-
Notifications
You must be signed in to change notification settings - Fork 6
/
seq2seq_model_comp.py
758 lines (684 loc) · 39 KB
/
seq2seq_model_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
import tensorflow as tf
import numpy as np
import copy
import data_utils
from units import *
from critic import *
def load_critic(name, size=None, num_layers=None, vocab_size=None, buckets=None):
print(name)
if name == None:
return None
with variable_scope.variable_scope('critic') as scope:
if 'GAN' in name or 'REGS' in name:
return StepGAN(size, num_layers, vocab_size, buckets)
elif name == 'REINFORCE' or name == 'Counting_Task':
return Counting_Task()#for Counting
else:
return None
class Seq2Seq:
def __init__(
self,
mode,
size,
num_layers,
vocab_size,
buckets,
learning_rate=0.5,
learning_rate_decay_factor=0.99,
max_gradient_norm=5.0,
critic=None,
critic_size=None,
critic_num_layers=None,
other_option=None,
use_attn=False,
output_sample=False,
input_embed=True,
feed_prev=False,
batch_size=32,
D_lr=1e-4,
D_lr_decay_factor=0.5,
v_lr=1e-4,
v_lr_decay_factor=0.5,
dtype=tf.float32):
self.train_sample_loop_coe = 1
self.test_sample_loop_coe = 1
self.train_Monte_Carlo_N = 5
# self-config
self.size = size
self.num_layers = num_layers
self.vocab_size = vocab_size
if vocab_size > 1000:
num_sampled = 512
elif vocab_size < 20:
num_sampled = 5
self.buckets = buckets
self.other_option = other_option
self.use_attn = use_attn# has been decrepted
self.output_sample = output_sample
self.input_embed = input_embed
self.feed_prev = feed_prev
self.batch_size = batch_size
# general vars: learning rate, global steps
self.learning_rate = tf.Variable(float(learning_rate), trainable=False, dtype=dtype)
self.D_lr = tf.Variable(float(D_lr), trainable=False, dtype=dtype)
self.v_lr = tf.Variable(float(v_lr), trainable=False, dtype=dtype)
self.op_lr_decay = self.learning_rate.assign(self.learning_rate * learning_rate_decay_factor)
self.op_D_lr_decay = self.D_lr.assign(self.D_lr * D_lr_decay_factor)
self.op_v_lr_decay = self.v_lr.assign(self.v_lr * v_lr_decay_factor)
self.global_step = tf.Variable(0, trainable=False)
self.global_D_step = tf.Variable(0, trainable=False)
self.global_V_step = tf.Variable(0, trainable=False)
# building critics or discriminators
self.critic = load_critic(critic, critic_size, critic_num_layers, vocab_size, buckets)
self.critic_name = critic
# building value network
if critic != None:
if 'GAN' in critic or critic == 'REGS':
with variable_scope.variable_scope('valuenet') as scope:
self.value_net = ValueNet(critic_size, critic_num_layers, vocab_size, buckets)
# core cells, encoder and decoder are separated
self.cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(size) for _ in range(num_layers)])
self.enc_cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(size) for _ in range(num_layers)])
self.enc_cell = core_rnn_cell.EmbeddingWrapper(
cell=self.enc_cell,
embedding_classes=vocab_size,
embedding_size=size)
# output projection
w = tf.get_variable('proj_w', [size, vocab_size])
w_t = tf.transpose(w)
b = tf.get_variable('proj_b', [vocab_size])
self.output_projection = (w, b)
# input embedding
self.embedding = variable_scope.get_variable('embedding', [vocab_size, size])
# seq2seq-specific functions
def loop_function(prev):
# used in decoder, feeding the previous argmax output as the next input
prev = nn_ops.xw_plus_b(prev, self.output_projection[0], self.output_projection[1])
prev_symbol = math_ops.argmax(prev, axis=1)
emb_prev = embedding_ops.embedding_lookup(self.embedding, prev_symbol)
return emb_prev
def sample_loop_function(prev):
# used in decoder, feeding the previous output
# sampled from softmax distribution as the next input
prev = nn_ops.xw_plus_b(prev, self.output_projection[0], self.output_projection[1])
prev_index = tf.multinomial(tf.log(tf.nn.softmax(self.train_sample_loop_coe*prev)), 1)
