-
Notifications
You must be signed in to change notification settings - Fork 8k
/
Copy pathutility.py
executable file
·192 lines (165 loc) · 6.68 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import imghdr
import cv2
import random
import numpy as np
import paddle
import importlib.util
import sys
import subprocess
def print_dict(d, logger, delimiter=0):
"""
Recursively visualize a dict and
indenting acrrording by the relationship of keys.
"""
for k, v in sorted(d.items()):
if isinstance(v, dict):
logger.info("{}{} : ".format(delimiter * " ", str(k)))
print_dict(v, logger, delimiter + 4)
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
logger.info("{}{} : ".format(delimiter * " ", str(k)))
for value in v:
print_dict(value, logger, delimiter + 4)
else:
logger.info("{}{} : {}".format(delimiter * " ", k, v))
def get_check_global_params(mode):
check_params = ['use_gpu', 'max_text_length', 'image_shape', \
'image_shape', 'character_type', 'loss_type']
if mode == "train_eval":
check_params = check_params + [ \
'train_batch_size_per_card', 'test_batch_size_per_card']
elif mode == "test":
check_params = check_params + ['test_batch_size_per_card']
return check_params
def _check_image_file(path):
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'pdf'}
return any([path.lower().endswith(e) for e in img_end])
def get_image_file_list(img_file):
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
if os.path.isfile(img_file) and _check_image_file(img_file):
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and _check_image_file(file_path):
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
def binarize_img(img):
if len(img.shape) == 3 and img.shape[2] == 3:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # conversion to grayscale image
# use cv2 threshold binarization
_, gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
return img
def alpha_to_color(img, alpha_color=(255, 255, 255)):
if len(img.shape) == 3 and img.shape[2] == 4:
B, G, R, A = cv2.split(img)
alpha = A / 255
R = (alpha_color[0] * (1 - alpha) + R * alpha).astype(np.uint8)
G = (alpha_color[1] * (1 - alpha) + G * alpha).astype(np.uint8)
B = (alpha_color[2] * (1 - alpha) + B * alpha).astype(np.uint8)
img = cv2.merge((B, G, R))
return img
def check_and_read(img_path):
if os.path.basename(img_path)[-3:].lower() == 'gif':
gif = cv2.VideoCapture(img_path)
ret, frame = gif.read()
if not ret:
logger = logging.getLogger('ppocr')
logger.info("Cannot read {}. This gif image maybe corrupted.")
return None, False
if len(frame.shape) == 2 or frame.shape[-1] == 1:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
imgvalue = frame[:, :, ::-1]
return imgvalue, True, False
elif os.path.basename(img_path)[-3:].lower() == 'pdf':
from paddle.utils import try_import
try_import('fitz')
from PIL import Image
imgs = []
with fitz.open(img_path) as pdf:
for pg in range(0, pdf.page_count):
page = pdf[pg]
mat = fitz.Matrix(2, 2)
pm = page.get_pixmap(matrix=mat, alpha=False)
# if width or height > 2000 pixels, don't enlarge the image
if pm.width > 2000 or pm.height > 2000:
pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
imgs.append(img)
return imgs, False, True
return None, False, False
def load_vqa_bio_label_maps(label_map_path):
with open(label_map_path, "r", encoding='utf-8') as fin:
lines = fin.readlines()
old_lines = [line.strip() for line in lines]
lines = ["O"]
for line in old_lines:
# "O" has already been in lines
if line.upper() in ["OTHER", "OTHERS", "IGNORE"]:
continue
lines.append(line)
labels = ["O"]
for line in lines[1:]:
labels.append("B-" + line)
labels.append("I-" + line)
label2id_map = {label.upper(): idx for idx, label in enumerate(labels)}
id2label_map = {idx: label.upper() for idx, label in enumerate(labels)}
return label2id_map, id2label_map
def set_seed(seed=1024):
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
def check_install(module_name, install_name):
spec = importlib.util.find_spec(module_name)
if spec is None:
print(f'Warnning! The {module_name} module is NOT installed')
print(
f'Try install {module_name} module automatically. You can also try to install manually by pip install {install_name}.'
)
python = sys.executable
try:
subprocess.check_call(
[python, '-m', 'pip', 'install', install_name],
stdout=subprocess.DEVNULL)
print(f'The {module_name} module is now installed')
except subprocess.CalledProcessError as exc:
raise Exception(
f"Install {module_name} failed, please install manually")
else:
print(f"{module_name} has been installed.")
class AverageMeter:
def __init__(self):
self.reset()
def reset(self):
"""reset"""
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
"""update"""
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count