forked from jionie/Google-Quest-Answer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
oof-k-fold.py
653 lines (519 loc) · 30 KB
/
oof-k-fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
# import os and define graphic card
import os
os.environ["OMP_NUM_THREADS"] = "1"
# import common libraries
import gc
import random
import argparse
import pandas as pd
import numpy as np
from functools import partial
from sklearn.preprocessing import MinMaxScaler
# import pytorch related libraries
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.optim.optimizer import Optimizer
from torch.utils.data import TensorDataset, DataLoader,Dataset
from torch.utils.data.sampler import RandomSampler, SequentialSampler
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, CosineAnnealingLR, _LRScheduler
from tensorboardX import SummaryWriter
from pytorch_pretrained_bert.optimization import BertAdam
from transformers import get_linear_schedule_with_warmup
# import apex for mix precision training
from apex import amp
from apex.parallel import DistributedDataParallel as DDP
from apex.optimizers import FusedAdam
# import dataset class
from dataset.dataset import *
# import utils
from utils.ranger import *
from utils.lrs_scheduler import *
from utils.loss_function import *
from utils.metric import *
from utils.file import *
# import model
from model.model_bert import *
############################################################################## Define Argument
parser = argparse.ArgumentParser(description="arg parser")
parser.add_argument("--train_data_folder", type=str, default="/media/jionie/my_disk/Kaggle/Google_Quest_Answer/input/google-quest-challenge/", \
required=False, help="specify the folder for training data")
parser.add_argument('--model_type', type=str, default="bert", \
required=False, help='specify the model_type for BertTokenizer and Net')
parser.add_argument('--content', type=str, default="Question", \
required=False, help='specify the content for token')
parser.add_argument("--max_len", type=int, default=512, required=False, help="specify the max_len of tokens")
parser.add_argument('--model_name', type=str, default="bert-base-uncased", \
required=False, help='specify the model_name for BertTokenizer and Net')
parser.add_argument('--hidden_layers', type=list, default=[-3, -4, -5, -6, -7], \
required=False, help='specify the hidden_layers for Loss')
parser.add_argument('--optimizer', type=str, default='BertAdam', required=False, help='specify the optimizer')
parser.add_argument("--lr_scheduler", type=str, default='WarmupLinearSchedule', required=False, help="specify the lr scheduler")
parser.add_argument('--loss', type=str, default="bce", required=True, help="specify the loss for training")
parser.add_argument("--batch_size", type=int, default=8, required=False, help="specify the batch size for training")
parser.add_argument("--valid_batch_size", type=int, default=32, required=False, help="specify the batch size for validating")
parser.add_argument('--num_workers', type=int, default=2, \
required=False, help='specify the num_workers for oof_dfing dataloader')
parser.add_argument("--checkpoint_folder", type=str, default="/media/jionie/my_disk/Kaggle/Google_Quest_Answer/model", \
required=False, help="specify the folder for checkpoint")
parser.add_argument('--seed', type=int, default=42, required=True, help="specify the seed for training")
parser.add_argument('--n_splits', type=int, default=5, required=True, help="specify the n_splits for training")
parser.add_argument('--split', type=str, default="GroupKfold", required=True, help="specify the splitting dataset way")
parser.add_argument('--augment', action='store_true', help="specify whether augmentation for training")
parser.add_argument('--swa', action='store_true', help="specify whether to use swa model")
parser.add_argument('--merge', action='store_true', help="specify whether to merge oof of question and answer")
parser.add_argument('--extra_token', action='store_true', default=False, help='whether to use extra token for extra tasks')