prev_symbol = tf.reshape(prev_index, [-1])
emb_prev = embedding_ops.embedding_lookup(self.embedding, prev_symbol)
return [emb_prev, prev_symbol]
def test_sample_loop_function(prev):
# sample_loop_function() used in testing stage,
# by this, we can test the influence of sample_loop_coe(coefficient)
prev = nn_ops.xw_plus_b(prev, self.output_projection[0], self.output_projection[1])
prev_index = tf.multinomial(tf.log(tf.nn.softmax(self.test_sample_loop_coe*prev)), 1)
prev_symbol = tf.reshape(prev_index, [-1])
emb_prev = embedding_ops.embedding_lookup(self.embedding, prev_symbol)
return [emb_prev, prev_symbol]
def softmax_loss_function(labels, inputs):
labels = tf.reshape(labels, [-1, 1])
local_w_t = tf.cast(w_t, tf.float32)
local_b = tf.cast(b, tf.float32)
local_inputs = tf.cast(inputs, tf.float32)
return tf.cast(tf.nn.sampled_softmax_loss(
weights = local_w_t,
biases = local_b,
inputs = local_inputs,
labels = labels,
num_sampled = num_sampled,
num_classes = vocab_size),
dtype = tf.float32)
def compute_loss(logits, targets, weights):
with ops.name_scope("sequence_loss", logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
crossent = softmax_loss_function(target, logit)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
total_size = math_ops.add_n(weights)
total_size += 1e-12
log_perps /= total_size
cost = math_ops.reduce_sum(log_perps)
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, cost.dtype)
def get_eos_value(rewards, uniform_weights):
# used in decoder, getting the value at the first generated <EOS> token
eos = [tf.cast(tf.equal(math_ops.add_n(uniform_weights[:i+1]), math_ops.add_n(uniform_weights)), tf.float32)*uniform_weights[i] for i in range(len(rewards))]
outs = []
for r, w in zip(rewards, eos):
outs.append(tf.reshape(r, [-1]) * w)
eos_value = math_ops.add_n(outs)
return eos_value
def uniform_weights(targets):
# used inj decoder, generating uniform weights at all time steps
# until the first generated <EOS> token
tmp = [tf.cast(tf.equal(target, data_utils.EOS_ID), tf.float32) for target in targets]
tmp[-1] = tf.cast(tf.equal(math_ops.add_n(tmp), 0.0), tf.float32)
uniform_weights = \
[tf.cast(tf.equal(math_ops.add_n(tmp[i:]), math_ops.add_n(tmp)), tf.float32) \
for i in range(len(tmp))]
return uniform_weights
def weighted_rewards(rewards, targets, uniform_weights, method='uniform'):
if method == 'uniform':
weights = uniform_weights
elif method == 'random':#FIXME
rand = tf.random_uniform([1],maxval=tf.cast(len(uniform_weights),tf.int32),dtype=tf.int32)
weights = []
for i in range(len(uniform_weights)):
weights.append(tf.cond(tf.equal(i,tf.reshape(rand,[])),
lambda: tf.ones(tf.shape(targets[0])),
lambda: tf.zeros(tf.shape(targets[0]))))
elif method == 'decrease':
weights = [math_ops.add_n(uniform_weights[i:]) for i in range(len(uniform_weights))]
elif method == 'increase':
weights = [math_ops.add_n(uniform_weights[:(i+1)]) * uniform_weights[i] for i in range(len(uniform_weights))]
outs = []
for r, w in zip(rewards, weights):
outs.append(tf.reshape(r, [-1]) * w)
return outs, math_ops.add_n(weights), math_ops.add_n(uniform_weights)
def seq_log_prob(logits, targets, rewards=None):
if rewards is None:
rewards = [tf.ones(tf.shape(target), tf.float32) for target in targets]
with ops.name_scope("sequence_log_prob", logits + targets + rewards):
log_perp_list = []
tmp = [tf.cast(tf.equal(target, data_utils.EOS_ID), tf.float32) for target in targets]
tmp[-1] = tf.cast(tf.equal(math_ops.add_n(tmp), 0.0), tf.float32)
weights = [math_ops.add_n(tmp[i:]) for i in range(len(tmp))]
for logit, target, weight, reward in zip(logits, targets, weights, rewards):
crossent = softmax_loss_function(target, logit)
log_perp_list.append(crossent * weight * reward)
log_perps = math_ops.add_n(log_perp_list)
total_size = math_ops.add_n(weights)
