forked from see--/natural-question-answering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils_nq.py
828 lines (705 loc) · 33.3 KB
/
utils_nq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Load NQ dataset. """
import json
import logging
import os
import collections
import pickle
import pandas as pd
from tqdm import tqdm
import numpy as np
from transformers.tokenization_bert import whitespace_tokenize
logger = logging.getLogger(__name__)
NQExample = collections.namedtuple("NQExample", [
"qas_id", "question_text", "doc_tokens", "orig_answer_text",
"start_position", "end_position", "long_position",
"short_is_impossible", "long_is_impossible", "crop_start"])
Crop = collections.namedtuple("Crop", ["unique_id", "example_index", "doc_span_index",
"tokens", "token_to_orig_map", "token_is_max_context",
"input_ids", "attention_mask", "token_type_ids",
# "p_mask",
"paragraph_len", "start_position", "end_position", "long_position",
"short_is_impossible", "long_is_impossible"])
LongAnswerCandidate = collections.namedtuple('LongAnswerCandidate', [
'start_token', 'end_token', 'top_level'])
UNMAPPED = -123
CLS_INDEX = 0
def get_add_tokens(do_enumerate):
tags = ['Dd', 'Dl', 'Dt', 'H1', 'H2', 'H3', 'Li', 'Ol', 'P', 'Table', 'Td', 'Th', 'Tr', 'Ul']
opening_tags = [f'<{tag}>' for tag in tags]
closing_tags = [f'</{tag}>' for tag in tags]
added_tags = opening_tags + closing_tags
# See `nq_to_sqaud.py` for special-tokens
special_tokens = ['<P>', '<Table>']
if do_enumerate:
for special_token in special_tokens:
for j in range(11):
added_tags.append(f'<{special_token[1: -1]}{j}>')
add_tokens = ['Td_colspan', 'Th_colspan', '``', '\'\'', '--']
add_tokens = add_tokens + added_tags
return add_tokens
def find_closing_tag(tokens, opening_tag):
closing_tag = f'</{opening_tag[1: -1]}>'
index, stack = -1, []
for token_index, token in enumerate(tokens):
if token == opening_tag:
stack.insert(0, opening_tag)
elif token == closing_tag:
stack.pop()
if len(stack) == 0:
index = token_index
break
return index
def read_candidates(candidate_files, do_cache=True):
assert isinstance(candidate_files, (tuple, list)), candidate_files
for fn in candidate_files:
assert os.path.exists(fn), f'Missing file {fn}'
cache_fn = 'candidates.pkl'
candidates = {}
if not os.path.exists(cache_fn):
for fn in candidate_files:
with open(fn) as f:
for line in tqdm(f):
entry = json.loads(line)
example_id = str(entry['example_id'])
cnds = entry.pop('long_answer_candidates')
cnds = [LongAnswerCandidate(c['start_token'], c['end_token'],
c['top_level']) for c in cnds]
candidates[example_id] = cnds
if do_cache:
with open(cache_fn, 'wb') as f:
pickle.dump(candidates, f)
else:
print(f'Loading from cache: {cache_fn}')
with open(cache_fn, 'rb') as f:
candidates = pickle.load(f)
return candidates
def is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
def read_nq_examples(input_file_or_data, is_training):
"""Read a NQ json file into a list of NQExample. Refer to `nq_to_squad.py`
to convert the `simplified-nq-t*.jsonl` files to NQ json."""
