To establish the best practise for sim-exp
benchmarking and comparisons

Juncheng E



Keywords

e Protocol for comparison of raw simulated to raw

experimental data
benchmarking experiment and simulation

compare multidimensional data



Implementation in scientific research



Correlation plot

Partitioning of Amino Acid Side Chains into Lipid Bilayers: Results from
Computer Simulations and Comparison to Experiment
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Figure 3. Comparison of calculated results (vertical axis) to ex-
perimental results (horizontal axis). Residues are indicated by a
circle and labeled with the corresponding single letter amino acid
code. Solid lines indicate perfect agreement between calculation

J. MacCallum et aI., Journal of General PhyS|O|09y (2007) and experiment. In all cases, the experimental and calculated



Pearson product-moment correlation coefficient

where,

TZ_

2
ny

040y

Oy = X (i — %)%, 0y, = XL (i — ¥)? ,and g,y = XL, (x;y; — X¥), x and y are two sets of data to be
correlated. As see in Fig. 2 the contour plot is a representation of a 2-D matrix, and to use the Pearson product-

moment correlation, the matrix should be rearranged to an array of data.
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FIGURE 5. A comparison of, (a) experimental and (b) numerical, 2d contour plots of 1”” diameter and 0.085”
depth axisymmetric defect
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TABLE 1. 2d correlation coefficients of defects considered

Experimental
Diameter /inch 0.375 0.750 1.000

Depth/inch | 0.085 | 0.160 | 0.265 | 0.085 | 0.160 | 0.265 | 0.085 | 0.160 | 0.265

0.085 0.94 080 |0.79 057 032 044 |0.12 |-0.02 |0.26

0.375 0.160 0.83 092 | 090 058 [0.55 [0.64 |0.19 [021 |0.43
0.265 0.70 075 1094 |039 |035 |0.75 [0.05 [0.06 |0.62

E 0.085 0.64 068 052 1092 [0.72 |045 |0.70 |0.54 |0.25
E 0.750 0.160 0.29 061 1052 1067 [091 [0.72 | 0.68 |085 |0.57
> 0.265 0.36 053 1078 1030 |044 090 (0.19 [0.31 |0.88
0.085 0.19 035 1023 ]0.74 [0.75 044 | 090 |081 |0.36

1.000 0.160 <005 [026 |0.18 |049 (0.80 [0.54 |0.73 |0.94 |[0.50
0.265 0.15 029 |0.57 |0.13 |030 |0.84 [0.16 [0.29 |0.93

L. Sripragash and M. Sundaresan, AIP Conference Proceedings 1806, 100002 (2017)
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Code-to-code comparison

ABSTRACT

Verification and validation of multi-physics codes dedicated to fast-spectrum molten salt reactors (MSR)
is a very challenging task. Existing benchmarks are meant for single-physics codes, while experimental
data for validation are absent. This is concerning, given the importance numerical simulations have in
the development of fast MSR designs. Here, we propose the use of a coupled numerical benchmark specif-
ically designed to assess the physics-coupling capabilities of the aforementioned codes. The benchmark
focuses on the specific characteristics of fast MSRs and features a step-by-step approach, where physical
phenomena are gradually coupled to easily identify sources of error. We collect and compare the results
obtained during the benchmarking campaign of four multi-physics tools developed within the SAMOFAR
project. Results show excellent agreement for all the steps of the benchmark. The benchmark generality
and the broad spectrum of results provided constitute a useful tool for the testing and development of

similar multi-physics codes.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http:/Jcreativecommons.org/licenses/by/4.0]).

Discrepancy

Np
Z (Qc(r)
€= |=
N, )
> Qag(r)
i=1

Qavg(ri)

Tiberga et al., Annals of Nuclear Energy, 2020



R-factor
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where
Nrea($2) = % = /oo J(t)d—aﬁ(t)dt (22)
dQ ).~ dQ

is the number of photons (per unit solid angle) scattered from
the sample undergoing x-ray-induced electronic damage, and

Nieal(Q) = t/milﬂdtfgﬁ
ideal —( " ( )dQ

is the number of photons (per unit solid angle) scattered from
the undamaged sample, which is given by the fluence ( F') times
the differential cross section of the undamaged sample. In our
case, the undamaged sample is the neutral carbon atom in its
ground configuration.

dO’S

neutral d 2 Ineutral

(23)

Son, S.-K., Young, L. & Santra, R., Physical Review A 83, (2011).
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Cosine similarity
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Euclidean Distance

Introduction to Data Mining
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Higher dimension?