total_size += 1e-12
log_perps /= total_size
return log_perps
def each_perp(logits, targets, weights):
with ops.name_scope("each_perp", logits + targets):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
crossent = softmax_loss_function(target, logit)
log_perp_list.append(crossent * weight)
return log_perp_list
# encoder's placeholder
self.encoder_inputs = []
for bid in range(buckets[-1][0]):
self.encoder_inputs.append(
tf.placeholder(tf.int32, shape = [None],
name = 'encoder{0}'.format(bid)))
self.seq_len = tf.placeholder(
tf.int32, shape = [None],
name = 'enc_seq_len')
# decoder's placeholder
self.decoder_inputs = []
self.target_weights = []
if not feed_prev and mode == 'TRAIN':
for bid in range(buckets[-1][1] + 1):
self.decoder_inputs.append(
tf.placeholder(tf.int32, shape = [None],
name = 'decoder{0}'.format(bid)))
self.target_weights.append(
tf.placeholder(tf.float32, shape = [None],
name = 'weight{0}'.format(bid)))
targets = [self.decoder_inputs[i+1] for i in range(len(self.decoder_inputs)-1)]
elif mode == 'TEST':
for bid in range(buckets[-1][1] + 1):
self.decoder_inputs.append(
tf.placeholder(tf.int32, shape = [None],
name = 'decoder{0}'.format(bid)))
else:
self.decoder_inputs = [tf.placeholder(tf.int32, shape = [None], name = 'decoder0')]
# other placeholders
if critic is not None:
self.fed_samples = [ tf.placeholder(tf.int32, shape = [None], name = 'fed_sample{0}'.format(i)) for i in range(buckets[-1][1]) ]
self.fed_rewards = tf.placeholder(tf.float32, shape = [None], name = 'fed_rewards')
# the operations of this sequence generator: training, testing
if mode == 'TRAIN':
# critic None: training by Maximum-Likelihood Estimation (MLE)
# others: REINFORCE (policy gradient) based methods,
# include REINFORCE, SeqGAN, MaliGAN, REGS, ESGAN
# for debug
self.debug1 = []
# for generating
self.enc_state = []# shared with MLE
self.outputs = []# shared with MLE
self.samples_dists = []
self.each_probs = []
self.perp = []
# for generating by REINFORCE
self.out_dists = []
# for rewarding of policy gradient
self.each_rewards = []
self.rewards = []
self.for_G_rewards = []
# for training
self.losses = []# shared with MLE
self.value_losses = []
self.D_losses = []
self.D_real = []
self.D_fake = []
def Monte_Carlo():
# Monte-Carlo tree search
N = self.train_Monte_Carlo_N
rewards = []
for step in range(bucket[1]):
each_step_reward = []
for _ in range(N):
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=True):
_, MC_sample, _ = \
decode(self.cell, hiddens[step], self.embedding, \
[samples[step]], bucket[1]-step-1, \
feed_prev=True, loop_function=sample_loop_function)
each_prob_fake, _ = self.critic.discriminator(self.encoder_inputs[:bucket[0]], self.seq_len, samples[:step]+MC_sample, batch_size)
fake_uniW = uniform_weights(samples[:step]+MC_sample)
r = get_eos_value(each_prob_fake, fake_uniW)
each_step_reward.append(tf.reshape(r,[-1]))
rewards.append(math_ops.add_n(each_step_reward) / N)
return rewards
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=True if j > 0 else None):
enc_outputs, enc_state = \
encode(self.enc_cell, self.encoder_inputs[:bucket[0]], self.seq_len)
if critic is None:
outputs, _, _ = \
decode(self.cell, enc_state, self.embedding, \
self.decoder_inputs[:bucket[1]], \
bucket[1]+1, feed_prev=False)
else:
samples_dists, samples, hiddens = \
decode(self.cell, enc_state, self.embedding, \
[self.decoder_inputs[0]], bucket[1], \
feed_prev=True, loop_function=sample_loop_function)
prob = - seq_log_prob(samples_dists, samples)
if critic is None:
loss = compute_loss(outputs, targets[:bucket[1]], \
self.target_weights[:bucket[1]])
elif 'GAN' in critic or critic == 'REGS':
# building discriminator and value network
each_prob_fake, each_logit_fake = self.critic.discriminator(self.encoder_inputs[:bucket[0]], self.seq_len, samples, batch_size)