if isinstance(input_file_or_data, str):
with open(input_file_or_data, "r", encoding='utf-8') as f:
input_data = json.load(f)["data"]
else:
input_data = input_file_or_data
for entry_index, entry in enumerate(tqdm(input_data, total=len(input_data))):
# if entry_index >= 2:
# break
assert len(entry["paragraphs"]) == 1
paragraph = entry["paragraphs"][0]
paragraph_text = paragraph["context"]
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
for c in paragraph_text:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
assert len(paragraph["qas"]) == 1
qa = paragraph["qas"][0]
start_position = None
end_position = None
long_position = None
orig_answer_text = None
short_is_impossible = False
long_is_impossible = False
if is_training:
short_is_impossible = qa["short_is_impossible"]
short_answers = qa["short_answers"]
if len(short_answers) >= 2:
# logger.info(f"Choosing leftmost of "
# f"{len(short_answers)} short answer")
short_answers = sorted(short_answers, key=lambda sa: sa["answer_start"])
short_answers = short_answers[0: 1]
if not short_is_impossible:
answer = short_answers[0]
orig_answer_text = answer["text"]
answer_offset = answer["answer_start"]
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[
answer_offset + answer_length - 1]
# Only add answers where the text can be exactly
# recovered from the document. If this CAN'T
# happen it's likely due to weird Unicode stuff
# so we will just skip the example.
#
# Note that this means for training mode, every
# example is NOT guaranteed to be preserved.
actual_text = " ".join(doc_tokens[start_position:
end_position + 1])
cleaned_answer_text = " ".join(
whitespace_tokenize(orig_answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logger.warning(
"Could not find answer: '%s' vs. '%s'",
actual_text, cleaned_answer_text)
continue
else:
start_position = -1
end_position = -1
orig_answer_text = ""
long_is_impossible = qa["long_is_impossible"]
long_answers = qa["long_answers"]
if (len(long_answers) != 1) and not long_is_impossible:
raise ValueError(f"For training, each question"
f" should have exactly 1 long answer.")
if not long_is_impossible:
long_answer = long_answers[0]
long_answer_offset = long_answer["answer_start"]
long_position = char_to_word_offset[long_answer_offset]
else:
long_position = -1
# print(f'Q:{question_text}')
# print(f'A:{start_position}, {end_position},
# {orig_answer_text}')
# print(f'R:{doc_tokens[start_position: end_position]}')
if not short_is_impossible and not long_is_impossible:
assert long_position <= start_position
if not short_is_impossible and long_is_impossible:
assert False, f'Invalid pair short, long pair'
example = NQExample(
qas_id=qa["id"],
question_text=qa["question"],
doc_tokens=doc_tokens,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position,
long_position=long_position,
short_is_impossible=short_is_impossible,
long_is_impossible=long_is_impossible,
crop_start=qa["crop_start"])
yield example
DocSpan = collections.namedtuple("DocSpan", ["start", "length"])
def get_spans(doc_stride, max_tokens_for_doc, max_len):
doc_spans = []
start_offset = 0
while start_offset < max_len:
length = max_len - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(DocSpan(start=start_offset, length=length))
if start_offset + length == max_len:
break
start_offset += min(length, doc_stride)
return doc_spans
def convert_examples_to_crops(examples_gen, tokenizer, max_seq_length,
doc_stride, max_query_length, is_training,
cls_token='[CLS]', sep_token='[SEP]', pad_id=0,
sequence_a_segment_id=0,
sequence_b_segment_id=1,
cls_token_segment_id=0,
pad_token_segment_id=0,
mask_padding_with_zero=True,
p_keep_impossible=None,
sep_token_extra=False):
"""Loads a data file into a list of `InputBatch`s."""
assert p_keep_impossible is not None, '`p_keep_impossible` is required'
unique_id = 1000000000
num_short_pos, num_short_neg = 0, 0
num_long_pos, num_long_neg = 0, 0
sub_token_cache = {}
# max_N, max_M = 1024, 1024
# f = np.zeros((max_N, max_M), dtype=np.float32)
crops = []
for example_index, example in enumerate(examples_gen):
if example_index % 1000 == 0 and example_index > 0:
logger.info('Converting %s: short_pos %s short_neg %s'
' long_pos %s long_neg %s',
example_index, num_short_pos, num_short_neg,
num_long_pos, num_long_neg)
