-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdemo4.m
82 lines (68 loc) · 3.01 KB
/
demo4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
%% Demo 4: Tucker decomposition of sparse tensor utilizing "double-sketch"
%
% This script compares tucker_ts and tucker_ts_double_sketch. The example
% shows that the latter function, which incorporates the idea in
% Remark 3.2 (c) of [2], is faster than the former in a situation when the
% dimension size I of a tensor is much larger than the sum of the target
% sketch dimensions J1+J2.
%
% The script is similar to demo1: It generates a sparse tensor and then
% decomposes it using both tucker_ts and tucker_ts_double_sketch. Since the
% tensor in the example is quite large, we do not attempt to decompose it
% using tucker_als in Tensor Toolbox [1]. Please note that the script
% requires Tensor Toolbox version 2.6 or later.
%
% For further information about our methods, please see our paper [2].
%
% REFERENCES:
%
% [1] B. W. Bader, T. G. Kolda and others. MATLAB Tensor Toolbox
% Version 2.6, Available online, February 2015.
% URL: http://www.sandia.gov/~tgkolda/TensorToolbox/.
%
% [2] O. A. Malik, S. Becker. Low-Rank Tucker Decomposition of Large
% Tensors Using TensorSketch. Advances in Neural Information
% Processing Systems (NeurIPS), 2018.
% Author: Osman Asif Malik
% Email: osman.malik@colorado.edu
% Date: December 21, 2018
%% Include relevant files
addpath(genpath('help_functions'));
%% Setup
R_true = [10 10 10]; % True tensor rank
R = [10 10 10]; % Algorithm target rank
I = [1e+6 1e+6 1e+6]; % Tensor size
K = 10; % Sketch dimension parameter
J1 = K*prod(R)/min(R); % First sketch dimension
J2 = K*prod(R); % Second sketch dimension
noise_level = 1e-3; % Amount of noise added to nonzero elements
tol = 1e-3; % Tolerance
maxiters = 50; % Maximum number of iterations
nnzY = 1e+6; % Approximate number of nonzeros in tensor
%% Generate random sparse tensor
fprintf('Generating sparse tensor... ');
N = length(I);
density = 1 - (1 - nnzY^(1/N)/I(1))^(1/R_true(1));
factor_mat_density = ones(length(R),1)*density;
[Y, ~, ~] = Generate_Random_Sptensor(R_true, I, factor_mat_density, noise_level);
fprintf('Done!\n\n');
%% Run tucker_ts
fprintf('\nRunning tucker_ts...\n\n')
tucker_ts_tic = tic;
[G_ts, A_ts] = tucker_ts(Y, R, J1, J2, 'tol', tol, 'maxiters', maxiters, 'verbose', true);
tucker_ts_toc = toc(tucker_ts_tic);
%% Run tucker_ts_double_sketch
fprintf('\nRunning tucker_ts_double_sketch...\n\n')
tucker_ts_double_sketch_tic = tic;
[G_tsds, A_tsds] = tucker_ts_double_sketch(Y, R, J1, J2, 'tol', tol, 'maxiters', maxiters, 'verbose', true);
tucker_ts_double_sketch_toc = toc(tucker_ts_double_sketch_tic);
%% Results
fprintf('\n\nComputing errors... ');
normY = norm(Y);
tucker_ts_error = SptTtDiffNorm(Y, G_ts, A_ts)/normY;
tucker_tsds_error = SptTtDiffNorm(Y, G_tsds, A_tsds)/normY;
fprintf('Done!\n')
fprintf('\nRelative error for tucker_ts: %.6e\n', tucker_ts_error);
fprintf('Relative error for tucker_ts_double_sketch: %.6e\n', tucker_tsds_error);
fprintf('\nTime for tucker_ts: %.2f s\n', tucker_ts_toc);
fprintf('Time for tucker_ts_double_sketch: %.2f s\n', tucker_ts_double_sketch_toc);