPDB.HOR$HZN_MAS, NPDB.HOR$HZN_SUF, NPDB.HOR$HZN_MOD)
for(j in c("usiteid", "location_accuracy_max", "layer_sequence", "labsampnum", "db_13b", "COLEws", "w15bfm", "w6clod", "w10cld", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "cec_nh4", "ph_kcl", "ksat_lab", "ksat_field")){ NPDB.HOR[,j] = NA }
npdb.sel.h = c("PEDON_ID", "usiteid", "CAL_YEAR", "DD_LONG", "DD_LAT", "CONF_METRS", "location_accuracy_max", "labsampnum", "layer_sequence", "U_DEPTH", "L_DEPTH", "HISMMN", "db_13b", "BULK_DEN", "COLEws", "w6clod", "w10cld", "RETN_33KP", "RETN_1500K", "RETN_HYGR", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "T_CLAY", "T_SILT", "T_SAND", "CARB_ORG", "ph_kcl", "PH_H2O", "CEC", "cec_nh4", "VC_SAND", "ksat_lab", "ksat_field")
hydrosprops.NPDB = NPDB.HOR[,npdb.sel.h]
hydrosprops.NPDB$source_db = "Canada_NPDB"
hydrosprops.NPDB$confidence_degree = 1
hydrosprops.NPDB$project_url = "https://open.canada.ca/data/en/"
hydrosprops.NPDB$citation_url = "https://open.canada.ca/data/en/dataset/6457fad6-b6f5-47a3-9bd1-ad14aea4b9e0"
hydrosprops.NPDB <- complete.vars(hydrosprops.NPDB, sel=c("RETN_33KP", "RETN_1500K"), coords = c("DD_LONG", "DD_LAT"))
saveRDS.gz(hydrosprops.NPDB, "/mnt/diskstation/data/Soil_points/Canada/NPDB/hydrosprops.NPDB.rds")
}
dim(hydrosprops.NPDB)
```
#### ETH imported data from literature
- Digitized soil hydraulic measurements from the literature by the [ETH Soil and Terrestrial Environmental Physics](https://step.ethz.ch/).
```{r}
if(!exists("hydrosprops.ETH")){
xlsxFile = list.files(pattern="Global_soil_water_tables.xlsx", full.names = TRUE, recursive = TRUE)
wb = openxlsx::getSheetNames(xlsxFile)
eth.tbl = plyr::rbind.fill(
openxlsx::read.xlsx(xlsxFile, sheet = "ETH_imported_literature"),
openxlsx::read.xlsx(xlsxFile, sheet = "ETH_imported_literature_more"),
openxlsx::read.xlsx(xlsxFile, sheet = "ETH_extra_data set"),
openxlsx::read.xlsx(xlsxFile, sheet = "Tibetan_plateau"),
openxlsx::read.xlsx(xlsxFile, sheet = "Belgium_Vereecken_data"),
openxlsx::read.xlsx(xlsxFile, sheet = "Australia_dataset"),
openxlsx::read.xlsx(xlsxFile, sheet = "Florida_Soils_Ksat"),
openxlsx::read.xlsx(xlsxFile, sheet = "China_dataset"),
openxlsx::read.xlsx(xlsxFile, sheet = "Sand_dunes_Siberia_database"),
openxlsx::read.xlsx(xlsxFile, sheet = "New_data_4_03")
)
#dim(eth.tbl)
#summary(as.factor(eth.tbl$reference_source))
## Data quality tables
lab.ql = openxlsx::read.xlsx(xlsxFile, sheet = "Quality_per_site_key")
lab.cd = plyr::join(eth.tbl["site_key"], lab.ql)$confidence_degree
eth.tbl$confidence_degree = ifelse(is.na(eth.tbl$confidence_degree), lab.cd, eth.tbl$confidence_degree)
#summary(as.factor(eth.tbl$confidence_degree))
## missing columns
for(j in c("usiteid", "labsampnum", "layer_sequence", "db_13b", "COLEws", "adod", "wrd_ws13", "w15bfm", "w15cly", "cec7_cly", "w6clod", "w10cld", "ph_kcl", "cec_sum", "cec_nh4", "wpg2", "project_url", "citation_url")){ eth.tbl[,j] = NA }
hydrosprops.ETH = eth.tbl[,col.names]
col.names[which(!col.names %in% names(eth.tbl))]
hydrosprops.ETH$project_url = "https://step.ethz.ch/"
hydrosprops.ETH$citation_url = "https://doi.org/10.5194/essd-2020-149"
hydrosprops.ETH = complete.vars(hydrosprops.ETH)
#hist(hydrosprops.ETH$w15l2, breaks=45, col="gray")
#hist(log1p(hydrosprops.ETH$ksat_lab), breaks=45, col="gray")
saveRDS.gz(hydrosprops.ETH, "/mnt/diskstation/data/Soil_points/INT/hydrosprops.ETH.rds")
}
dim(hydrosprops.ETH)
```
#### HYBRAS
- Ottoni, M. V., Ottoni Filho, T. B., Schaap, M. G., Lopes-Assad, M. L. R., & Rotunno Filho, O. C. (2018). [Hydrophysical database for Brazilian soils (HYBRAS) and pedotransfer functions for water retention](http://www.cprm.gov.br/en/Hydrology/Research-and-Innovation/HYBRAS-4208.html). Vadose Zone Journal, 17(1).