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
# this takes the longest!
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for i, token in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = sub_token_cache.get(token)
if sub_tokens is None:
sub_tokens = tokenizer.tokenize(token)
sub_token_cache[token] = sub_tokens
tok_to_orig_index.extend([i for _ in range(len(sub_tokens))])
all_doc_tokens.extend(sub_tokens)
tok_start_position = None
tok_end_position = None
if is_training and example.short_is_impossible:
tok_start_position = -1
tok_end_position = -1
if is_training and not example.short_is_impossible:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[
example.end_position + 1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
tok_long_position = None
if is_training and example.long_is_impossible:
tok_long_position = -1
if is_training and not example.long_is_impossible:
tok_long_position = orig_to_tok_index[example.long_position]
# For Bert: [CLS] question [SEP] paragraph [SEP]
special_tokens_count = 3
if sep_token_extra:
# For Roberta: <s> question </s> </s> paragraph </s>
special_tokens_count += 1
max_tokens_for_doc = max_seq_length - len(query_tokens) - special_tokens_count
assert max_tokens_for_doc > 0
# We can have documents that are longer than the maximum
# sequence length. To deal with this we do a sliding window
# approach, where we take chunks of the up to our max length
# with a stride of `doc_stride`.
doc_spans = get_spans(doc_stride, max_tokens_for_doc, len(all_doc_tokens))
for doc_span_index, doc_span in enumerate(doc_spans):
# Tokens are constructed as: CLS Query SEP Paragraph SEP
tokens = []
token_to_orig_map = UNMAPPED * np.ones((max_seq_length, ), dtype=np.int32)
token_is_max_context = np.zeros((max_seq_length, ), dtype=np.bool)
token_type_ids = []
# p_mask: mask with 1 for token than cannot be in the
# answer (0 for token which can be in an answer)
# Original TF implem also keep the classification token
# (set to 0) (not sure why...)
# p_mask = []
short_is_impossible = example.short_is_impossible
start_position = None
end_position = None
special_tokens_offset = special_tokens_count - 1
doc_offset = len(query_tokens) + special_tokens_offset
if is_training and not short_is_impossible:
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
start_position = 0
end_position = 0
short_is_impossible = True
else:
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
long_is_impossible = example.long_is_impossible
long_position = None
if is_training and not long_is_impossible:
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
# out of span
if not (tok_long_position >= doc_start and tok_long_position <= doc_end):
long_position = 0
long_is_impossible = True
else:
long_position = tok_long_position - doc_start + doc_offset
# drop impossible samples
if long_is_impossible:
if np.random.rand() > p_keep_impossible:
continue
# CLS token at the beginning
tokens.append(cls_token)
token_type_ids.append(cls_token_segment_id)
# p_mask.append(0) # can be answer
# Query
tokens += query_tokens
token_type_ids += [sequence_a_segment_id] * len(query_tokens)
# p_mask += [1] * len(query_tokens) # can not be answer
# SEP token
tokens.append(sep_token)
token_type_ids.append(sequence_a_segment_id)
# p_mask.append(1) # can not be answer
if sep_token_extra:
tokens.append(sep_token)
token_type_ids.append(sequence_a_segment_id)
# p_mask.append(1)
# Paragraph
for i in range(doc_span.length):
split_token_index = doc_span.start + i
# We add `example.crop_start` as the original document
# is already shifted
token_to_orig_map[len(tokens)] = tok_to_orig_index[
split_token_index] + example.crop_start
token_is_max_context[len(tokens)] = check_is_max_context(doc_spans,
doc_span_index, split_token_index)
tokens.append(all_doc_tokens[split_token_index])
token_type_ids.append(sequence_b_segment_id)
# p_mask.append(0) # can be answer
paragraph_len = doc_span.length
# SEP token
tokens.append(sep_token)
token_type_ids.append(sequence_b_segment_id)
# p_mask.append(1) # can not be answer
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(pad_id)
attention_mask.append(0 if mask_padding_with_zero else 1)
token_type_ids.append(pad_token_segment_id)