each_prob_fake_value, each_logit_fake_value = self.value_net.discriminator(self.encoder_inputs[:bucket[0]], self.seq_len, samples, batch_size)
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=True):
each_prob_real, each_logit_real = self.critic.discriminator(self.encoder_inputs[:bucket[0]], self.seq_len, self.critic.real_data[:bucket[1]], batch_size)
each_prob_real_value, each_logit_real_value = self.value_net.discriminator(self.encoder_inputs[:bucket[0]], self.seq_len, self.critic.real_data[:bucket[1]], batch_size)
# uniform weights
fake_uniW = uniform_weights(samples)
real_uniW = uniform_weights(self.critic.real_data[:bucket[1]])
if 'SeqGAN' in critic or 'MaliGAN' in critic:
# end of sentence
for_D_score_fake = get_eos_value(each_prob_fake, fake_uniW)
for_D_score_real = get_eos_value(each_prob_real, real_uniW)
elif critic == 'REGS':
# get random subsequence
for_D_each_prob_fake, for_D_fake_credits, _ = \
weighted_rewards(each_prob_fake, samples, fake_uniW, 'random')
for_D_each_prob_real, for_D_real_credits, _ = \
weighted_rewards(each_prob_real, self.critic.real_data[:bucket[1]], \
real_uniW, 'random')
for_D_score_fake = math_ops.add_n(for_D_each_prob_fake)
for_D_score_real = math_ops.add_n(for_D_each_prob_real)
elif 'StepGAN' in critic or 'MaskGAN' in critic:
# get uniform all scores of D
for_D_each_prob_fake, for_D_fake_credits, _ = \
weighted_rewards(each_prob_fake, samples, fake_uniW, 'uniform')
for_D_each_prob_real, for_D_real_credits, _ = \
weighted_rewards(each_prob_real, self.critic.real_data[:bucket[1]], \
real_uniW, 'uniform')
if 'StepGAN' in critic:
for_D_score_fake = math_ops.add_n(for_D_each_prob_fake) / (for_D_fake_credits + 1e-12)
for_D_score_real = math_ops.add_n(for_D_each_prob_real) / (for_D_real_credits + 1e-12)
else:
#for_D_score_fake = get_eos_value(each_prob_fake, fake_uniW)
#for_D_score_real = get_eos_value(each_prob_real, real_uniW)
for_D_score_fake = math_ops.add_n([tf.log(1. - each_prob+1e-12)*uniW for each_prob, uniW in zip(each_prob_fake, fake_uniW)]) / (for_D_fake_credits + 1e-12)
for_D_score_real = math_ops.add_n([tf.log(each_prob+1e-12)*uniW for each_prob, uniW in zip(each_prob_real, real_uniW)]) / (for_D_real_credits + 1e-12)
if 'MaskGAN' in critic:
D_loss = -tf.reduce_mean(for_D_score_real + for_D_score_fake)
else:
# training D
D_loss = -tf.reduce_mean(tf.log(for_D_score_real) + tf.log(1.-for_D_score_fake))
# print reward
if 'SeqGAN' in critic or 'MaliGAN' in critic:
reward = tf.reshape(for_D_score_fake, [-1])# FIXME
D_prob_fake = for_D_score_fake
D_prob_real = for_D_score_real
else:
reward = tf.reduce_mean(for_D_score_fake)
D_prob_fake = [[r[b] for r in for_D_each_prob_fake] for b in range(batch_size)]
D_prob_real = [[r[b] for r in for_D_each_prob_real] for b in range(batch_size)]
if 'SeqGAN' in critic:
returns = [D_prob_fake for i in range(bucket[1])]
real_returns = [D_prob_real for i in range(bucket[1])]
elif 'MaliGAN' in critic:# FIXME
returns = [D_prob_fake/tf.reduce_sum(D_prob_fake) for i in range(bucket[1])]
real_returns = [D_prob_real/tf.reduce_sum(D_prob_real) for i in range(bucket[1])]
elif critic == 'REGS':
returns = [each_prob_fake[i]*fake_uniW[i] for i in range(bucket[1])]
real_returns = [each_prob_real[i]*real_uniW[i] for i in range(bucket[1])]
elif 'StepGAN' in critic or critic == 'MaskGAN':
uni_each_prob_fake = for_D_each_prob_fake
uni_each_prob_real = for_D_each_prob_real
if 'seq' in critic or critic == 'MaskGAN':
returns = [math_ops.add_n(uni_each_prob_fake[i:]) for i in range(bucket[1])]
real_returns = [math_ops.add_n(uni_each_prob_real[i:]) for i in range(bucket[1])]
else:
returns = uni_each_prob_fake
real_returns = uni_each_prob_real
if 'MC' in critic:
# Monte Carlo
returns = Monte_Carlo()
# FIXME REGS for_G_rewards = [tf.reshape((each_prob_fake[i] - each_prob_fake_value[i]),[-1])*fake_uniW[i] for i in range(bucket[1])]
if critic == 'REGS':