```{r}
if(!exists("hydrosprops.HYBRAS")){
hybras.HOR = openxlsx::read.xlsx(xlsxFile, sheet = "HYBRAS.V1_integrated_tables_RAW")
#str(hybras.HOR)
## some points had only UTM coordinates and had to be manually coorected
## subset to unique values:
hybras.HOR = hybras.HOR[!duplicated(hybras.HOR$site_key),]
#summary(hybras.HOR$bulk_den)
#hist(hybras.HOR$ksat, breaks=35, col="grey")
## add missing columns
for(j in c("usiteid", "layer_sequence", "labsampnum", "db_13b", "COLEws", "w15bfm", "w6clod", "w10cld", "adod", "wrd_ws13", "cec7_cly", "w15cly", "cec_sum", "cec_nh4", "ph_kcl", "ph_h2o", "ksat_field", "uuid")){ hybras.HOR[,j] = NA }
hybras.HOR$w3cld = rowMeans(hybras.HOR[,c("theta20","theta50")], na.rm = TRUE)
hybras.sel.h = c("site_key", "usiteid", "year", "LongitudeOR", "LatitudeOR", "location_accuracy_min", "location_accuracy_max", "labsampnum", "layer_sequence", "top_depth", "bot_depth", "horizon", "db_13b", "bulk_den", "COLEws", "w6clod", "theta10", "w3cld", "theta15000", "satwat", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "clay", "silt", "sand", "org_carb", "ph_kcl", "ph_h2o", "cec_sum", "cec_nh4", "vc_sand", "ksat", "ksat_field")
hydrosprops.HYBRAS = hybras.HOR[,hybras.sel.h]
hydrosprops.HYBRAS$source_db = "HYBRAS"
hydrosprops.HYBRAS$confidence_degree = 1
for(i in c("theta10", "w3cld", "theta15000", "satwat")){ hydrosprops.HYBRAS[,i] = hydrosprops.HYBRAS[,i]*100 }
#summary(hydrosprops.HYBRAS$theta10)
#summary(hydrosprops.HYBRAS$satwat)
#hist(hydrosprops.HYBRAS$theta10, breaks=45, col="gray")
#hist(log1p(hydrosprops.HYBRAS$ksat), breaks=45, col="gray")
#summary(!is.na(hydrosprops.HYBRAS$ksat))
hydrosprops.HYBRAS$project_url = "http://www.cprm.gov.br/en/Hydrology/Research-and-Innovation/HYBRAS-4208.html"
hydrosprops.HYBRAS$citation_url = "https://doi.org/10.2136/vzj2017.05.0095"
hydrosprops.HYBRAS <- complete.vars(hydrosprops.HYBRAS, sel=c("w3cld", "theta15000", "ksat", "ksat_field"), coords = c("LongitudeOR", "LatitudeOR"))
saveRDS.gz(hydrosprops.HYBRAS, "/mnt/diskstation/data/Soil_points/INT/HYBRAS/hydrosprops.HYBRAS.rds")
}
dim(hydrosprops.HYBRAS)
```
#### UNSODA
- Nemes, Attila; Schaap, Marcel; Leij, Feike J.; Wösten, J. Henk M. (2015). [UNSODA 2.0: Unsaturated Soil Hydraulic Database](https://data.nal.usda.gov/dataset/unsoda-20-unsaturated-soil-hydraulic-database-database-and-program-indirect-methods-estimating-unsaturated-hydraulic-properties). Database and program for indirect methods of estimating unsaturated hydraulic properties. US Salinity Laboratory - ARS - USDA. https://doi.org/10.15482/USDA.ADC/1173246. Accessed 2020-06-08.
```{r}
if(!exists("hydrosprops.UNSODA")){
unsoda.LOC = read.csv("/mnt/diskstation/data/Soil_points/INT/UNSODA/general_c.csv")
#unsoda.LOC = unsoda.LOC[!unsoda.LOC$Lat==0,]
#plot(unsoda.LOC[,c("Long","Lat")])
unsoda.SOIL = read.csv("/mnt/diskstation/data/Soil_points/INT/UNSODA/soil_properties.csv")
#summary(unsoda.SOIL$k_sat)
## Soil water retention in lab:
tmp.hyd = read.csv("/mnt/diskstation/data/Soil_points/INT/UNSODA/lab_drying_h-t.csv")
#str(tmp.hyd)
tmp.hyd = tmp.hyd[!is.na(tmp.hyd$preshead),]
tmp.hyd$theta = tmp.hyd$theta*100
#head(tmp.hyd)
pr.lst = c(6,10,33,15000)
cl.lst = c("w6clod", "w10cld", "w3cld", "w15l2")
tmp.hyd.tbl = data.frame(code=unique(tmp.hyd$code), w6clod=NA, w10cld=NA, w3cld=NA, w15l2=NA)
for(i in 1:length(pr.lst)){
tmp.hyd.tbl[,cl.lst[i]] = plyr::join(tmp.hyd.tbl, tmp.hyd[which(tmp.hyd$preshead==pr.lst[i]),c("code","theta")], match="first")$theta
}
#head(tmp.hyd.tbl)
## ksat
kst.lev = read.csv("/mnt/diskstation/data/Soil_points/INT/UNSODA/comment_lab_sat_cond.csv", na.strings=c("","NA","No comment"))
kst.met = read.csv("/mnt/diskstation/data/Soil_points/INT/UNSODA/methodology.csv", na.strings=c("","NA","No comment"))
kst.met$comment_lsc = paste(plyr::join(kst.met[c("comment_lsc_ID")], kst.lev)$comment_lsc)
kst.met$comment_lsc[which(kst.met$comment_lsc=="NA")] = NA
kst.fld = read.csv("/mnt/diskstation/data/Soil_points/INT/UNSODA/comment_field_sat_cond.csv", na.strings=c("","NA","No comment"))
kst.met$comment_fsc = paste(plyr::join(kst.met[c("comment_fsc_ID")], kst.fld)$comment_fsc)