# p_mask.append(1) # can not be answer
# reduce memory, only input_ids needs more bits
input_ids = np.array(input_ids, dtype=np.int32)
attention_mask = np.array(attention_mask, dtype=np.bool)
token_type_ids = np.array(token_type_ids, dtype=np.uint8)
# p_mask = np.array(p_mask, dtype=np.bool)
if is_training and short_is_impossible:
start_position = CLS_INDEX
end_position = CLS_INDEX
if is_training and long_is_impossible:
long_position = CLS_INDEX
if example_index in (0, 10):
# too spammy otherwise
if doc_span_index in (0, 5):
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(tokens))
# logger.info("token_to_orig_map: %s" % " ".join([
# "%d:%d" % (x, y) for (x, y) in enumerate(token_to_orig_map)]))
# logger.info("token_is_max_context: %s" % " ".join([
# "%d:%s" % (x, y) for (x, y) in enumerate(token_is_max_context)
# ]))
logger.info("input_ids: %s" % input_ids)
logger.info("attention_mask: %s" % np.uint8(attention_mask))
logger.info("token_type_ids: %s" % token_type_ids)
if is_training and short_is_impossible:
logger.info("short impossible example")
if is_training and long_is_impossible:
logger.info("long impossible example")
if is_training and not short_is_impossible:
answer_text = " ".join(tokens[start_position: end_position + 1])
logger.info("start_position: %d" % (start_position))
logger.info("end_position: %d" % (end_position))
logger.info("answer: %s" % (answer_text))
if short_is_impossible:
num_short_neg += 1
else:
num_short_pos += 1
if long_is_impossible:
num_long_neg += 1
else:
num_long_pos += 1
crop = Crop(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
# p_mask=p_mask,
paragraph_len=paragraph_len,
start_position=start_position,
end_position=end_position,
long_position=long_position,
short_is_impossible=short_is_impossible,
long_is_impossible=long_is_impossible)
crops.append(crop)
unique_id += 1
return crops
def check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# Because of the sliding window approach taken to scoring documents, a single
# token can appear in multiple documents. E.g.
# Doc: the man went to the store and bought a gallon of milk
# Span A: the man went to the
# Span B: to the store and bought
# Span C: and bought a gallon of
# ...
#
# Now the word 'bought' will have two scores from spans B and C. We only
# want to consider the score with "maximum context", which we define as
# the *minimum* of its left and right context (the *sum* of left and
# right context will always be the same, of course).
#
# In the example the maximum context for 'bought' would be span C since
# it has 1 left context and 3 right context, while span B has 4 left context
# and 0 right context.
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
PrelimPrediction = collections.namedtuple("PrelimPrediction",
["crop_index", "start_index", "end_index", "start_logit", "end_logit"])
NbestPrediction = collections.namedtuple("NbestPrediction", [
"text", "start_logit", "end_logit",
"start_index", "end_index",
"orig_doc_start", "orig_doc_end", "crop_index"])
def clean_text(tok_text):
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
return tok_text
def get_nbest(prelim_predictions, crops, example, n_best_size):
seen, nbest = set(), []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
crop = crops[pred.crop_index]
orig_doc_start, orig_doc_end = -1, -1
# non-null
orig_doc_start, orig_doc_end = -1, -1
if pred.start_index > 0:
# Long answer has no end_index. We still generate some text to check
if pred.end_index == -1:
tok_tokens = crop.tokens[pred.start_index: pred.start_index + 11]
else:
tok_tokens = crop.tokens[pred.start_index: pred.end_index + 1]
tok_text = " ".join(tok_tokens)
tok_text = clean_text(tok_text)
orig_doc_start = int(crop.token_to_orig_map[pred.start_index])
if pred.end_index == -1:
orig_doc_end = orig_doc_start + 10
else:
orig_doc_end = int(crop.token_to_orig_map[pred.end_index])
final_text = tok_text
if final_text in seen:
continue
else:
final_text = ""
seen.add(final_text)
nbest.append(NbestPrediction(
text=final_text,
start_logit=pred.start_logit, end_logit=pred.end_logit,
start_index=pred.start_index, end_index=pred.end_index,
orig_doc_start=orig_doc_start, orig_doc_end=orig_doc_end,
crop_index=pred.crop_index))
