Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[XPU] cast op bridge and ut #2738

Merged
merged 3 commits into from
Jan 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions lite/kernels/xpu/bridges/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ lite_cc_library(subgraph_bridge_reshape_op_xpu SRCS reshape_op.cc DEPS ${xpu_sub
lite_cc_library(subgraph_bridge_layer_norm_op_xpu SRCS layer_norm_op.cc DEPS ${xpu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_dropout_op_xpu SRCS dropout_op.cc DEPS ${xpu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_matmul_op_xpu SRCS matmul_op.cc DEPS ${xpu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_cast_op_xpu SRCS cast_op.cc DEPS ${xpu_subgraph_bridge_deps})

set(xpu_subgraph_bridges
subgraph_bridge_registry
Expand All @@ -46,6 +47,7 @@ set(xpu_subgraph_bridges
subgraph_bridge_layer_norm_op_xpu
subgraph_bridge_dropout_op_xpu
subgraph_bridge_matmul_op_xpu
subgraph_bridge_cast_op_xpu
CACHE INTERNAL "xpu_subgraph_bridges")

message(STATUS "+++++ xpu_subgraph_bridges: ${xpu_subgraph_bridges}")
99 changes: 99 additions & 0 deletions lite/kernels/xpu/bridges/cast_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace xpu {

bool CvtDtype(int dtype, PrecisionType* ptype) {
switch (dtype) {
case 21:
*ptype = PRECISION(kInt8);
break;
case 1:
*ptype = PRECISION(kInt16);
break;
case 2:
*ptype = PRECISION(kInt32);
break;
case 3:
*ptype = PRECISION(kInt64);
break;
case 5:
*ptype = PRECISION(kFloat);
break;
default:
LOG(WARNING) << "[XPU] unsupported date type: " << dtype;
return false;
}
return true;
}

int CastConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto scope = op->scope();
VLOG(3) << "[XPU] Converting " + op_type + "...";

// Get input and output vars and op attributes
auto x_name = op_info->Input("X").front();
auto x = scope->FindMutableTensor(x_name);
auto out_name = op_info->Output("Out").front();

// BOOL = 0;INT16 = 1;INT32 = 2;INT64 = 3;FP16 = 4;FP32 = 5;FP64 = 6;
// SIZE_T = 19;UINT8 = 20;INT8 = 21;
int in_dtype = op_info->GetAttr<int>("in_dtype");
PrecisionType in_ptype;
if (!CvtDtype(in_dtype, &in_ptype)) {
return FAILED;
}

int out_dtype = op_info->GetAttr<int>("out_dtype");
PrecisionType out_ptype;
if (!CvtDtype(out_dtype, &out_ptype)) {
return FAILED;
}

// X node
std::shared_ptr<Node> x_node = nullptr;
if (graph->Has(x_name)) {
x_node = graph->Get(x_name);
} else {
x_node = graph->Add(x_name, *x, in_ptype);
}

// Cast node
graph->Add(
out_name,
graph->builder_.CreateCast(*x_node->data(), CvtPrecisionType(out_ptype)));

return SUCCESS;
}

} // namespace xpu
} // namespace subgraph
} // namespace lite
} // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(cast,
kXPU,
paddle::lite::subgraph::xpu::CastConverter);
1 change: 1 addition & 0 deletions lite/kernels/xpu/bridges/paddle_use_bridges.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,4 @@ USE_SUBGRAPH_BRIDGE(layer_norm, kXPU);
USE_SUBGRAPH_BRIDGE(gelu, kXPU);
USE_SUBGRAPH_BRIDGE(dropout, kXPU);
USE_SUBGRAPH_BRIDGE(matmul, kXPU);
USE_SUBGRAPH_BRIDGE(cast, kXPU);
2 changes: 1 addition & 1 deletion lite/tests/kernels/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
lite_cc_test(test_kernel_axpy_compute SRCS axpy_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_conv2d_transpose_compute SRCS conv2d_transpose_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_norm_compute SRCS norm_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_cast_compute SRCS cast_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_cast_compute SRCS cast_compute_test.cc DEPS arena_framework ${xpu_kernels} ${npu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_instance_norm_compute SRCS instance_norm_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_grid_sampler_compute SRCS grid_sampler_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_sequence_softmax_compute SRCS sequence_softmax_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
Expand Down
198 changes: 128 additions & 70 deletions lite/tests/kernels/cast_compute_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -22,12 +22,13 @@ namespace lite {