kst.met$comment_fsc[which(kst.met$comment_fsc=="NA")] = NA
summary(as.factor(kst.met$comment_lsc))
kst.met$comment_met = ifelse(is.na(kst.met$comment_lsc)&!is.na(kst.met$comment_fsc), paste("field", kst.met$comment_fsc), paste("lab", kst.met$comment_lsc))
unsoda.SOIL$comment_met = paste(plyr::join(unsoda.SOIL[c("code")], kst.met)$comment_met)
#summary(as.factor(unsoda.SOIL$comment_met))
sel.fld = unsoda.SOIL$comment_met %in% c("field Double ring infiltrometer","field Ponding", "field Steady infiltration")
unsoda.SOIL$ksat_lab[which(!sel.fld)] = unsoda.SOIL$k_sat[which(!sel.fld)]
unsoda.SOIL$ksat_field[is.na(unsoda.SOIL$ksat_lab)] = unsoda.SOIL$k_sat[is.na(unsoda.SOIL$ksat_lab)]
unsoda.col = join_all(list(unsoda.LOC, unsoda.SOIL, tmp.hyd.tbl))
#head(unsoda.col)
#summary(unsoda.col$OM_content)
unsoda.col$oc = signif(unsoda.col$OM_content/1.724, 4)
for(j in c("usiteid", "location_accuracy_min", "location_accuracy_max", "layer_sequence", "labsampnum", "db_13b", "COLEws", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "cec_nh4", "ph_kcl", "wpg2")){ unsoda.col[,j] = NA }
unsoda.sel.h = c("code", "usiteid", "date", "Long", "Lat", "location_accuracy_min", "location_accuracy_max", "labsampnum", "layer_sequence", "depth_upper", "depth_lower", "horizon", "db_13b", "bulk_density", "COLEws", "w6clod", "w10cld", "w3cld", "w15l2", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "Texture", "Clay", "Silt", "Sand", "oc", "ph_kcl", "pH", "CEC", "cec_nh4", "wpg2", "ksat_lab", "ksat_field")
hydrosprops.UNSODA = unsoda.col[,unsoda.sel.h]
hydrosprops.UNSODA$source_db = "UNSODA"
## corrected coordinates:
unsoda.ql = openxlsx::read.xlsx(xlsxFile, sheet = "UNSODA_degree")
hydrosprops.UNSODA$confidence_degree = plyr::join(hydrosprops.UNSODA["code"], unsoda.ql)$confidence_degree
hydrosprops.UNSODA$Texture = plyr::join(hydrosprops.UNSODA["code"], unsoda.ql)$tex_psda
hydrosprops.UNSODA$location_accuracy_min = plyr::join(hydrosprops.UNSODA["code"], unsoda.ql)$location_accuracy_min
hydrosprops.UNSODA$location_accuracy_max = plyr::join(hydrosprops.UNSODA["code"], unsoda.ql)$location_accuracy_max
## replace coordinates
unsoda.Long = plyr::join(hydrosprops.UNSODA["code"], unsoda.ql)$Improved_long
unsoda.Lat = plyr::join(hydrosprops.UNSODA["code"], unsoda.ql)$Improved_lat
hydrosprops.UNSODA$Long = ifelse(is.na(unsoda.Long), hydrosprops.UNSODA$Long, unsoda.Long)
hydrosprops.UNSODA$Lat = ifelse(is.na(unsoda.Long), hydrosprops.UNSODA$Lat, unsoda.Lat)
#hist(hydrosprops.UNSODA$w15l2, breaks=45, col="gray")
#hist(hydrosprops.UNSODA$ksat_lab, breaks=45, col="gray")
unsoda.rem = hydrosprops.UNSODA$code %in% unsoda.ql$code[is.na(unsoda.ql$additional_information)]
#summary(unsoda.rem)
hydrosprops.UNSODA = hydrosprops.UNSODA[unsoda.rem,]
## texture fractions sometimes need to be multiplied by 100!
#hydrosprops.UNSODA[hydrosprops.UNSODA$code==2220,]
sum.tex.1 = rowSums(hydrosprops.UNSODA[,c("Clay", "Silt", "Sand")], na.rm = TRUE)
sum.tex.r = which(sum.tex.1<1.2 & sum.tex.1>0)
for(j in c("Clay", "Silt", "Sand")){
hydrosprops.UNSODA[sum.tex.r,j] = hydrosprops.UNSODA[sum.tex.r,j] * 100
}
hydrosprops.UNSODA$project_url = "https://data.nal.usda.gov/dataset/unsoda-20-unsaturated-soil-hydraulic-database-database-and-program-indirect-methods-estimating-unsaturated-hydraulic-properties"
hydrosprops.UNSODA$citation_url = "https://doi.org/10.15482/USDA.ADC/1173246"
hydrosprops.UNSODA <- complete.vars(hydrosprops.UNSODA, coords = c("Long", "Lat"))
saveRDS.gz(hydrosprops.UNSODA, "/mnt/diskstation/data/Soil_points/INT/UNSODA/hydrosprops.UNSODA.rds")
}
dim(hydrosprops.UNSODA)
```
#### HYDROS
- Schindler, Uwe; Müller, Lothar (2015): [Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device](http://dx.doi.org/10.4228/ZALF.2003.273), Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.[doi: 10.4228/ZALF.2003.273]
```{r}
if(!exists("hydrosprops.HYDROS")){
hydros.tbl = read.csv("/mnt/diskstation/data/Soil_points/INT/HydroS/int_rawret.csv", sep="\t", stringsAsFactors = FALSE, dec = ",")
hydros.tbl = hydros.tbl[!is.na(hydros.tbl$TENSION),]