# Degenerate case. I never saw this happen.
if len(nbest) in (0, 1):
nbest.insert(0, NbestPrediction(text="empty",
start_logit=0.0, end_logit=0.0,
start_index=-1, end_index=-1,
orig_doc_start=-1, orig_doc_end=-1,
crop_index=UNMAPPED))
assert len(nbest) >= 1
return nbest
def write_predictions(examples_gen, all_crops, all_results, n_best_size,
max_answer_length, output_prediction_file,
output_nbest_file, output_null_log_odds_file, verbose_logging,
short_null_score_diff, long_null_score_diff):
"""Write final predictions to the json file and log-odds of null if needed."""
logger.info("Writing predictions to: %s" % output_prediction_file)
logger.info("Writing nbest to: %s" % output_nbest_file)
# create indexes
example_index_to_crops = collections.defaultdict(list)
for crop in all_crops:
example_index_to_crops[crop.example_index].append(crop)
unique_id_to_result = {result.unique_id: result for result in all_results}
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
short_num_empty, long_num_empty = 0, 0
for example_index, example in enumerate(examples_gen):
if example_index % 1000 == 0 and example_index > 0:
logger.info(f'[{example_index}]: {short_num_empty} short and {long_num_empty} long empty')
crops = example_index_to_crops[example_index]
short_prelim_predictions, long_prelim_predictions = [], []
for crop_index, crop in enumerate(crops):
assert crop.unique_id in unique_id_to_result, f"{crop.unique_id}"
result = unique_id_to_result[crop.unique_id]
# get the `n_best_size` largest indexes
# https://stackoverflow.com/questions/6910641/how-do-i-get-indices-of-n-maximum-values-in-a-numpy-array#23734295
start_indexes = np.argpartition(result.start_logits, -n_best_size)[-n_best_size:]
start_indexes = [int(x) for x in start_indexes]
end_indexes = np.argpartition(result.end_logits, -n_best_size)[-n_best_size:]
end_indexes = [int(x) for x in end_indexes]
# create short answers
for start_index in start_indexes:
if start_index >= len(crop.tokens):
continue
# this skips [CLS] i.e. null prediction
if crop.token_to_orig_map[start_index] == UNMAPPED:
continue
if not crop.token_is_max_context[start_index]:
continue
for end_index in end_indexes:
if end_index >= len(crop.tokens):
continue
if crop.token_to_orig_map[end_index] == UNMAPPED:
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
short_prelim_predictions.append(PrelimPrediction(
crop_index=crop_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index]))
long_indexes = np.argpartition(result.long_logits, -n_best_size)[-n_best_size:].tolist()
for long_index in long_indexes:
if long_index >= len(crop.tokens):
continue
# this skips [CLS] i.e. null prediction
if crop.token_to_orig_map[long_index] == UNMAPPED:
