入门指南
注:⚡为基础必读,💎为基础选读,💡为进阶阅读
先通过阅读专栏了解贝叶斯优化和高斯过程的基本原理,然后阅读两篇论文了解SMBO的经典方法
通过开源autoML系统自行搭建自动化机器学习的完整流程,并了解其内部实现
⚡
🛠️ auto-sklearn: https://github.com/automl/auto-sklearn⚡
🛠️ MindWare: https://github.com/thomas-young-2013/mindware
-
⚡
📄 (RGPE) Scalable Meta-Learning for Bayesian Optimization using Ranking-Weighted Gaussian Process Ensembles -
⚡
📄 (TAF) Scalable Gaussian process-based transfer surrogates for hyperparameter optimization -
💎
📄 (POGOE) Scalable Hyperparameter Optimization with Products of Gaussian Process Experts -
💎
📄 (TST) Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization -
💎
📄 (TransBO) TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
使用大模型帮助AutoML的流程执行