for_G_rewards = [tf.reshape((each_prob_fake[i] - each_prob_fake_value[i]),[-1])*fake_uniW[i] for i in range(bucket[1])]
else:
minus_baseline = [returns[i] - tf.reshape(each_prob_fake_value[i],[-1]) for i in range(bucket[1])]
if '-W' in critic:
for_G_prob_fake, for_G_fake_credits, _ = \
weighted_rewards(minus_baseline, samples, fake_uniW, 'decrease')
else:
for_G_prob_fake, for_G_fake_credits, _ = \
weighted_rewards(minus_baseline, samples, fake_uniW, 'uniform')
for_G_rewards = for_G_prob_fake
value_loss_update = tf.reduce_sum([tf.square(returns[i] - tf.reshape(each_prob_fake_value[i],[-1]))*fake_uniW[i] for i in range(bucket[1])]) / (tf.reduce_sum(fake_uniW)+1e-12)
value_loss_update += tf.reduce_sum([tf.square(real_returns[i] - tf.reshape(each_prob_real_value[i],[-1]))*real_uniW[i] for i in range(bucket[1])]) / (tf.reduce_sum(real_uniW)+1e-12)
loss_update = each_perp(samples_dists, samples, fake_uniW)
#REINFORCE
else:
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=True):
out_dist, hiddens, _ = \
decode(self.cell, enc_state, self.embedding, \
self.decoder_inputs[:bucket[1]], bucket[1], \
feed_prev=False)
self.out_dists.append(out_dist)
reward = self.fed_rewards
loss = seq_log_prob(out_dist, self.fed_samples[:bucket[1]], \
[reward - tf.reduce_mean(reward) for _ in range(bucket[1])])
loss_update = tf.reduce_sum(loss) / batch_size
if critic == None:
self.enc_state.append(enc_state)# useless
self.losses.append(loss)
softmax_outputs = []
argmax_outputs = []
for k in range(len(outputs)):#batch_id
out = nn_ops.xw_plus_b(outputs[k], self.output_projection[0], self.output_projection[1])
softmax_outputs.append(tf.nn.softmax(out))
argmax_outputs.append(math_ops.argmax(out, axis=1))
#self.outputs.append(argmax_outputs)
self.outputs.append(softmax_outputs)
else:
# for generating
self.enc_state.append(enc_state)# useless
self.outputs.append(samples)# useless, for print
self.samples_dists.append(samples_dists)# useless
self.each_probs.append(prob)# useless, for print
self.perp.append(tf.reduce_sum(prob) / batch_size)# useless, for print
# for training
self.losses.append(loss_update)
if 'GAN' in critic or critic == 'REGS':
# for debug
self.debug1.append(for_D_score_fake)
# for scoring
self.each_rewards.append(reward)# useless
self.for_G_rewards.append(for_G_rewards)
self.value_losses.append(value_loss_update)
self.D_losses.append(D_loss)# for print
self.D_real.append(D_prob_real)# for print
self.D_fake.append(D_prob_fake)# for print
# all parameters collection
params = tf.trainable_variables()
critic_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='critic')
value_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='valuenet')
s2s_params = [ x for x in params if x not in critic_params and x not in value_params ]
critic_params.append(self.global_D_step)
value_params.append(self.global_V_step)
# optimizer
optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
D_optimizer = tf.train.GradientDescentOptimizer(self.D_lr)
# update operation
self.op_update = []
self.D_solver = []
self.v_solver = []
for j in range(len(self.buckets)):
# update generator
if critic == None:
gradients = tf.gradients(self.losses[j], s2s_params)
elif 'GAN' in critic or critic == 'REGS':
gradients = tf.gradients(self.losses[j], s2s_params, self.for_G_rewards[j])
else:
gradients = tf.gradients(self.losses[j], s2s_params)
clipped_gradients, _ = tf.clip_by_global_norm(gradients, max_gradient_norm)
self.op_update.append(optimizer.apply_gradients(
zip(clipped_gradients, s2s_params),
global_step=self.global_step))
# update discriminator
if critic != None:
if 'GAN' in critic or critic == 'REGS':
D_grads = tf.gradients(self.D_losses[j], critic_params)
clipped_D_grads, _ = tf.clip_by_global_norm(D_grads, max_gradient_norm)
self.D_solver.append(D_optimizer.apply_gradients(