continue
# TODO(see--): Is this needed?
# -> Yep helps both short and long by about 0.1
if not crop.token_is_max_context[long_index]:
continue
long_prelim_predictions.append(PrelimPrediction(
crop_index=crop_index,
start_index=long_index, end_index=-1,
start_logit=result.long_logits[long_index],
end_logit=result.long_logits[long_index]))
short_prelim_predictions = sorted(short_prelim_predictions,
key=lambda x: x.start_logit + x.end_logit, reverse=True)
short_nbest = get_nbest(short_prelim_predictions, crops,
example, n_best_size)
short_best_non_null = None
for entry in short_nbest:
if short_best_non_null is None:
if entry.text != "":
short_best_non_null = entry
long_prelim_predictions = sorted(long_prelim_predictions,
key=lambda x: x.start_logit, reverse=True)
long_nbest = get_nbest(long_prelim_predictions, crops,
example, n_best_size)
long_best_non_null = None
for entry in long_nbest:
if long_best_non_null is None:
if entry.text != "":
long_best_non_null = entry
nbest_json = {'short': [], 'long': []}
for kk, entries in [('short', short_nbest), ('long', long_nbest)]:
for i, entry in enumerate(entries):
output = {}
output["text"] = entry.text
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
output["start_index"] = entry.start_index
output["end_index"] = entry.end_index
output["orig_doc_start"] = entry.orig_doc_start
output["orig_doc_end"] = entry.orig_doc_end
nbest_json[kk].append(output)
assert len(nbest_json['short']) >= 1
assert len(nbest_json['long']) >= 1
# We use the [CLS] score of the crop that has the maximum positive score
# long_score_diff = min_long_score_null - long_best_non_null.start_logit
# Predict "" if null score - the score of best non-null > threshold
try:
crop_unique_id = crops[short_best_non_null.crop_index].unique_id
start_score_null = unique_id_to_result[crop_unique_id].start_logits[CLS_INDEX]
end_score_null = unique_id_to_result[crop_unique_id].end_logits[CLS_INDEX]
short_score_null = start_score_null + end_score_null
short_score_diff = short_score_null - (short_best_non_null.start_logit +
short_best_non_null.end_logit)
if short_score_diff > short_null_score_diff:
final_pred = ("", -1, -1)
short_num_empty += 1
else:
final_pred = (short_best_non_null.text, short_best_non_null.orig_doc_start,
short_best_non_null.orig_doc_end)
except Exception as e:
print(e)
final_pred = ("", -1, -1)
short_num_empty += 1
try:
long_score_null = unique_id_to_result[crops[
long_best_non_null.crop_index].unique_id].long_logits[CLS_INDEX]
long_score_diff = long_score_null - long_best_non_null.start_logit
scores_diff_json[example.qas_id] = {'short_score_diff': short_score_diff,
'long_score_diff': long_score_diff}
if long_score_diff > long_null_score_diff:
final_pred += ("", -1)
long_num_empty += 1
# print(f"LONG EMPTY: {round(long_score_null, 2)} vs "
# f"{round(long_best_non_null.start_logit, 2)} (th {long_null_score_diff})")
else:
final_pred += (long_best_non_null.text, long_best_non_null.orig_doc_start)
except Exception as e:
print(e)
final_pred += ("", -1)
long_num_empty += 1
all_predictions[example.qas_id] = final_pred
all_nbest_json[example.qas_id] = nbest_json
if output_prediction_file is not None:
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=2))
if output_nbest_file is not None:
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=2))
if output_null_log_odds_file is not None:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=2))
logger.info(f'{short_num_empty} short and {long_num_empty} long empty of'
f' {example_index}')
return all_predictions
def convert_preds_to_df(preds, candidates):
num_found_long, num_searched_long = 0, 0
df = {'example_id': [], 'PredictionString': []}
for example_id, pred in preds.items():
short_text, start_token, end_token, long_text, long_token = pred
df['example_id'].append(example_id + '_short')
short_answer = ''
if start_token != -1:
# +1 is required to make the token inclusive
short_answer = f'{start_token}:{end_token + 1}'
df['PredictionString'].append(short_answer)
# print(entry['document_text'].split(' ')[start_token: end_token + 1])
# find the long answer
long_answer = ''
found_long = False
min_dist = 1_000_000
if long_token != -1:
num_searched_long += 1
for candidate in candidates[example_id]:
cstart, cend = candidate.start_token, candidate.end_token
dist = abs(cstart - long_token)
if dist < min_dist:
min_dist = dist
if long_token == cstart:
long_answer = f'{cstart}:{cend}'
found_long = True
break
if found_long:
num_found_long += 1
else:
logger.info(f"Not found: {min_dist}")
df['example_id'].append(example_id + '_long')
df['PredictionString'].append(long_answer)
df = pd.DataFrame(df)
print(f'Found {num_found_long} of {num_searched_long} (total {len(preds)})')
return df