#summary(hydros.tbl$TENSION)
hydros.tbl$TENSIONc = cut(hydros.tbl$TENSION, breaks=c(1,5,8,15,30,40,1000,15001))
#summary(hydros.tbl$TENSIONc)
hydros.tbl$WATER_CONTENT = hydros.tbl$WATER_CONTENT
#summary(hydros.tbl$WATER_CONTENT)
#head(hydros.tbl)
pr2.lst = c("(5,8]", "(8,15]","(30,40]","(1e+03,1.5e+04]")
cl.lst = c("w6clod", "w10cld", "w3cld", "w15l2")
hydros.tbl.df = data.frame(SITE_ID=unique(hydros.tbl$SITE_ID), w6clod=NA, w10cld=NA, w3cld=NA, w15l2=NA)
for(i in 1:length(pr2.lst)){
hydros.tbl.df[,cl.lst[i]] = plyr::join(hydros.tbl.df, hydros.tbl[which(hydros.tbl$TENSIONc==pr2.lst[i]),c("SITE_ID","WATER_CONTENT")], match="first")$WATER_CONTENT
}
#head(hydros.tbl.df)
## properties:
hydros.soil = read.csv("/mnt/diskstation/data/Soil_points/INT/HydroS/int_basicdata.csv", sep="\t", stringsAsFactors = FALSE, dec = ",")
#head(hydros.soil)
#plot(hydros.soil[,c("H","R")])
hydros.col = plyr::join(hydros.soil, hydros.tbl.df)
#summary(hydros.col$OMC)
hydros.col$oc = hydros.col$OMC/1.724
hydros.col$location_accuracy_min = 100
hydros.col$location_accuracy_max = NA
for(j in c("layer_sequence", "db_13b", "COLEws", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "ph_kcl", "ph_h2o", "cec_sum", "cec_nh4", "wpg2", "ksat_lab", "ksat_field")){ hydros.col[,j] = NA }
hydros.sel.h = c("SITE_ID", "SITE", "SAMP_DATE", "H", "R", "location_accuracy_min", "location_accuracy_max", "SAMP_NO", "layer_sequence", "TOP_DEPTH", "BOT_DEPTH", "HORIZON", "db_13b", "BULK_DENSITY", "COLEws", "w6clod", "w10cld", "w3cld", "w15l2", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "tex_psda", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "ph_kcl", "ph_h2o", "cec_sum", "cec_nh4", "wpg2", "ksat_lab", "ksat_field")
hydros.sel.h[which(!hydros.sel.h %in% names(hydros.col))]
hydrosprops.HYDROS = hydros.col[,hydros.sel.h]
hydrosprops.HYDROS$source_db = "HydroS"
hydrosprops.HYDROS$confidence_degree = 1
hydrosprops.HYDROS$project_url = "http://dx.doi.org/10.4228/ZALF.2003.273"
hydrosprops.HYDROS$citation_url = "https://doi.org/10.18174/odjar.v3i1.15763"
hydrosprops.HYDROS <- complete.vars(hydrosprops.HYDROS, coords = c("H","R"))
saveRDS.gz(hydrosprops.HYDROS, "/mnt/diskstation/data/Soil_points/INT/HYDROS/hydrosprops.HYDROS.rds")
}
dim(hydrosprops.HYDROS)
```
#### SWIG
- Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y. A., Mao, L., Sadeghi, S. H., ... & Toth, B. (2018). [Development and analysis of the Soil Water Infiltration Global database](https://doi.org/10.5194/essd-10-1237-2018). Earth Syst. Sci. Data, 10, 1237–1263.
```{r}
if(!exists("hydrosprops.SWIG")){
meta.tbl = read.csv("/mnt/diskstation/data/Soil_points/INT/SWIG/Metadata.csv", skip = 1, fill = TRUE, blank.lines.skip=TRUE, flush=TRUE, stringsAsFactors=FALSE)
swig.xy = read.table("/mnt/diskstation/data/Soil_points/INT/SWIG/Locations.csv", sep=";", dec = ",", stringsAsFactors=FALSE, header=TRUE, na.strings = c("-",""," "), fill = TRUE)
swig.xy$x = as.numeric(gsub(",", ".", swig.xy$x))
swig.xy$y = as.numeric(gsub(",", ".", swig.xy$y))
swig.xy = swig.xy[,1:8]
names(swig.xy)[3] = "EndDataset"
library(tidyr)
swig.xyf = tidyr::fill(swig.xy, c("Dataset","EndDataset"))
swig.xyf$N = swig.xyf$EndDataset - swig.xyf$Dataset + 1
swig.xyf$N = ifelse(swig.xyf$N<1,1,swig.xyf$N)
swig.xyf = swig.xyf[!is.na(swig.xyf$y),]
#plot(swig.xyf[,c("x","y")])
swig.xyf.df = swig.xyf[rep(seq_len(nrow(swig.xyf)), swig.xyf$N),]
rn = sapply(row.names(swig.xyf.df), function(i){as.numeric(strsplit(i, "\\.")[[1]][2])})
swig.xyf.df$Code = rowSums(data.frame(rn, swig.xyf.df$Dataset), na.rm = TRUE)
## bind together
swig.col = plyr::join(swig.xyf.df[,c("Code","x","y")], meta.tbl)
## aditional values for ksat
swig2.tbl = read.csv("/mnt/diskstation/data/Soil_points/INT/SWIG/Statistics.csv", fill = TRUE, blank.lines.skip=TRUE, sep=";", dec = ",", flush=TRUE, stringsAsFactors=FALSE)
#hist(log1p(as.numeric(swig2.tbl$Ks..cm.hr.)), breaks=45, col="gray")
swig.col$Ks..cm.hr. = as.numeric(plyr::join(swig.col["Code"], swig2.tbl[c("Code","Ks..cm.hr.")])$Ks..cm.hr.)
swig.col$Ks..cm.hr. = ifelse(swig.col$Ks..cm.hr. * 24 <= 0.01, NA, swig.col$Ks..cm.hr.)