Comparing N-dimensional Distributions

PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003

B
A Multivariate Method for Comparing N-dimensional Distributions Q > @& \

James D. Loudin and Hannu E. Miettinen
Rice University, Houston, TX 77005, U.S.A.

fUx)
D (X)=—2 " __ _SD-diste.
A fAx)+E5(x)
We propose a new multivariate method for comparing two N-dimensional distributions. We first use kernel
estimation to construct probability densities for the two data sets, and then define two discriminant functions,
one appropriate for the null hypothesis and another appropriate for the actual data. Distributions of the two f
discriminant functions at random test points are then compared using the one-dimensional K-S test. The —> A
performance of the method is illustrated with Monte Carlo data.
. * * .
random test points —— 3 —> D’(X) —> D’-distr.
- iy . . . f1 — D* —> D*-distr.
1. Construct probability densities using kernel estimation f,(x), =& PR
L] *® ]
f5(x) . . .
. . . . . f' - 1 istr.
2. Calculate the discriminant function D and its mean values A —> DUX)—> D -disee
—— f — D*(X)—> D*-distr.
* -
<d> =12 (a) {D")-distr.

In the 10% case the mean value is 0.12,
indicating that there is a ~30% probability that
the average d would exceed this value for
two identical densities
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Why is Euclidean distance not a good metric in high dimensions?

8 Answers ‘ Active ‘ Oldest | Votes

A great summary of non-intuitive results in higher dimensions comes from "A Few Useful Things to
Know about Machine Learning” by Pedro Domingos at the University of Washington:

311

[O]ur intuitions, which come from a three-dimensional world, often do not apply in high-
dimensional ones. In high dimensions, most of the mass of a multivariate Gaussian

V distribution is not near the mean, but in an increasingly distant “shell” around it; and most
of the volume of a high-dimensional orange is in the skin, not the pulp. If a constant
number of examples is distributed uniformly in a high-dimensional hypercube, beyond
some dimensionality most examples are closer to a face of the hypercube than to their
nearest neighbor. And if we approximate a hypersphere by inscribing it in a hypercube, in
high dimensions almost all the volume of the hypercube is outside the hypersphere. This is
bad news for machine learning, where shapes of one type are often approximated by
shapes of another.

The article is also full of many additional pearls of wisdom for machine learning.

Another application, beyond machine learning, is nearest neighbor search: given an observation of
interest, find its nearest neighbors (in the sense that these are the points with the smallest distance
from the query point). But in high dimensions, a curious phenomenon arises: the ratio between the
nearest and farthest points approaches 1, i.e. the points essentially become uniformly distant from
each other. This phenomenon can be observed for wide variety of distance metrics, but it is more
pronounced for the Euclidean metric than, say, Manhattan distance metric. The premise of nearest
neighbor search is that "closer" points are more relevant than "farther” points, but if all points are
essentially uniformly distant from each other, the distinction is meaningless.

From Charu C. Aggarwal, Alexander Hinneburg, Daniel A. Keim, "On the Surprising Behavior of
Distance Metrics in High Dimensional Space™

https://stats.stackexchange.com/questions/9917 1/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions



Discussion

1. Should we narrow the focus to cases with same binning (simulation can always be set to real detector binning),
or consider how to compare data with different binnings?

2. Is there a way to compare event data that was never in a histogram to begin with?

3. Assuming we find a systematic way to do this comparison, how do we implement it? As a little library we all use
in VINYL?



Why do we want to compare simulations with experiments

Verification assesses the degree to

_ which a code correctly implements
Heany the chosen physical model
Experimental Design Measurements:
with Engineering Incomplete and
Constraints 7 with Uncertainties

Experiments

Validation assesses the degree to
Physical Insights Code Validation which a code describes the real
world.

Model Development
Theory/Computation
(Code Verification)

Figure 1. The interrelationship between simulations, experiments and physical reality are
illustrated along with the processes that connect them.