############################################################################## Define Constant
QUESTION_TARGET_COLUMNS = ['question_asker_intent_understanding',
'question_body_critical',
'question_conversational',
'question_expect_short_answer',
'question_fact_seeking',
'question_has_commonly_accepted_answer',
'question_interestingness_others',
'question_interestingness_self',
'question_multi_intent',
'question_not_really_a_question',
'question_opinion_seeking',
'question_type_choice',
'question_type_compare',
'question_type_consequence',
'question_type_definition',
'question_type_entity',
'question_type_instructions',
'question_type_procedure',
'question_type_reason_explanation',
'question_type_spelling',
'question_well_written',
]
ANSWER_TARGET_COLUMNS = [
'answer_helpful',
'answer_level_of_information',
'answer_plausible',
'answer_relevance',
'answer_satisfaction',
'answer_type_instructions',
'answer_type_procedure',
'answer_type_reason_explanation',
'answer_well_written']
TARGET_COLUMNS = QUESTION_TARGET_COLUMNS + ANSWER_TARGET_COLUMNS
############################################################################## seed All
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYHTONHASHseed'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False ##uses the inbuilt cudnn auto-tuner to find the fasoof_df convolution algorithms. -
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
############################################################################## define function for training
def get_oof(
tokenizer,
n_splits,
fold,
content,
val_data_loader,
model_type,
model_name,
hidden_layers,
valid_batch_size,
checkpoint_folder,
seed,
swa
):
torch.cuda.empty_cache()
if swa:
checkpoint_filename = 'fold_' + str(fold) + "_checkpoint_swa.pth"
else:
checkpoint_filename = 'fold_' + str(fold) + "_checkpoint.pth"
checkpoint_filepath = os.path.join(checkpoint_folder, checkpoint_filename)
############################################################################## define unet model with backbone
def load(model, pretrain_file, skip=[]):
pretrain_state_dict = torch.load(pretrain_file)
state_dict = model.state_dict()
keys = list(state_dict.keys())
# for model trained with dataparallel
# from collections import OrderedDict
# new_state_dict = OrderedDict()
# for k, v in pretrain_state_dict.items():
# name = k[7:] # remove `module.`
# new_state_dict[name] = v
# pretrain_state_dict = new_state_dict
for key in keys:
if any(s in key for s in skip): continue
try:
state_dict[key] = pretrain_state_dict[key]
except:
print(key)
model.load_state_dict(state_dict)
return model
############################################################################### model
if content == "Question_Answer":
NUM_CLASS = 30
elif content == "Question":
NUM_CLASS = 21
elif content == "Answer":
NUM_CLASS = 9
else:
raise NotImplementedError
if model_type == "bert":
model = QuestNet(model_type=model_name, tokenizer=tokenizer,n_classes=NUM_CLASS, hidden_layers=hidden_layers)
elif model_type == "xlnet":
model = QuestNet(model_type=model_name, tokenizer=tokenizer, n_classes=NUM_CLASS, hidden_layers=hidden_layers)
else:
raise NotImplementedError
model = model.cuda()
model = load(model, checkpoint_filepath)
# init statistics
labels_val = None
pred_val = None
with torch.no_grad():
# init cache
torch.cuda.empty_cache()
for val_batch_i, (token_ids, seg_ids, labels) in enumerate(val_data_loader):
# set model to eval mode
model.eval()
# set input to cuda mode
token_ids = token_ids.cuda()
seg_ids = seg_ids.cuda()
labels = labels.cuda().float()
prediction = model(token_ids, seg_ids)
prediction = torch.sigmoid(prediction)
if val_batch_i == 0:
labels_val = labels.cpu().detach().numpy()
pred_val = prediction.cpu().detach().numpy()
else:
labels_val = np.concatenate((labels_val, labels.cpu().detach().numpy()), axis=0)
pred_val = np.concatenate((pred_val, prediction.cpu().detach().numpy()), axis=0)
spearman = Spearman(labels_val, pred_val)
print("------------------------Valadation----------------------")
print("--------------------------------------------------------")
print("fold", fold, "in fold validation spearman: ", spearman)
