diff --git a/README.md b/README.md index 7cf744be7..38d60cbed 100644 --- a/README.md +++ b/README.md @@ -132,6 +132,7 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # 静态图训 | 排序 | [Dnn](models/rank/dnn/)([文档](https://paddlerec.readthedocs.io/en/latest/models/rank/dnn.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3240347) | ✓ | ✓ | ✓ | ✓ | >=2.1.0 | / | | 排序 | [FM](models/rank/fm/)([文档](https://paddlerec.readthedocs.io/en/latest/models/rank/fm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3240371) | ✓ | ✓ | ✓ | x | >=2.1.0 | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf) | | 排序 | [BERT4REC](models/rank/bert4rec/) | - | ✓ | ✓ | ✓ | x | >=2.1.0 | [CIKM 2019][BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer](https://arxiv.org/pdf/1904.06690.pdf) | + | 排序 | [FAT_DeepFFM](models/rank/fat_deepffm/) | - | ✓ | ✓ | ✓ | x | >=2.1.0 | [2019][FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine](https://arxiv.org/pdf/1905.06336.pdf) | | 排序 | [FFM](models/rank/ffm/)([文档](https://paddlerec.readthedocs.io/en/latest/models/rank/ffm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3240369) | ✓ | ✓ | ✓ | x | >=2.1.0 | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134) | | 排序 | [FNN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fnn/) | - | ✓ | ✓ | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf) | | 排序 | [Deep Crossing](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/deep_crossing/) | - | ✓ | ✓ | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) | diff --git a/README_EN.md b/README_EN.md index a236ea202..7f164794c 100644 --- a/README_EN.md +++ b/README_EN.md @@ -119,6 +119,7 @@ python -u tools/static_trainer.py -m models/rank/dnn/config.yaml # Training wit | Rank | [Dnn](models/rank/dnn/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/dnn.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3240347) | ✓ | ✓ | ✓ | ✓ | >=2.1.0 | / | | Rank | [FM](models/rank/fm/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/fm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3240371) | ✓ | ✓ | ✓ | x | >=2.1.0 | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf) | | Rank | [BERT4REC](models/rank/bert4rec/) | - | ✓ | ✓ | ✓ | x | >=2.1.0 | [CIKM 2019][BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer](https://arxiv.org/pdf/1904.06690.pdf) | + | Rank | [FAT_DeepFFM](models/rank/fat_deepffm/) | - | ✓ | ✓ | ✓ | x | >=2.1.0 | [2019][FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine](https://arxiv.org/pdf/1905.06336.pdf) | | Rank | [FFM](models/rank/ffm/)([doc](https://paddlerec.readthedocs.io/en/latest/models/rank/ffm.html)) | [Python CPU/GPU](https://aistudio.baidu.com/aistudio/projectdetail/3240369) | ✓ | ✓ | ✓ | x | >=2.1.0 | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134) | | Rank | [FNN](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/fnn/) | - | ✓ | ✓ | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf) | | Rank | [Deep Crossing](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5/models/rank/deep_crossing/) | - | ✓ | ✓ | ✓ | x | [1.8.5](https://github.com/PaddlePaddle/PaddleRec/tree/release/1.8.5) | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) | diff --git a/models/rank/fat_deepffm/README.md b/models/rank/fat_deepffm/README.md new file mode 100644 index 000000000..a9363931e --- /dev/null +++ b/models/rank/fat_deepffm/README.md @@ -0,0 +1,135 @@ +# 基于 FAT_DeepFFM 模型的点击率预估模型 + +以下是本例的简要目录结构及说明: + +``` +├── data # 样例数据 + ├── sample_data # 样例数据 + ├── train + ├── sample_train.txt # 训练数据样例 +├── __init__.py +├── README.md # 文档 +├── config.yaml # sample数据配置 +├── config_bigdata.yaml # 全量数据配置 +├── net.py # 模型核心组网(动静统一) +├── criteo_reader.py # 数据读取程序 +├── dygraph_model.py # 构建动态图 +``` + +注:在阅读该示例前,建议您先了解以下内容: + +[PaddleRec入门教程](https://github.com/PaddlePaddle/PaddleRec/blob/master/README.md) + +## 内容 + +- [模型简介](#模型简介) +- [数据准备](#数据准备) +- [运行环境](#运行环境) +- [快速开始](#快速开始) +- [模型组网](#模型组网) +- [效果复现](#效果复现) +- [进阶使用](#进阶使用) +- [FAQ](#FAQ) + +## 模型简介 +`CTR(Click Through Rate)`,即点击率,是“推荐系统/计算广告”等领域的重要指标,对其进行预估是商品推送/广告投放等决策的基础。简单来说,CTR预估对每次广告的点击情况做出预测,预测用户是点击还是不点击。CTR预估模型综合考虑各种因素、特征,在大量历史数据上训练,最终对商业决策提供帮助。本模型实现了下述论文中的 FAT_DeepFFM 模型: + +```text +@article{FAT-DeepFFM2019, + title={FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine}, + author={Junlin Zhang, Tongwen Huang, Zhiqi Zhang}, + journal={arXiv preprint arXiv:1905.06336}, + year={2019}, + url={https://arxiv.org/pdf/1905.06336}, +} +``` + +## 数据准备 + +训练及测试数据集选用[Display Advertising Challenge](https://www.kaggle.com/c/criteo-display-ad-challenge/)所用的Criteo数据集。该数据集包括两部分:训练集和测试集。训练集包含一段时间内Criteo的部分流量,测试集则对应训练数据后一天的广告点击流量。 +每一行数据格式如下所示: +``` +