swig.col$Ksat = ifelse(is.na(swig.col$Ksat), swig.col$Ks..cm.hr., swig.col$Ksat)
for(j in c("usiteid", "site_obsdate", "labsampnum", "layer_sequence", "hzn_desgn", "db_13b", "COLEws", "adod", "wrd_ws13", "w15bfm", "w15cly", "cec7_cly", "w6clod", "w10cld", "ph_kcl", "cec_nh4", "ksat_lab")){ swig.col[,j] = NA }
## depths are missing?
swig.col$hzn_top = 0
swig.col$hzn_bot = 20
swig.col$location_accuracy_min = NA
swig.col$location_accuracy_max = NA
swig.col$w15l2 = swig.col$PWP * 100
swig.col$w3cld = swig.col$FC * 100
swig.sel.h = c("Code", "usiteid", "site_obsdate", "x", "y", "location_accuracy_min", "location_accuracy_max", "labsampnum", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "db_13b", "Db", "COLEws", "w6clod", "w10cld", "w3cld", "w15l2", "w15bfm", "adod", "wrd_ws13", "cec7_cly", "w15cly", "Texture.Class", "Clay", "Silt", "Sand", "OC", "ph_kcl", "pH", "CEC", "cec_nh4", "Gravel", "ksat_lab", "Ksat")
swig.sel.h[which(!swig.sel.h %in% names(swig.col))]
hydrosprops.SWIG = swig.col[,swig.sel.h]
hydrosprops.SWIG$source_db = "SWIG"
hydrosprops.SWIG$Ksat = hydrosprops.SWIG$Ksat * 24 ## convert to days
#hist(hydrosprops.SWIG$w3cld, breaks=45, col="gray")
#hist(log1p(hydrosprops.SWIG$Ksat), breaks=25, col="gray")
#summary(hydrosprops.SWIG$Ksat); summary(hydrosprops.UNSODA$ksat_lab)
## confidence degree
SWIG.ql = openxlsx::read.xlsx(xlsxFile, sheet = "SWIG_database_Confidence_degree")
hydrosprops.SWIG$confidence_degree = plyr::join(hydrosprops.SWIG["Code"], SWIG.ql)$confidence_degree
hydrosprops.SWIG$location_accuracy_min = plyr::join(hydrosprops.SWIG["Code"], SWIG.ql)$location_accuracy_min
hydrosprops.SWIG$location_accuracy_max = plyr::join(hydrosprops.SWIG["Code"], SWIG.ql)$location_accuracy_max
#summary(as.factor(hydrosprops.SWIG$confidence_degree))
## replace coordinates
SWIG.Long = plyr::join(hydrosprops.SWIG["Code"], SWIG.ql)$Improved_long
SWIG.Lat = plyr::join(hydrosprops.SWIG["Code"], SWIG.ql)$Improved_lat
hydrosprops.SWIG$x = ifelse(is.na(SWIG.Long), hydrosprops.SWIG$x, SWIG.Long)
hydrosprops.SWIG$y = ifelse(is.na(SWIG.Long), hydrosprops.SWIG$y, SWIG.Lat)
hydrosprops.SWIG$Texture.Class = plyr::join(hydrosprops.SWIG["Code"], SWIG.ql)$tex_psda
swig.lab = SWIG.ql$Code[which(SWIG.ql$Ksat_Method %in% c("Constant head method", "Constant Head Method", "Falling head method"))]
hydrosprops.SWIG$ksat_lab[hydrosprops.SWIG$Code %in% swig.lab] = hydrosprops.SWIG$Ksat[hydrosprops.SWIG$Code %in% swig.lab]
hydrosprops.SWIG$Ksat[hydrosprops.SWIG$Code %in% swig.lab] = NA
## remove duplicates
swig.rem = hydrosprops.SWIG$Code %in% SWIG.ql$Code[is.na(SWIG.ql$additional_information)]
#summary(swig.rem)
#Mode FALSE TRUE
#logical 200 6921
hydrosprops.SWIG = hydrosprops.SWIG[swig.rem,]
hydrosprops.SWIG = hydrosprops.SWIG[!duplicated(hydrosprops.SWIG$Code),]
## remove all ksat values < 0.01 ?
#summary(hydrosprops.SWIG$Ksat < 0.01)
hydrosprops.SWIG$project_url = "https://soil-modeling.org/resources-links/data-portal/swig"
hydrosprops.SWIG$citation_url = "https://doi.org/10.5194/essd-10-1237-2018"
hydrosprops.SWIG <- complete.vars(hydrosprops.SWIG, sel=c("w15l2","w3cld","ksat_lab","Ksat"), coords=c("x","y"))
saveRDS.gz(hydrosprops.SWIG, "/mnt/diskstation/data/Soil_points/INT/SWIG/hydrosprops.SWIG.rds")
}
dim(hydrosprops.SWIG)
```
#### Pseudo-points
- Pseudo-observations using simulated points (world deserts)
```{r}
if(!exists("hydrosprops.SIM")){
## 0 soil organic carbon + 98% sand content (deserts)
sprops.SIM = readRDS("/mnt/diskstation/data/LandGIS/training_points/soil_props/sprops.SIM.rds")
sprops.SIM$w10cld = 3.1
sprops.SIM$w3cld = 1.2
sprops.SIM$w15l2 = 0.8
sprops.SIM$tex_psda = "sand"
sprops.SIM$usiteid = sprops.SIM$lcv_admin0_fao.gaul_c_250m_s0..0cm_2015_v1.0
sprops.SIM$longitude_decimal_degrees = sprops.SIM$x
sprops.SIM$latitude_decimal_degrees = sprops.SIM$y
## Very approximate values for Ksat for shifting sand:
tax.r = raster::extract(raster("/mnt/diskstation/data/LandGIS/archive/predicted250m/sol_grtgroup_usda.soiltax_c_250m_s0..0cm_1950..2017_v0.1.tif"), sprops.SIM[,c("longitude_decimal_degrees","latitude_decimal_degrees")])
tax.leg = read.csv("/mnt/diskstation/data/LandGIS/archive/predicted250m/sol_grtgroup_usda.soiltax_c_250m_s0..0cm_1950..2017_v0.1.tif.csv")