print("--------------------------------------------------------")
log = Logger()
log.open(os.path.join(checkpoint_folder, 'in_fold_validartion.txt'), mode='a+')
log.write('fold: %f val_spearman: %f\n' % \
(fold, spearman))
log.write('\n')
np.savez_compressed(checkpoint_folder + '/probability_label_fold_' + str(fold) + '.uint8.npz', labels_val)
np.savez_compressed(checkpoint_folder + '/probability_pred_fold_' + str(fold) + '.uint8.npz', pred_val)
def generate_oof_files(train_data_folder, \
n_splits, \
seed, \
checkpoint_folder, \
target_columns, \
content
):
for fold in range(n_splits):
val_data_path = train_data_folder + "split/val_fold_%s_seed_%s.csv"%(fold, seed)
val_df = pd.read_csv(val_data_path)
pred_val = np.load(checkpoint_folder + 'probability_pred_fold_' + str(fold) + '.uint8.npz')['arr_0']
val_df[target_columns] = pred_val
if fold == 0:
oof = val_df.copy()
else:
oof = pd.concat([oof, val_df], axis=0)
for column in ["Unnamed: 0", "Unnamed: 0.1"]:
if column in oof.columns:
oof = oof.drop([column], axis=1)
save_columns = ["qa_id"]+target_columns
oof = oof[save_columns]
oof = oof.sort_values(by="qa_id")
oof.to_csv(checkpoint_folder + '/oof_' + content + '.csv')
return
def get_spearman(train_df, oof_df, checkpoint_folder, target_columns):
# oof_df = postprocessing(oof_df, target_columns)
# oof_df = postprocessing_v2(oof_df)
spearman = Spearman(train_df[target_columns].values, oof_df[target_columns].values)
log = Logger()
log.open(os.path.join(checkpoint_folder, 'in_fold_validartion.txt'), mode='a+')
log.write('oof_spearman: %f\n' % \
(spearman))
log.write('\n')
return
def postprocessing_v2(oof_df):
scaler = MinMaxScaler()
# type 1 column [0, 0.333333, 0.5, 0.666667, 1]
# type 2 column [0, 0.333333, 0.666667]
# type 3 column [0.333333, 0.444444, 0.5, 0.555556, 0.666667, 0.777778, 0.8333333, 0.888889, 1]
# type 4 column [0.200000, 0.266667, 0.300000, 0.333333, 0.400000, \
# 0.466667, 0.5, 0.533333, 0.600000, 0.666667, 0.700000, \
# 0.733333, 0.800000, 0.866667, 0.900000, 0.933333, 1]
# comment some columns based on oof result
################################################# handle type 1 columns
type_one_column_list = [
'question_conversational', \
'question_has_commonly_accepted_answer', \
'question_not_really_a_question', \
'question_type_choice', \
'question_type_compare', \
'question_type_consequence', \
'question_type_definition', \
'question_type_entity', \
'question_type_instructions',
]
oof_df[type_one_column_list] = scaler.fit_transform(oof_df[type_one_column_list])
tmp = oof_df.copy(deep=True)
for column in type_one_column_list:
oof_df.loc[tmp[column] <= 0.16667, column] = 0
oof_df.loc[(tmp[column] > 0.16667) & (tmp[column] <= 0.41667), column] = 0.333333
oof_df.loc[(tmp[column] > 0.41667) & (tmp[column] <= 0.58333), column] = 0.500000
oof_df.loc[(tmp[column] > 0.58333) & (tmp[column] <= 0.73333), column] = 0.666667
oof_df.loc[(tmp[column] > 0.73333), column] = 1
################################################# handle type 2 columns
# type_two_column_list = [
# 'question_type_spelling'
# ]
# for column in type_two_column_list:
# if sum(tmp[column] > 0.15)>0:
# oof_df.loc[tmp[column] <= 0.15, column] = 0
# oof_df.loc[(tmp[column] > 0.15) & (tmp[column] <= 0.45), column] = 0.333333
# oof_df.loc[(tmp[column] > 0.45), column] = 0.666667
# else:
# t1 = max(int(len(tmp[column])*0.0013),2)
# t2 = max(int(len(tmp[column])*0.0008),1)
# thred1 = sorted(list(tmp[column]))[-t1]
# thred2 = sorted(list(tmp[column]))[-t2]
# oof_df.loc[tmp[column] <= thred1, column] = 0
# oof_df.loc[(tmp[column] > thred1) & (tmp[column] <= thred2), column] = 0.333333
# oof_df.loc[(tmp[column] > thred2), column] = 0.666667
################################################# handle type 3 columns
type_three_column_list = [
'question_interestingness_self',
]
scaler = MinMaxScaler(feature_range=(0, 1))
oof_df[type_three_column_list] = scaler.fit_transform(oof_df[type_three_column_list])
tmp[type_three_column_list] = scaler.fit_transform(tmp[type_three_column_list])
for column in type_three_column_list:
oof_df.loc[tmp[column] <= 0.385, column] = 0.333333
