forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
83 lines (71 loc) · 2.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is copied from
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/src/axolotl/cli/train.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ipex_llm import llm_patch
llm_patch(train=True)
# The following is the original axolotl train code (without IPEX-LLM)
"""
CLI to run training on a model
"""
import logging
from pathlib import Path
from typing import Tuple
import fire
import transformers
from transformers import PreTrainedModel, PreTrainedTokenizer
from axolotl.cli import (
check_accelerate_default_config,
check_user_token,
load_cfg,
load_datasets,
load_rl_datasets,
print_axolotl_text_art,
)
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
LOG = logging.getLogger("axolotl.cli.train")
def do_cli(config: Path = Path("examples/"), **kwargs):
# pylint: disable=duplicate-code
parsed_cfg = load_cfg(config, **kwargs)
parser = transformers.HfArgumentParser((TrainerCliArgs))
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
return_remaining_strings=True
)
return do_train(parsed_cfg, parsed_cli_args)
def do_train(cfg, cli_args) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
print_axolotl_text_art()
check_accelerate_default_config()
check_user_token()
if cfg.rl:
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
else:
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
return train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
if __name__ == "__main__":
fire.Fire(do_cli)