tax.ksat_lab = aggregate(eth.tbl$ksat_lab, by=list(Group=eth.tbl$tax_grtgroup), FUN=mean, na.rm=TRUE)
tax.ksat_lab.sd = aggregate(eth.tbl$ksat_lab, by=list(Group=eth.tbl$tax_grtgroup), FUN=sd, na.rm=TRUE)
tax.ksat_field = aggregate(eth.tbl$ksat_field, by=list(Group=eth.tbl$tax_grtgroup), FUN=mean, na.rm=TRUE)
tax.leg$ksat_lab = join(tax.leg, tax.ksat_lab)$x
tax.leg$ksat_field = join(tax.leg, tax.ksat_field)$x
tax.sel = c("cryochrepts","cryorthods","torripsamments","haplustolls","torrifluvents")
sprops.SIM$ksat_field = join(data.frame(site_key=sprops.SIM$site_key, Number=tax.r), tax.leg[tax.leg$Group %in% tax.sel,])$ksat_field
sprops.SIM$ksat_lab = join(data.frame(site_key=sprops.SIM$site_key, Number=tax.r), tax.leg[tax.leg$Group %in% tax.sel,])$ksat_lab
#summary(sprops.SIM$ksat_lab)
#summary(sprops.SIM$ksat_field)
#View(sprops.SIM)
for(j in col.names[which(!col.names %in% names(sprops.SIM))]){ sprops.SIM[,j] <- NA }
sprops.SIM$project_url = "https://gitlab.com/openlandmap/global-layers"
sprops.SIM$citation_url = ""
hydrosprops.SIM = sprops.SIM[,col.names]
hydrosprops.SIM$confidence_degree = 30
saveRDS.gz(hydrosprops.SIM, "/mnt/diskstation/data/Soil_points/INT/hydrosprops.SIM.rds")
}
dim(hydrosprops.SIM)
```
## ![alt text](./tex/R_logo.svg.png "Bind points") Bind all datasets
#### Bind and clean-up
Bind all tables / rename columns where necessary:
```{r}
ls(pattern=glob2rx("hydrosprops.*"))
tot_sprops = dplyr::bind_rows(lapply(ls(pattern=glob2rx("hydrosprops.*")), function(i){ mutate_all(setNames(get(i), col.names), as.character) }))
## convert to numeric:
for(j in c("longitude_decimal_degrees", "latitude_decimal_degrees", "location_accuracy_min", "location_accuracy_max", "layer_sequence", "hzn_top","hzn_bot", "oc", "ph_h2o", "ph_kcl", "db_od", "clay_tot_psa", "sand_tot_psa","silt_tot_psa", "wpg2", "db_13b", "COLEws", "w15cly", "w6clod", "w10cld", "w3cld", "w15l2", "w15bfm", "adod", "wrd_ws13","cec7_cly", "cec_sum", "cec_nh4", "ksat_lab","ksat_field")){
tot_sprops[,j] = as.numeric(tot_sprops[,j])
}
#head(tot_sprops)
## rename some columns:
tot_sprops = plyr::rename(tot_sprops, replace = c("db_od" = "db", "ph_h2o" = "ph_h2o_v", "oc" = "oc_v"))
summary(as.factor(tot_sprops$source_db))
```
Add unique row identifier
```{r}
tot_sprops$uuid = uuid::UUIDgenerate(use.time=TRUE, n=nrow(tot_sprops))
```
and unique location based on the [Open Location Code](https://cran.r-project.org/web/packages/olctools/vignettes/Introduction_to_olctools.html):
```{r}
tot_sprops$olc_id = olctools::encode_olc(tot_sprops$latitude_decimal_degrees, tot_sprops$longitude_decimal_degrees, 11)
length(levels(as.factor(tot_sprops$olc_id)))
```
#### Quality-control spatial locations
Unique locations:
```{r}
tot_sprops.pnts = tot_sprops[!duplicated(tot_sprops$olc_id),c("site_key", "source_db", "longitude_decimal_degrees", "latitude_decimal_degrees", "site_obsdate", "olc_id", "project_url", "citation_url")]
coordinates(tot_sprops.pnts) <- ~ longitude_decimal_degrees + latitude_decimal_degrees
proj4string(tot_sprops.pnts) <- "+init=epsg:4326"
```
Remove points falling in the sea or similar:
```{r}
if(!exists("ov.sprops")){
#mask = terra::rast("./layers1km/lcv_landmask_esacci.lc.l4_c_1km_s0..0cm_2000..2015_v1.0.tif")
mask = terra::rast("/mnt/diskstation/data/LandGIS/layers250m/lcv_landmask_esacci.lc.l4_c_250m_s0..0cm_2000..2015_v1.0.tif")
ov.sprops <- terra::extract(mask, terra::vect(tot_sprops.pnts))
summary(as.factor(ov.sprops[,2]))
if(sum(is.na(ov.sprops[,2]))>0 | sum(ov.sprops[,2]==2)>0){
rem.lst = which(is.na(ov.sprops[,2]) | ov.sprops[,2]==2 | ov.sprops[,2]==4)
rem.sp = tot_sprops.pnts$site_key[rem.lst]
tot_sprops.pnts = tot_sprops.pnts[-rem.lst,]
} else {
rem.sp = NA
}
}
## final number of unique spatial locations:
nrow(tot_sprops.pnts)
```
#### Clean-up
Clean up typos and physically impossible values:
```{r}
for(j in c("clay_tot_psa", "sand_tot_psa", "silt_tot_psa", "wpg2", "w6clod", "w10cld", "w3cld", "w15l2")){
tot_sprops[,j] = ifelse(tot_sprops[,j]>100|tot_sprops[,j]<0, NA, tot_sprops[,j])
}
for(j in c("ph_h2o_v","ph_kcl")){
tot_sprops[,j] = ifelse(tot_sprops[,j]>12|tot_sprops[,j]<2, NA, tot_sprops[,j])