oof_df.loc[(tmp[column] > 0.385) & (tmp[column] <= 0.47), column] = 0.444444
oof_df.loc[(tmp[column] > 0.47) & (tmp[column] <= 0.525), column] = 0.5
oof_df.loc[(tmp[column] > 0.525) & (tmp[column] <= 0.605), column] = 0.555556
oof_df.loc[(tmp[column] > 0.605) & (tmp[column] <= 0.715), column] = 0.666667
oof_df.loc[(tmp[column] > 0.715) & (tmp[column] <= 0.8), column] = 0.833333
oof_df.loc[(tmp[column] > 0.8) & (tmp[column] <= 0.94), column] = 0.888889
oof_df.loc[(tmp[column] > 0.94), column] = 1
################################################# handle type 4 columns
type_four_column_list = [
'answer_satisfaction'
]
scaler = MinMaxScaler(feature_range=(0.2, 1))
oof_df[type_four_column_list] = scaler.fit_transform(oof_df[type_four_column_list])
tmp[type_four_column_list] = scaler.fit_transform(tmp[type_four_column_list])
for column in type_four_column_list:
oof_df.loc[tmp[column] <= 0.233, column] = 0.200000
oof_df.loc[(tmp[column] > 0.233) & (tmp[column] <= 0.283), column] = 0.266667
oof_df.loc[(tmp[column] > 0.283) & (tmp[column] <= 0.315), column] = 0.300000
oof_df.loc[(tmp[column] > 0.315) & (tmp[column] <= 0.365), column] = 0.333333
oof_df.loc[(tmp[column] > 0.365) & (tmp[column] <= 0.433), column] = 0.400000
oof_df.loc[(tmp[column] > 0.433) & (tmp[column] <= 0.483), column] = 0.466667
oof_df.loc[(tmp[column] > 0.483) & (tmp[column] <= 0.517), column] = 0.500000
oof_df.loc[(tmp[column] > 0.517) & (tmp[column] <= 0.567), column] = 0.533333
oof_df.loc[(tmp[column] > 0.567) & (tmp[column] <= 0.633), column] = 0.600000
oof_df.loc[(tmp[column] > 0.633) & (tmp[column] <= 0.683), column] = 0.666667
oof_df.loc[(tmp[column] > 0.683) & (tmp[column] <= 0.715), column] = 0.700000
oof_df.loc[(tmp[column] > 0.715) & (tmp[column] <= 0.767), column] = 0.733333
oof_df.loc[(tmp[column] > 0.767) & (tmp[column] <= 0.833), column] = 0.800000
oof_df.loc[(tmp[column] > 0.883) & (tmp[column] <= 0.915), column] = 0.900000
oof_df.loc[(tmp[column] > 0.915) & (tmp[column] <= 0.967), column] = 0.933333
oof_df.loc[(tmp[column] > 0.967), column] = 1
################################################# round to i / 90 (i from 0 to 90)
# oof_values = oof_df[TARGET_COLUMNS].values
# DEGREE = len(oof_df)//45*9
# if degree:
# DEGREE = degree
# oof_values = np.around(oof_values * DEGREE) / DEGREE ### 90 To be changed
# oof_df[TARGET_COLUMNS] = oof_values
return oof_df
def postprocessing(oof_df):
scaler = MinMaxScaler()
################################################# handle type 1 columns
type_one_column_list = [
'question_conversational', \
'question_has_commonly_accepted_answer', \
'question_not_really_a_question', \
'question_opinion_seeking', \
'question_type_choice', \
'question_type_compare', \
'question_type_consequence', \
'question_type_definition', \
'question_type_entity', \
'question_type_instructions'
]
oof_df[type_one_column_list] = scaler.fit_transform(oof_df[type_one_column_list])
tmp = oof_df.copy(deep=True)
for column in type_one_column_list:
oof_df.loc[tmp[column] <= ((0.333333 + 0)/2), column] = 0
oof_df.loc[(tmp[column] > ((0.333333 + 0)/2)) & (tmp[column] <= ((0.500000 + 0.333333)/2)), column] = 0.333333
oof_df.loc[(tmp[column] > ((0.500000 + 0.333333)/2)) & (tmp[column] <= ((0.666667 + 0.500000)/2)), column] = 0.500000
oof_df.loc[(tmp[column] > ((0.666667 + 0.500000)/2)) & (tmp[column] <= ((1 + 0.666667)/2)), column] = 0.666667
oof_df.loc[(tmp[column] > ((1 + 0.666667)/2)), column] = 1
################################################# handle type 2 columns
type_two_column_list = [
'question_type_spelling'
]
for column in type_two_column_list:
oof_df.loc[tmp[column] <= ((0.333333 + 0)/2), column] = 0
oof_df.loc[(tmp[column] > ((0.333333 + 0)/2)) & (tmp[column] <= ((0.666667 + 0.333333)/2)), column] = 0.333333
oof_df.loc[(tmp[column] > ((0.666667 + 0.333333)/2)), column] = 0.666667
################################################# handle type 3 columns
type_three_column_list = [
'question_interestingness_self',
]
scaler = MinMaxScaler(feature_range=(0.333333, 1))
oof_df[type_three_column_list] = scaler.fit_transform(oof_df[type_three_column_list])
