-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
50 lines (45 loc) · 1.76 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
import pandas as pd
import pickle
import requests
st.title('Movie Recommender System')
def fetch_poster(movie_id):
response=requests.get('https://api.themoviedb.org/3/movie/{movie_id}?api_key=d4eea7b287474a4b062a1f0574a168aa&language=en-US'.format(movie_id=movie_id))
data=response.json()
# st.text(data)
# st.text('https://api.themoviedb.org/3/movie/{movie_id}?api_key=d4eea7b287474a4b062a1f0574a168aa&language=en-US'.format(movie_id=movie_id))
return "https://image.tmdb.org/t/p/w500/"+ data['poster_path']
movies_dict= pickle.load(open('movies_dict.pkl','rb'))
similarity= pickle.load(open('similarity.pkl','rb'))
movies=pd.DataFrame(movies_dict)
selected_movie_name=st.selectbox('Title',movies['title'].values)
def recommend(movie):
movie_index=movies[movies['title'] == movie].index[0]
distances=similarity[movie_index]
movie_list=sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:6]
recommend_movies=[]
recommend_movie_posters=[]
for i in movie_list:
movie_id=movies.iloc[i[0]].movie_id
#fetch poster from API
recommend_movies.append(movies.iloc[i[0]].title)
recommend_movie_posters.append(fetch_poster(movie_id))
return recommend_movies,recommend_movie_posters
if st.button('Recommend'):
names,posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(names[0])
st.image(posters[0])
with col2:
st.text(names[1])
st.image(posters[1])
with col3:
st.text(names[2])
st.image(posters[2])
with col4:
st.text(names[3])
st.image(posters[3])
with col5:
st.text(names[4])
st.image(posters[4])