}
#hist(tot_sprops$db_od)
for(j in c("db")){
tot_sprops[,j] = ifelse(tot_sprops[,j]>2.4|tot_sprops[,j]<0.05, NA, tot_sprops[,j])
}
#summary(tot_sprops$ksat_lab)
for(j in c("ksat_lab","ksat_field")){
tot_sprops[,j] = ifelse(tot_sprops[,j] <=0, NA, tot_sprops[,j])
}
#hist(tot_sprops$oc)
for(j in c("oc_v")){
tot_sprops[,j] = ifelse(tot_sprops[,j]>90|tot_sprops[,j]<0, NA, tot_sprops[,j])
}
tot_sprops$hzn_depth = tot_sprops$hzn_top + (tot_sprops$hzn_bot-tot_sprops$hzn_top)/2
#tot_sprops = tot_sprops[!is.na(tot_sprops$hzn_depth),]
## texture fractions check:
sum.tex.T = rowSums(tot_sprops[,c("clay_tot_psa", "silt_tot_psa", "sand_tot_psa")], na.rm = TRUE)
which(sum.tex.T<1.2 & sum.tex.T>0)
for(i in which(sum.tex.T<1.2 & sum.tex.T>0)){
for(j in c("clay_tot_psa", "silt_tot_psa", "sand_tot_psa")){
tot_sprops[i,j] <- NA
}
}
```
#### Histogram plots
```{r}
library(ggplot2)
#ggplot(tot_sprops[tot_sprops$w15l2<100,], aes(x=source_db, y=w15l2)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggplot(tot_sprops[tot_sprops$w3cld<100,], aes(x=source_db, y=w3cld)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```
```{r}
ggplot(tot_sprops, aes(x=source_db, y=db)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```
```{r}
ggplot(tot_sprops, aes(x=source_db, y=ph_h2o_v)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```
```{r}
ggplot(tot_sprops, aes(x=source_db, y=log10(ksat_field+1))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```
```{r}
ggplot(tot_sprops, aes(x=source_db, y=log1p(ksat_lab))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```
#### Convert to wide format
Add `layer_sequence` where missing since this is needed to be able to convert to wide
format:
```{r}
#summary(tot_sprops$layer_sequence)
tot_sprops$dsiteid = paste(tot_sprops$source_db, tot_sprops$site_key, tot_sprops$site_obsdate, sep="_")
if(!exists("l.s1")){
library(dplyr)
## Note: takes >1 min
l.s1 <- tot_sprops[,c("olc_id","hzn_depth")] %>% group_by(olc_id) %>% mutate(layer_sequence.f = data.table::frank(hzn_depth, ties.method = "first"))
tot_sprops$layer_sequence.f = ifelse(is.na(tot_sprops$layer_sequence), l.s1$layer_sequence.f, tot_sprops$layer_sequence)
tot_sprops$layer_sequence.f = ifelse(tot_sprops$layer_sequence.f>6, 6, tot_sprops$layer_sequence.f)
}
```
Convert long table to [wide table format](https://ncss-tech.github.io/AQP/aqp/aqp-intro.html) so that each depth gets unique column:
```{r}
if(!exists("tot_sprops.w")){
library(data.table)
hor.names.s = c("hzn_top", "hzn_bot", "hzn_desgn", "db", "w6clod", "w3cld", "w15l2", "adod", "wrd_ws13", "tex_psda", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc_v", "ph_kcl", "ph_h2o_v", "cec_sum", "cec_nh4", "wpg2", "ksat_lab", "ksat_field", "uuid")
tot_sprops.w = data.table::dcast( as.data.table(tot_sprops),
formula = olc_id ~ layer_sequence.f,
value.var = hor.names.s,
fun=function(x){ x[1] },
verbose = FALSE)
}
tot_sprops_w.pnts = tot_sprops.pnts
tot_sprops_w.pnts@data = plyr::join(tot_sprops.pnts@data, tot_sprops.w)
```
Write all soil profiles using a wide format:
```{r, eval=FALSE}
sel.rm.pnts <- tot_sprops_w.pnts$site_key %in% rem.sp
unlink("./out/gpkg/sol_hydro.pnts_horizons.gpkg")
writeOGR(tot_sprops_w.pnts[!sel.rm.pnts,], "./out/gpkg/sol_hydro.pnts_horizons.gpkg", "sol_hydro.pnts_horizons", drive="GPKG")
```
#### Ksat dataset:
```{r}
sel.compl = !is.na(tot_sprops$longitude_decimal_degrees) & !is.na(tot_sprops$w3cld) & !is.na(tot_sprops$ph_h2o_v) & !is.na(tot_sprops$clay_tot_psa) & !is.na(tot_sprops$oc_v)
summary(sel.compl)
## complete ksat_field points
tot_sprops.pnts.C = tot_sprops[!is.na(tot_sprops$longitude_decimal_degrees) & !is.na(tot_sprops$latitude_decimal_degrees) & (!is.na(tot_sprops$ksat_lab) | !is.na(tot_sprops$ksat_field)) & !tot_sprops$source_db == "SIMULATED",]
sum.NA = sapply(tot_sprops.pnts.C, function(i){sum(is.na(i))})
tot_sprops.pnts.C = tot_sprops.pnts.C[,!sum.NA==nrow(tot_sprops.pnts.C)]
tot_sprops.pnts.C$w10cld = NULL
tot_sprops.pnts.C$w6clod = NULL
tot_sprops.pnts.C$w15bfm = NULL
tot_sprops.pnts.C$site_obsdate = NULL
tot_sprops.pnts.C$confidence_degree = NULL
tot_sprops.pnts.C$cec_sum = NULL
tot_sprops.pnts.C$wpg2 = NULL
tot_sprops.pnts.C$uuid = NULL
