-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
136 lines (123 loc) · 6.45 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from torch.utils.data import IterableDataset, DataLoader
from torch import nn
from torch.nn import functional as F
from triplet_training_generator import get_train_test_apikeys, training_generator
from pathlib import Path
from transformers import AutoModel
import torch
from tqdm import tqdm
import pandas as pd
from argparse import ArgumentParser
MEMMAP_DIRECTORY = Path("/media/data/tokenized_crawl")
BATCHES_PER_EPOCH = 8192
class DataGenerator(IterableDataset):
def __init__(self, df, memmap, apikey_weighted_df):
super(DataGenerator, self).__init__()
self.data_generator = training_generator(df, memmap, apikey_weighted_df)
def __iter__(self):
return self.data_generator
class SectionModel(torch.nn.Module):
def __init__(self, model_name):
super(SectionModel, self).__init__()
# We need to make sure this matches the model we tokenized for!
# self.bert = AutoModel.from_pretrained('distilbert-base-cased')
self.bert = AutoModel.from_pretrained(model_name)
# self.out = torch.nn.Linear(768, 768, bias=False)
def forward(self, tensor_in):
out = self.bert(tensor_in)[0]
# out = out[:, 0, :] # CLS token
out = out.mean(dim=1, keepdims=False) # Mean pooling
return out
def main(df, memmap, model_name, save_path, total_batch_size=4096):
if 'large' in model_name:
batch_size = 8
else:
batch_size = 32
minibatches_per_update = total_batch_size // batch_size
batches_per_epoch = (2 ** 19) // batch_size
eval_batches_per_epoch = (2 ** 18) // batch_size
train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys(df)
train_dataset = DataGenerator(df, memmap, train_weighted_apikeys)
train_loader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, num_workers=1)
test_dataset = DataGenerator(df, memmap, test_weighted_apikeys)
test_loader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True, num_workers=1)
model = SectionModel(model_name).cuda()
# Diverges or just outputs the same vector for all samples at higher LRs
model_params = model.parameters()
optimizer = torch.optim.Adam(model_params, lr=1e-6)
if save_path.is_file():
print("Loading state...")
checkpoint = torch.load(str(save_path))
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
else:
start_epoch = 0
for epoch in range(start_epoch, 60):
with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar:
bar.set_description(f"Epoch {epoch}")
bar_loss = 0.
model.eval() # I think I don't want dropout for now
optimizer.zero_grad()
for i, batch in enumerate(train_loader):
batch = batch.cuda()
# The model expects data to have the shape (batch_size, num_tokens)
# We reshape the data before it goes into the model to merge the batch dimension and the triplet dimension
# Then we reconstruct those as separate dimensions afterwards
batch = torch.reshape(batch, (-1, batch.shape[-1]))
outputs = model(batch)
outputs = torch.reshape(outputs, [-1, 3, outputs.shape[-1]])
positive_distances = torch.linalg.norm(outputs[:, 0] - outputs[:, 1], dim=1)
negative_distances = torch.linalg.norm(outputs[:, 0] - outputs[:, 2], dim=1)
loss = positive_distances - negative_distances + 1 # 1 is the margin term
# positive_similarities = F.cosine_similarity(outputs[:, 0], outputs[:, 1])
# negative_similarities = F.cosine_similarity(outputs[:, 0], outputs[:, 2])
# loss = negative_similarities - positive_similarities + 1
loss = torch.relu(loss)
loss = loss.mean() / minibatches_per_update
loss.backward()
if (i + 1) % minibatches_per_update == 0:
optimizer.step()
bar.update(1)
bar_loss = ((bar_loss * i) + float(loss.detach() * minibatches_per_update)) / (i + 1) # Rolling mean loss
bar.set_postfix_str(f"Loss: {bar_loss:.3f}")
if i == batches_per_epoch - 1:
break
with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar:
bar.set_description(f"Eval epoch {epoch}")
bar_loss = 0.
model.eval()
with torch.no_grad():
for i, batch in enumerate(test_loader):
batch = batch.cuda()
batch = torch.reshape(batch, (-1, batch.shape[-1]))
outputs = model(batch)
outputs = torch.reshape(outputs, [-1, 3, outputs.shape[-1]])
positive_distances = torch.linalg.norm(outputs[:, 0] - outputs[:, 1], dim=1)
negative_distances = torch.linalg.norm(outputs[:, 0] - outputs[:, 2], dim=1)
loss = positive_distances - negative_distances + 1 # 1 is the margin term
# positive_similarities = F.cosine_similarity(outputs[:, 0], outputs[:, 1])
# negative_similarities = F.cosine_similarity(outputs[:, 0], outputs[:, 2])
# loss = negative_similarities - positive_similarities + 1
loss = torch.relu(loss) # Clip to zero
loss = loss.mean()
bar.update(1)
bar_loss = ((bar_loss * i) + float(loss.detach())) / (i + 1) # Rolling mean loss
bar.set_postfix_str(f"Loss: {bar_loss:.3f}")
if i == eval_batches_per_epoch - 1:
break
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, str(save_path))
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataframe', type=Path, required=True)
parser.add_argument('--word_indices', type=Path, required=True)
parser.add_argument('--model_name', type=str, required=True)
parser.add_argument('--save_path', type=Path, required=True)
args = parser.parse_args()
assert args.dataframe.is_file()
assert args.word_indices.is_file()
main(args.dataframe, args.word_indices, args.model_name, args.save_path)