-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
147 lines (108 loc) · 5.14 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import sys
import glob
import psycopg2
import pandas as pd
from datetime import datetime
from sql_queries import *
def process_song_file(cur, filepath):
"""Process songs data and return song and artist dataframes"""
# open song file
df = pd.read_json(filepath, lines=True)
# song dataframe
song_data = df.loc[:, ["song_id", "title", "artist_id", "year", "duration"]]
song_data.fillna("", inplace=True)
# artist dataframe
artist_data = df.loc[:, ["artist_id", "artist_name", "artist_location", "artist_latitude", "artist_longitude"]]
artist_data.fillna(0, inplace=True)
return song_data, artist_data
def insert_song_data(cur, song_data):
"""Load song data into the songs table"""
# insert song record
song_data = list(song_data.values[0])
cur.execute(song_table_insert, song_data)
def insert_artists_data(cur, artist_data):
"""Load artist data into the artist table"""
# insert artist record
artist_data = list(artist_data.values[0])
cur.execute(artist_table_insert, artist_data)
def ts_to_datetime(timestamp):
"""Convert timestamp into a datetime object"""
# timestamp is in milliseconds so we divide by 1000.0
dt_object = datetime.fromtimestamp(timestamp / 1000.0)
return dt_object
def process_log_file(cur, filepath):
"""Process logs data and return dataframe, user and time dataframes"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df["page"] == "NextSong"]
# convert timestamp column to datetime
df["ts"] = df["ts"].apply(ts_to_datetime)
t = df
# Extract the timestamp, hour, day, week of year, month, year, and weekday from the ts column and set time_data to a list containing these values in order
# (start_time, hour, day, week, month, year, weekday)
time_data = (df["ts"], df["ts"].dt.hour, df["ts"].dt.day, df["ts"].dt.week, df["ts"].dt.month, df["ts"].dt.year, df["ts"].dt.weekday)
column_labels = ("timestamp", "hour", "day", "weekofyear", "month", "year", "weekday")
# Create a dataframe, time_df, containing the time data for this file by combining column_labels and time_data into a dictionary and converting this into a dataframe
time_data_dict = dict(zip(column_labels, time_data))
time_df = pd.DataFrame(time_data_dict)
# load user table
user_df = df.loc[:, ["userId", "firstName", "lastName", "gender", "level"]]
return df, time_df, user_df
def insert_time_data(cur, time_df):
"""Load time data into the time table"""
# insert time data records
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
def insert_user_and_songplays_data(cur, df, user_df):
"""Load user and songplay data into users and songplays tables respectively"""
# insert user records updating level field if already exists
for i, row in user_df.iterrows():
cur.execute(user_table_insert, list(row))
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record (start_time, user_id, level, song_id, artist_id, location, user_agent)
# row["ts"], row["userId"], row["level"], row["sessionId"], row["location"], row["userAgent"])
songplay_data = (row["ts"], row["userId"], row["level"], songid, artistid, row["sessionId"], row["location"], row["userAgent"])
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""Iterate over the files in a given filepath, process the data and load it
into the respective database tables.
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
if filepath == 'data/song_data':
song_data, artist_data = func(cur, datafile)
insert_song_data(cur, song_data)
insert_artists_data(cur, artist_data)
if filepath == 'data/log_data':
df, time_df, user_df = func(cur, datafile)
insert_time_data(cur, time_df)
insert_user_and_songplays_data(cur, df, user_df)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()