tmp[type_three_column_list] = scaler.fit_transform(tmp[type_three_column_list])
for column in type_three_column_list:
oof_df.loc[tmp[column] <= ((0.444444 + 0.333333)/2), column] = 0.333333
oof_df.loc[(tmp[column] > ((0.444444 + 0.333333)/2)) & (tmp[column] <= ((0.5 + 0.444444)/2)), column] = 0.444444
oof_df.loc[(tmp[column] > ((0.5 + 0.444444)/2)) & (tmp[column] <= ((0.555556 + 0.5)/2)), column] = 0.5
oof_df.loc[(tmp[column] > ((0.555556 + 0.5)/2)) & (tmp[column] <= ((0.666667 + 0.555556)/2)), column] = 0.555556
oof_df.loc[(tmp[column] > ((0.666667 + 0.555556)/2)) & (tmp[column] <= ((0.833333 + 0.666667)/2)), column] = 0.666667
oof_df.loc[(tmp[column] > ((0.833333 + 0.666667)/2)) & (tmp[column] <= ((0.888889 + 0.833333)/2)), column] = 0.833333
oof_df.loc[(tmp[column] > ((0.888889 + 0.833333)/2)) & (tmp[column] <= ((1 + 0.888889)/2)), column] = 0.888889
oof_df.loc[(tmp[column] > ((1 + 0.888889)/2)), column] = 1
################################################# handle type 4 columns
type_four_column_list = [
'answer_satisfaction'
]
scaler = MinMaxScaler(feature_range=(0.200000, 1))
oof_df[type_four_column_list] = scaler.fit_transform(oof_df[type_four_column_list])
tmp[type_four_column_list] = scaler.fit_transform(tmp[type_four_column_list])
for column in type_four_column_list:
oof_df.loc[tmp[column] <= ((0.266667 + 0.200000)/2), column] = 0.200000
oof_df.loc[(tmp[column] > ((0.266667 + 0.200000)/2)) & (tmp[column] <= ((0.300000 + 0.266667)/2)), column] = 0.266667
oof_df.loc[(tmp[column] > ((0.300000 + 0.266667)/2)) & (tmp[column] <= ((0.333333 + 0.300000)/2)), column] = 0.300000
oof_df.loc[(tmp[column] > ((0.333333 + 0.300000)/2)) & (tmp[column] <= ((0.400000 + 0.333333)/2)), column] = 0.333333
oof_df.loc[(tmp[column] > ((0.400000 + 0.333333)/2)) & (tmp[column] <= ((0.466667 + 0.400000)/2)), column] = 0.400000
oof_df.loc[(tmp[column] > ((0.466667 + 0.400000)/2)) & (tmp[column] <= ((0.500000 + 0.466667)/2)), column] = 0.466667
oof_df.loc[(tmp[column] > ((0.500000 + 0.466667)/2)) & (tmp[column] <= ((0.533333 + 0.500000)/2)), column] = 0.500000
oof_df.loc[(tmp[column] > ((0.533333 + 0.500000)/2)) & (tmp[column] <= ((0.600000 + 0.533333)/2)), column] = 0.533333
oof_df.loc[(tmp[column] > ((0.600000 + 0.533333)/2)) & (tmp[column] <= ((0.666667 + 0.600000)/2)), column] = 0.600000
oof_df.loc[(tmp[column] > ((0.666667 + 0.600000)/2)) & (tmp[column] <= ((0.700000 + 0.666667)/2)), column] = 0.666667
oof_df.loc[(tmp[column] > ((0.700000 + 0.666667)/2)) & (tmp[column] <= ((0.733333 + 0.700000)/2)), column] = 0.700000
oof_df.loc[(tmp[column] > ((0.733333 + 0.700000)/2)) & (tmp[column] <= ((0.800000 + 0.733333)/2)), column] = 0.733333
oof_df.loc[(tmp[column] > ((0.800000 + 0.733333)/2)) & (tmp[column] <= ((0.900000 + 0.800000)/2)), column] = 0.800000
oof_df.loc[(tmp[column] > ((0.900000 + 0.800000)/2)) & (tmp[column] <= ((0.933333 + 0.900000)/2)), column] = 0.900000
oof_df.loc[(tmp[column] > ((0.933333 + 0.900000)/2)) & (tmp[column] <= ((1 + 0.933333)/2)), column] = 0.933333
oof_df.loc[(tmp[column] > ((1 + 0.933333)/2)), column] = 1
################################################# round to i / 90 (i from 0 to 90)
oof_values = oof_df[TARGET_COLUMNS].values
DEGREE = 90
oof_values = np.around(oof_values * DEGREE) / DEGREE ### 90 To be changed
oof_df[TARGET_COLUMNS] = oof_values
return oof_df
if __name__ == "__main__":
# torch.multiprocessing.set_start_method('spawn')
args = parser.parse_args()
seed_everything(args.seed)
if args.augment:
if args.extra_token:
checkpoint_folder = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-' + args.content + '-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'aug_differential_extra_token/')
else:
checkpoint_folder = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-' + args.content + '-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'aug_differential/')
else:
if args.extra_token:
checkpoint_folder = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-' + args.content + '-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'extra_token/')
else:
