-
Notifications
You must be signed in to change notification settings - Fork 135
/
yolov6_l_300e_coco.yml
66 lines (51 loc) · 1.34 KB
/
yolov6_l_300e_coco.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_300e.yml',
'_base_/yolov6_cspbep.yml',
'_base_/yolov6_reader_high_aug.yml',
]
depth_mult: 1.0
width_mult: 1.0
log_iter: 20
snapshot_epoch: 10
weights: output/yolov6_l_300e_coco/model_final
### reader config
TrainReader:
batch_size: 32 # default 8 gpus, total bs = 256
EvalReader:
batch_size: 1
### model config
act: 'silu'
training_mode: "conv_silu" # Note: L use silu
YOLOv6:
backbone: CSPBepBackbone
neck: CSPRepBiFPAN
yolo_head: EffiDeHead_fuseab
post_process: ~
EffiDeHead_fuseab:
reg_max: 16
use_dfl: True
iou_type: 'giou'
loss_weight: {cls: 1.0, iou: 2.5, dfl: 0.5, cwd: 10.0}
distill_weight: {cls: 2.0, dfl: 1.0} # 2:1 in L-relu version, will not work default (self_distill=False)
CSPBepBackbone:
csp_e: 0.50
CSPRepBiFPAN:
csp_e: 0.50
### distill config
## Step 1: Training the base model, get about 51.8 mAP
## Step 2: Self-distillation training, get about 52.8 mAP
YOLOv6:
backbone: CSPBepBackbone
neck: CSPRepBiFPAN
yolo_head: EffiDeHead
post_process: ~
EffiDeHead:
reg_max: 16
use_dfl: True
## Please cancel the following comment and train again:
# self_distill: True
# pretrain_weights: output/yolov6_l_300e_coco/model_final.pdparams
# save_dir: output_distill
# weights: output_distill/yolov6_l_300e_coco/model_final