zip(clipped_D_grads, critic_params),
global_step=self.global_D_step))
# update value net
v_grads = tf.gradients(self.value_losses[j], value_params)
clipped_v_grads, _ = tf.clip_by_global_norm(v_grads, max_gradient_norm)
self.v_solver.append(D_optimizer.apply_gradients(
zip(clipped_v_grads, value_params),
global_step=self.global_V_step))
self.pre_D_saver = tf.train.Saver(var_list=critic_params, max_to_keep=None, sharded=True)
self.pre_value_saver = tf.train.Saver(var_list=value_params, max_to_keep=None, sharded=True)
self.pre_saver = tf.train.Saver(var_list=s2s_params, sharded=True)
elif mode == 'TEST':
self.enc_state = []
self.outputs = []
enc_outputs, enc_state = \
encode(self.enc_cell, self.encoder_inputs, self.seq_len)
# for beam search, probs
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=None):
outputs, _, _ = \
decode(self.cell, enc_state, self.embedding, \
self.decoder_inputs, buckets[-1][1], \
feed_prev=False)
self.outs = []
for l in range(len(outputs)):
outs = nn_ops.xw_plus_b(outputs[l], self.output_projection[0], self.output_projection[1])
# axis used for probs, default dim=-1
self.outs.append(tf.nn.softmax(outs))
# for MMI
local_batch_size = array_ops.shape(self.decoder_inputs[0])[0]
lm_outputs, _, _ = \
decode(self.cell, self.cell.zero_state(local_batch_size, tf.float32), self.embedding, \
self.decoder_inputs, buckets[-1][1], \
feed_prev=False)
self.lm_outs = []
for l in range(len(lm_outputs)):
lm_outs = nn_ops.xw_plus_b(lm_outputs[l], self.output_projection[0], self.output_projection[1])
self.lm_outs.append(tf.nn.softmax(lm_outs))
self.enc_state.append(enc_state)
# for argmax test
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=None):
outputs, _, _ = \
decode(self.cell, enc_state, self.embedding, \
self.decoder_inputs, buckets[-1][1], \
feed_prev=True, loop_function=loop_function)
self.outputs.append(outputs)
self.print_outputs = []
self.tmp_outputs = []
self.prob_outputs = []
for j, outs in enumerate(self.outputs):
self.print_outputs.append([])
self.tmp_outputs.append([])
self.prob_outputs.append([])
for i in range(len(outs)):
self.print_outputs[j].append(nn_ops.xw_plus_b(outs[i], self.output_projection[0], self.output_projection[1]))
self.tmp_outputs[j].append(math_ops.argmax(self.print_outputs[j][i], axis=1))
self.prob_outputs[j].append(tf.nn.softmax(self.print_outputs[j][i]))
self.max_log_prob = - seq_log_prob(outputs, self.tmp_outputs[0])
# for sample test
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=True):
tmp, self.samples, _ = \
decode(self.cell, enc_state, self.embedding, \
self.decoder_inputs, buckets[-1][1], \
feed_prev=True, loop_function=test_sample_loop_function)
self.log_prob = - seq_log_prob(tmp, self.samples)
params = tf.trainable_variables()
critic_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='critic')
s2s_params = [ x for x in params if x not in critic_params ]
general_s2s_params = {}
other_ver = False
self.pre_saver = tf.train.Saver(var_list=s2s_params, sharded=True)
# whole seq2seq saver
self.saver = tf.train.Saver(max_to_keep=None, sharded=True)
def train_step(
self,
sess,
encoder_inputs,
decoder_inputs,
target_weights,
bucket_id,
encoder_lens=None,
forward=False,
decoder_outputs=None,#for REINFORCE
rewards=None,#for REINFORCE
GAN_mode=None#for GAN
):
#MLE
if self.critic is None:
batch_size = encoder_inputs[0].shape[0]
encoder_size, decoder_size = self.buckets[bucket_id]
input_feed = {}
for l in range(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.seq_len] = encoder_lens
for l in range(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([batch_size], dtype = np.int32)
if forward:
output_feed = [self.losses[bucket_id], self.outputs[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1]
else:
output_feed = [self.losses[bucket_id], self.op_update[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1]