checkpoint_folder = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-' + args.content + '-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + '/')
if args.content == "Question_Answer":
target_columns = TARGET_COLUMNS
elif args.content == "Question":
target_columns = QUESTION_TARGET_COLUMNS
elif args.content == "Answer":
target_columns = ANSWER_TARGET_COLUMNS
else:
raise NotImplementedError
# get oof
data_path = args.train_data_folder + "train_augment_final_with_clean.csv"
get_train_val_split(data_path=data_path, \
save_path=args.train_data_folder, \
n_splits=args.n_splits, \
seed=args.seed, \
split=args.split)
for fold in range(args.n_splits):
# get train_data_loader and val_data_loader
train_data_path = args.train_data_folder + "split/train_fold_%s_seed_%s.csv"%(fold, args.seed)
val_data_path = args.train_data_folder + "split/val_fold_%s_seed_%s.csv"%(fold, args.seed)
if ((args.model_type == "bert") or (args.model_type == "xlnet")):
_, val_data_loader, tokenizer = get_train_val_loaders(train_data_path=train_data_path, \
val_data_path=val_data_path, \
model_type=args.model_name, \
content=args.content, \
max_len=args.max_len, \
batch_size=args.batch_size, \
val_batch_size=args.valid_batch_size, \
num_workers=args.num_workers, \
augment=args.augment, \
extra_token=False)
else:
raise NotImplementedError
get_oof(tokenizer, \
args.n_splits, \
fold, \
args.content, \
val_data_loader, \
args.model_type, \
args.model_name, \
args.hidden_layers, \
args.valid_batch_size, \
checkpoint_folder, \
args.seed, \
args.swa)
generate_oof_files(args.train_data_folder, \
args.n_splits, \
args.seed, \
checkpoint_folder, \
target_columns, \
args.content)
train_df = pd.read_csv(args.train_data_folder + "train.csv")
if args.content == "Question_Answer":
oof_df = pd.read_csv(checkpoint_folder + "oof_Question_Answer.csv")
elif args.content == "Question":
oof_df = pd.read_csv(checkpoint_folder + "oof_Question.csv")
elif args.content == "Answer":
oof_df = pd.read_csv(checkpoint_folder + "oof_Answer.csv")
else:
raise NotImplementedError
get_spearman(train_df, oof_df, checkpoint_folder, target_columns)
if args.merge:
if args.augment:
if args.extra_token:
checkpoint_folder_question = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Question-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'aug_differential_extra_token/')
else:
checkpoint_folder_question = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Question-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'aug_differential/')
else:
if args.extra_token:
checkpoint_folder_question = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Question-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'extra_token/')
else:
checkpoint_folder_question = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Question-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + '/')
oof_question = pd.read_csv(checkpoint_folder_question + "oof_Question.csv")
if args.augment:
if args.extra_token:
checkpoint_folder_answer = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Answer-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'aug_differential_extra_token/')
else:
checkpoint_folder_answer = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Answer-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'aug_differential/')
else:
if args.extra_token:
checkpoint_folder_answer = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Answer-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + 'extra_token/')
else:
checkpoint_folder_answer = os.path.join(args.checkpoint_folder, args.model_type + '/' + args.model_name + '-Answer-' + args.loss + '-' + \
args.optimizer + '-' + args.lr_scheduler + '-' + str(args.n_splits) + '-' + str(args.seed) + '-' + '/')
oof_answer = pd.read_csv(checkpoint_folder_answer + "oof_Answer.csv")
oof_df = pd.concat([oof_question[QUESTION_TARGET_COLUMNS], oof_answer[ANSWER_TARGET_COLUMNS]], axis=1)
oof_df['qa_id'] = oof_question['qa_id']
get_spearman(train_df, oof_df, checkpoint_folder, TARGET_COLUMNS)
oof_df.to_csv(checkpoint_folder_answer + "oof_Question_Answer.csv")
gc.collect()