class CastComputeTester : public arena::TestCase {
protected:
// common attributes for this op.
std::string input_ = "x";
std::string output_ = "out";
std::string x_ = "x";
std::string out_ = "out";
// BOOL = 0;INT16 = 1;INT32 = 2;INT64 = 3;FP16 = 4;FP32 = 5;FP64 = 6;
// SIZE_T = 19;UINT8 = 20;INT8 = 21;
int in_dtype_;
int out_dtype_;
DDim x_dims_{{2, 2}};
DDim dims_{{2, 2}};

public:
CastComputeTester(const Place& place,
Expand All @@ -36,91 +37,148 @@ class CastComputeTester : public arena::TestCase {
int out_dtype)
: TestCase(place, alias), in_dtype_(in_dtype), out_dtype_(out_dtype) {}

void RunBaseline(Scope* scope) override {
auto* out = scope->NewTensor(output_);
template <typename T1, typename T2>
void RunBaselineHelper(Scope* scope) {
auto* x = scope->FindTensor(x_);
auto* x_data = x->data<T1>();
auto* out = scope->NewTensor(out_);
CHECK(out);
out->Resize(x_dims_);
out->Resize(dims_);
auto* out_data = out->mutable_data<T2>();
for (int i = 0; i < dims_.production(); i++) {
*out_data = static_cast<T2>(*x_data);
out_data++;
x_data++;
}
}

if (out_dtype_ == 5 && in_dtype_ == 20) {
auto* x = scope->FindTensor(input_);
auto* x_data = x->data<unsigned char>();
auto* output_data = out->mutable_data<float>();
for (int i = 0; i < x_dims_.production(); i++) {
*output_data = static_cast<float>(*x_data);
output_data++;
x_data++;
}
} else if (out_dtype_ == 5 && in_dtype_ == 21) {
auto* output_data = out->mutable_data<float>();
auto* x = scope->FindTensor(input_);
auto* x_data = x->data<char>();
for (int i = 0; i < x_dims_.production(); i++) {
*output_data = static_cast<float>(*x_data);
output_data++;
x_data++;
}
} else if (out_dtype_ == 5 && in_dtype_ == 2) {
auto* output_data = out->mutable_data<float>();
auto* x = scope->FindTensor(input_);
auto* x_data = x->data<int32_t>();
for (int i = 0; i < x_dims_.production(); i++) {
*output_data = static_cast<float>(*x_data);
output_data++;
x_data++;
}
void RunBaseline(Scope* scope) override {
if (in_dtype_ == 20 && out_dtype_ == 5) {
RunBaselineHelper<uint8_t, float>(scope);
} else if (in_dtype_ == 2 && out_dtype_ == 5) {
RunBaselineHelper<int32_t, float>(scope);
} else if (in_dtype_ == 3 && out_dtype_ == 5) {
RunBaselineHelper<int64_t, float>(scope);
} else if (in_dtype_ == 5 && out_dtype_ == 3) {
RunBaselineHelper<float, int64_t>(scope);
} else if (in_dtype_ == 21 && out_dtype_ == 5) {
RunBaselineHelper<int8_t, float>(scope);
} else if (in_dtype_ == 5 && out_dtype_ == 21) {
RunBaselineHelper<float, int8_t>(scope);
} else {
LOG(FATAL) << "unsupported";
}
}

void PrepareOpDesc(cpp::OpDesc* op_desc) {
op_desc->SetType("cast");
op_desc->SetInput("X", {input_});
op_desc->SetOutput("Out", {output_});
op_desc->SetInput("X", {x_});
op_desc->SetOutput("Out", {out_});
op_desc->SetAttr("in_dtype", in_dtype_);
op_desc->SetAttr("out_dtype", out_dtype_);
}

template <typename T1>
void PrepareDataHelper() {
std::vector<T1> x_data(dims_.production());
for (int i = 0; i < dims_.production(); i++) {
x_data[i] = static_cast<T1>(i % 128);
}
SetCommonTensor(x_, dims_, x_data.data());
}