dim(tot_sprops.pnts.C)
```
#### RDS files
Plot in Goode Homolozine projection and save final objects:
```{r, eval=FALSE}
if(!file.exists("./img/sol_hydro.pnts_sites.png")){
tot_sprops.pnts_sf <- st_as_sf(tot_sprops.pnts[1])
plot_gh(tot_sprops.pnts_sf, out.pdf="./img/sol_hydro.pnts_sites.pdf")
system("pdftoppm ./img/sol_hydro.pnts_sites.pdf ./img/sol_hydro.pnts_sites -png -f 1 -singlefile")
system("convert -crop 1280x575+36+114 ./img/sol_hydro.pnts_sites.png ./img/sol_hydro.pnts_sites.png")
}
```
```{r sol_hydro.pnts_sites, echo=FALSE, fig.cap="Soil profiles and soil samples with physical and hydraulic soil properties properties global compilation.", out.width="100%"}
knitr::include_graphics("./img/sol_hydro.pnts_sites.png")
```
`r fig_nums("sol_hydro.pnts_sites", "Soil profiles and soil samples with physical and hydraulic soil properties properties global compilation.")`
```{r, eval=FALSE}
if(!file.exists("./img/sol_ksat.pnts_sites.png")){
sel.ks = which(tot_sprops.pnts$location_id %in% tot_sprops.pnts.C$location_id)
tot_spropsC.pnts_sf <- st_as_sf(tot_sprops.pnts[sel.ks, 1])
plot_gh(tot_spropsC.pnts_sf, out.pdf="./img/sol_ksat.pnts_sites.pdf")
system("pdftoppm ./img/sol_ksat.pnts_sites.pdf ./img/sol_ksat.pnts_sites -png -f 1 -singlefile")
system("convert -crop 1280x575+36+114 ./img/sol_ksat.pnts_sites.png ./img/sol_ksat.pnts_sites.png")
}
```
```{r sol_ksat.pnts_sites, echo=FALSE, fig.cap="Soil profiles and soil samples with Ksat measurements global compilation", out.width="100%"}
knitr::include_graphics("./img/sol_ksat.pnts_sites.png")
```
`r fig_nums("sol_ksat.pnts_sites", "Soil profiles and soil samples with Ksat measurements global compilation.")`
## ![alt text](./tex/R_logo.svg.png "Overlay www.OpenLandMap.org layers") Overlay www.OpenLandMap.org layers
Load the tiling system (1 degree grid representing global land mask) and run spatial overlay in parallel:
```{r, eval=FALSE}
if(!exists("rm.sol")){
tile.pol = readOGR("./tiles/global_tiling_100km_grid.gpkg")
#length(tile.pol)
ov.sol <- extract.tiled(obj=tot_sprops.pnts, tile.pol=tile.pol, path="/data/tt/LandGIS/grid250m", ID="ID", cpus=64)
## Valid predictors:
pr.vars = unique(unlist(sapply(c("fapar", "landsat", "lc100", "mod09a1", "mod11a2", "alos.palsar", "sm2rain", "irradiation_solar.atlas", "usgs.ecotapestry", "floodmap.500y", "bioclim", "water.table.depth_deltares", "snow.prob_esacci", "water.vapor_nasa.eo", "wind.speed_terraclimate", "merit.dem_m", "merit.hydro_m", "cloud.fraction_earthenv", "water.occurance_jrc", "wetlands.cw_upmc", "pb2002"), function(i){names(ov.sol)[grep(i, names(ov.sol))]})))
str(pr.vars)
## 349
#saveRDS.gz(ov.sol, "/mnt/diskstation/data/Soil_points/ov.sol_hydro.pnts_horizons.rds")
#ov.sol <- readRDS.gz("/mnt/diskstation/data/Soil_points/ov.sol_hydro.pnts_horizons.rds")
## Final regression matrix:
rm.sol = plyr::join(tot_sprops, ov.sol[,c("olc_id", pr.vars)])
## check that there are no duplicates
sum(duplicated(rm.sol$uuid))
rm.ksat = rm.sol[(!is.na(rm.sol$ksat_lab) | !is.na(rm.sol$ksat_field)),]
}
dim(rm.sol)
```
Save final analysis-ready objects:
```{r, eval=FALSE}
saveRDS.gz(tot_sprops, "./out/rds/sol_hydro.pnts_horizons.rds")
saveRDS.gz(tot_sprops.pnts, "/mnt/diskstation/data/Soil_points/sol_hydro.pnts_sites.rds")
## reorder columns
tot_sprops.pnts.C$ID = 1:nrow(tot_sprops.pnts.C)
tot_sprops.pnts.C = tot_sprops.pnts.C[,c(which(names(tot_sprops.pnts.C)=="ID"), which(!names(tot_sprops.pnts.C)=="ID"))]
saveRDS.gz(tot_sprops.pnts.C, "./out/rds/sol_ksat.pnts_horizons.rds")
#library(farff)
#writeARFF(tot_sprops, "./out/arff/sol_hydro.pnts_horizons.arff", overwrite = TRUE)
#writeARFF(tot_sprops.pnts.C, "./out/arff/sol_ksat.pnts_horizons.arff", overwrite = TRUE)
## compressed CSV
write.csv(tot_sprops, file=gzfile("./out/csv/sol_hydro.pnts_horizons.csv.gz"))
write.csv(tot_sprops.pnts.C, file=gzfile("./out/csv/sol_ksat.pnts_horizons.csv.gz"), row.names = FALSE)
saveRDS.gz(rm.sol, "./out/rds/sol_hydro.pnts_horizons_rm.rds")
saveRDS.gz(rm.ksat, "./out/rds/sol_ksat.pnts_horizons_rm.rds")
```
Save temp object:
```{r, eval=FALSE}
#rm(rm.sol); gc()
save.image.pigz(file="soilhydro.RData")
## rmarkdown::render("Index.rmd")
```