#SeqGAN, MaliGAN, REGS, StepGAN
elif GAN_mode:
batch_size = encoder_inputs[0].shape[0]
encoder_size, decoder_size = self.buckets[bucket_id]
input_feed = {}
for l in range(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.seq_len] = encoder_lens
for l in range(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([batch_size], dtype = np.int32)
if GAN_mode == 'D':
for l in range(decoder_size-1):
input_feed[self.critic.real_data[l].name] = decoder_inputs[l+1]
input_feed[self.critic.real_data[decoder_size-1].name] = \
np.zeros([batch_size], dtype = np.int32)
if forward:
output_feed = [self.D_losses[bucket_id],
self.losses[bucket_id],
self.D_real[bucket_id],
self.outputs[bucket_id],
self.D_fake[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1], outputs[2], outputs[3], outputs[4]
else:
output_feed = [self.D_losses[bucket_id],
self.D_solver[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1]
elif GAN_mode == 'V':
for l in range(decoder_size-1):
input_feed[self.critic.real_data[l].name] = decoder_inputs[l+1]
input_feed[self.critic.real_data[decoder_size-1].name] = \
np.zeros([batch_size], dtype = np.int32)
output_feed = [self.value_losses[bucket_id],
self.v_solver[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1]
else:
if forward:
output_feed = [self.losses[bucket_id],
self.outputs[bucket_id],
self.D_fake[bucket_id],
self.each_probs[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1], outputs[2], outputs[3]
else:
output_feed = [self.losses[bucket_id],
self.perp[bucket_id],
self.D_fake[bucket_id],
self.op_update[bucket_id],
self.outputs[bucket_id],#TODO
self.debug1[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1], outputs[2], outputs[4], outputs[5] #TODO
#REINFORCE
else:
batch_size = encoder_inputs[0].shape[0]
encoder_size, decoder_size = self.buckets[bucket_id]
input_feed = {}
for l in range(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.seq_len] = encoder_lens
for l in range(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([batch_size], dtype = np.int32)
if forward:
output_feed = self.outputs[bucket_id]
outputs = sess.run(output_feed, input_feed)
return outputs
else:
for l in range(decoder_size-1):
input_feed[self.decoder_inputs[l+1].name] = decoder_outputs[l]
for l in range(decoder_size):
input_feed[self.fed_samples[l].name] = decoder_outputs[l]
input_feed[self.fed_rewards.name] = rewards
output_feed = [self.losses[bucket_id],
self.perp[bucket_id],
self.out_dists[bucket_id],
self.op_update[bucket_id]]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1], outputs[2]
def dynamic_decode(self, sess, encoder_inputs, encoder_lens, decoder_inputs, mode='argmax'):
encoder_size = self.buckets[-1][0]
input_feed = {}
for l in range(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.seq_len] = encoder_lens
input_feed[self.decoder_inputs[0].name] = decoder_inputs[0]
if mode == 'argmax':
#output_feed = [self.tmp_outputs[0], self.max_log_prob, self.prob_outputs[0]]
output_feed = [self.tmp_outputs[0], self.max_log_prob]
elif mode == 'sample':
output_feed = [self.samples, self.log_prob]
#output_feed = [self.samples, self.log_prob, self.reward]
return sess.run(output_feed, input_feed)
def stepwise_test_beam(self, sess, encoder_inputs, encoder_lens, decoder_inputs):
encoder_size, decoder_size = self.buckets[-1]
input_feed = {}
for l in range(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
input_feed[self.seq_len] = encoder_lens
for l in range(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
output_feed = [self.outs]
return sess.run(output_feed, input_feed)
def lm_prob(self, sess, decoder_inputs):
_, decoder_size = self.buckets[-1]
input_feed = {}
for l in range(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
output_feed = [self.lm_outs]
return sess.run(output_feed, input_feed)