Greenwald, M., Computer Physics Communications 164, 1-8 (2004)



Why do we want to compare simulations with experiments

Differences between measurements and code results can arise through several sources.
- Model formulation errors — missing or incorrect physics
- Numerical solution errors due to discretization, boundary conditions or
implementation
- Measurement errors and scarcity

Increasing A Complete Systems Number of code runs
Realism in physics Number of Experiments
and geometry
Quality and quantity of data
Coupling of physics Subsystem Cases

Accuracy
Complexity
Information on initial and
boundary conditions

Unit Problems

Y Decreasing

Figure 2. The hierarchy of validation begins with experiments designed to isolate particular
physical phenomena and proceeds to more complex and realistic cases. As the hierarchy is
traversed, the quantity and quality of data decreases, making comparisons less definitive.

Greenwald, M., Computer Physics Communications 164, 1-8 (2004)



Why do we want to compare simulations with experiments

1. Verify codes first.

2. Plan a hierarchy of experiments beginning with the simplest physics and geometry.

3. Design experiments jointly by experimentalists and computationalists.

4. Experiments should test crucial features of the model, especially its assumptions or important
simplifications. Perturbing effects should be minimized. Geometry, boundary and initial conditions must be
well characterized and documented. Critical measurements should be defined and limitations, uncertainties,
and sources of error discussed with openness and candor.

5. Document code predictions in advance.

6. While jointly designed, carry out experiments and code runs independently.

7. Make as complete measurements as possible when carrying out experiments. Multiple

diagnostics to measure the same quantities are desirable. Statistically sufficient data sets

should be collected, repeating runs as required. It can be valuable to conduct experiments

at more than one facility if this is practical.

8. Pay special attention to analysis of errors and uncertainties. Use modern statistical

techniques to design experiments and to identify random and bias errors.

9. When analyzing results, don’t paper over differences. The goal is not to prove that a code

is correct, but to assess its reliability and point the way towards improvement.

10. Document process and results including data reduction techniques and error analysis.



Why do we want to compare simulations with experiments

In many cases, it is preferable to make comparisons through “synthetic” diagnostics — that is by
post-processing simulation data in a manner which is as analogous as possible to the physical diagnostic.

Databases dedicated for comparisons between simulations and experiments:

- Dynamic and interactive — able to be updated, annotated, appended

- Include metadata (data about the data) for every data item. This would document, for example, where the
data came from, when it was written, who was responsible for it as well as basic information on the data type,
size, structure and so forth creating a complete coherent self-descriptive structure

- Include both experimental and modeling data

- Contain all auxiliary data, assumptions, geometry, boundary and initial conditions

- Contain estimations of error

- Regimes well defined

- Able to be queried - searchable by content or by address

- Able to be browsed

- Linked to publications

Greenwald, M., Computer Physics Communications 164, 1-8 (2004)
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Radiation instrumentation, data acquisition and data analysis
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Rui Xu,*P* Sara Salha,” Kevin S. Raines,” Huaidong Jiang, Chien-Chun Chen,”
Received 26 March 2010 Yukio Takahashi,® Yoshiki Kohmura,” Yoshinori Nishino,® Changyong Song,”
Accepled 9 December 2010 Tetsuya Ishikawa® and Jianwei Miao®

“Dep of Physics and y and California N S Institute, University of
California, Los Angeles, CA 90095, USA, "RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo
679-5148, Japan, “State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100,
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Since the first demonstration of coherent diffraction microscopy in 1999, this
lensless imaging technique has been experimentally refined by continued
developments. Here, instrumentation and experimental procedures for
measuring oversampled diffraction patterns from non-crystalline specimens
using an undulator beamline (BL29XUL) at SPring-8 are presented. In addition,
detailed post-experimental data analysis is provided that yields high-quality
image reconstructions. As the acquisition of high-quality diffraction patterns is
at least as important as the phase-retrieval procedure to guarantee successful
image reconstructions, this work will be of interest for those who want to apply
this imaging technique to materials science and biological samples.

Oversampling requirements: A function of the X-ray wavelength,
the sample size and the detector pixel size (Miao et al. 2003b)

Quantitative density map (Song et al., 2008)