void PrepareData() override {
SetPrecisionType(output_, PRECISION(kFloat));
if (in_dtype_ == 20) {
std::vector<unsigned char> x_data(x_dims_.production());
for (int i = 0; i < x_dims_.production(); i++) {
x_data[i] = static_cast<unsigned char>(i % 128);
}
SetCommonTensor(input_, x_dims_, x_data.data());
} else if (in_dtype_ == 21) {
std::vector<char> x_data(x_dims_.production());
for (int i = 0; i < x_dims_.production(); i++) {
float sign = i % 3 == 0 ? -1.0f : 1.0f;
x_data[i] = sign * static_cast<char>(i % 128);
}
SetCommonTensor(input_, x_dims_, x_data.data());
} else if (in_dtype_ == 2) {
std::vector<int32_t> x_data(x_dims_.production());
for (int i = 0; i < x_dims_.production(); i++) {
int sign = i % 3 == 0 ? -1 : 1;
x_data[i] = sign * static_cast<int32_t>(i % 128);
}
SetCommonTensor(input_, x_dims_, x_data.data());
} else {
LOG(FATAL) << "not implemented!";
// BOOL = 0;INT16 = 1;INT32 = 2;INT64 = 3;FP16 = 4;FP32 = 5;FP64 = 6;
// SIZE_T = 19;UINT8 = 20;INT8 = 21;
switch (in_dtype_) {
case 20:
PrepareDataHelper<uint8_t>();
break;
case 21:
PrepareDataHelper<int8_t>();
break;
case 1:
PrepareDataHelper<int16_t>();
break;
case 2:
PrepareDataHelper<int32_t>();
break;
case 3:
PrepareDataHelper<int64_t>();
break;
case 5:
PrepareDataHelper<float>();
break;
case 6:
PrepareDataHelper<double>();
break;
case 19:
PrepareDataHelper<size_t>();
break;
default:
LOG(FATAL) << "unsupported data type: " << in_dtype_;
break;
}

PrecisionType out_ptype;
switch (out_dtype_) {
case 0:
out_ptype = PRECISION(kBool);
break;
case 21:
out_ptype = PRECISION(kInt8);
break;
case 1:
out_ptype = PRECISION(kInt16);
break;
case 2:
out_ptype = PRECISION(kInt32);
break;
case 3:
out_ptype = PRECISION(kInt64);
break;
case 4:
out_ptype = PRECISION(kFP16);
break;
case 5:
out_ptype = PRECISION(kFloat);
break;
default:
LOG(FATAL) << "unsupported data type: " << out_dtype_;
break;
}
SetPrecisionType(out_, out_ptype);
}
};

TEST(Cast, precision) {
LOG(INFO) << "test cast op";
#ifdef LITE_WITH_ARM
Place place(TARGET(kARM));

void TestCast(Place place, float abs_error, int in_dtype, int out_dtype) {
std::unique_ptr<arena::TestCase> tester(
new CastComputeTester(place, "def", 20, 5));
arena::Arena arena(std::move(tester), place, 2e-5);
new CastComputeTester(place, "def", in_dtype, out_dtype));
arena::Arena arena(std::move(tester), place, abs_error);
arena.TestPrecision();
}

std::unique_ptr<arena::TestCase> tester1(
new CastComputeTester(place, "def", 2, 5));
arena::Arena arena1(std::move(tester1), place, 2e-5);
arena1.TestPrecision();
TEST(Cast, precision) {
LOG(INFO) << "test cast op";
Place place;
float abs_error = 2e-5;
#if defined(LITE_WITH_ARM)
place = TARGET(kARM);
#elif defined(LITE_WITH_XPU)
place = TARGET(kXPU);
#else
return;
#endif

// BOOL = 0;INT16 = 1;INT32 = 2;INT64 = 3;FP16 = 4;FP32 = 5;FP64 = 6;
// SIZE_T = 19;UINT8 = 20;INT8 = 21;
#ifndef LITE_WITH_XPU
TestCast(place, abs_error, 20, 5);
#endif
TestCast(place, abs_error, 2, 5);
#ifdef LITE_WITH_XPU
TestCast(place, abs_error, 3, 5);
TestCast(place, abs_error, 5, 3);
#endif
}

Expand Down