-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_frcnn.py
317 lines (244 loc) · 11.8 KB
/
train_frcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from __future__ import division
import random
import pprint
import sys
import time
import numpy as np
from optparse import OptionParser
import pickle
import os
import tensorflow as tf
from keras.callbacks import TensorBoard
from keras import backend as K
from keras.optimizers import Adam, SGD, RMSprop
from keras.layers import Input
from keras.models import Model
from keras_frcnn import config, data_generators
from keras_frcnn import losses as losses
import keras_frcnn.roi_helpers as roi_helpers
from keras.utils import generic_utils
import shutil
def train_nec_paras():
paras = {'network':'resnet101',
'dataset':'pascal_voc',
'num_epochs':800,
'num_length':100}
return paras
def write_log(callback, names, logs, batch_no):
for name, value in zip(names, logs):
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value
summary_value.tag = name
callback.writer.add_summary(summary, batch_no)
callback.writer.flush()
if os.path.exists('./logs'):
shutil.rmtree("./logs")
os.makedirs('./logs')
tf.logging.set_verbosity(tf.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
K.set_learning_phase(1)
sys.setrecursionlimit(40000)
train_neccessary_paras = train_nec_paras()
parser = OptionParser()
parser.add_option("-p", "--path", dest="train_path", help="Path to training data.")
(options, args) = parser.parse_args()
if not options.train_path: # if filename is not given
parser.error('Error: path to training data must be specified. Pass --path to command line')
if train_neccessary_paras['dataset'] == 'pascal_voc':
from keras_frcnn.pascal_voc_parser import get_data
elif train_neccessary_paras['dataset'] == 'oxford_pet':
from keras_frcnn.oxford_pet_parser import get_data
else:
raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'")
# pass the settings from the command line, and persist them in the config object
C = config.Config()
if train_neccessary_paras['network'] == 'vgg':
C.network = 'vgg'
from keras_frcnn import vgg as nn
elif train_neccessary_paras['network'] == 'resnet50':
from keras_frcnn import resnet as nn
C.network = 'resnet50'
elif train_neccessary_paras['network'] == 'resnet101':
from keras_frcnn import resnet101 as nn
C.network = 'resnet101'
else:
print('Not a valid model')
raise ValueError
# check if weight path was passed via command line
# set the path to weights based on backend and model
C.base_net_weights = nn.get_weight_path()
all_imgs, classes_count, class_mapping = get_data(options.train_path)
if 'bg' not in classes_count:
classes_count['bg'] = 0
class_mapping['bg'] = len(class_mapping)
C.class_mapping = class_mapping
inv_map = {v: k for k, v in class_mapping.items()}
print('Training images per class:')
pprint.pprint(classes_count)
print('Num classes (including bg) = {}'.format(len(classes_count)))
config_output_filename = C.config_filename
with open(config_output_filename, 'wb') as config_f:
pickle.dump(C, config_f)
print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(
config_output_filename))
random.shuffle(all_imgs)
num_imgs = len(all_imgs)
train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval']
val_imgs = [s for s in all_imgs if s['imageset'] == 'test']
print('Num train samples {}'.format(len(train_imgs)))
print('Num val samples {}'.format(len(val_imgs)))
data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length,
K.image_dim_ordering(), mode='train')
data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C, nn.get_img_output_length,
K.image_dim_ordering(), mode='val')
if K.image_dim_ordering() == 'th':
input_shape_img = (3, None, None)
else:
input_shape_img = (None, None, 3)
img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(None, 4))
# define the base network (resnet here, can be VGG, Inception, etc)
shared_layers = nn.nn_base(img_input, trainable=True)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn = nn.rpn(shared_layers, num_anchors)
classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), trainable=True)
model_rpn = Model(img_input, rpn[:2])
model_classifier = Model([img_input, roi_input], classifier)
# this is a model that holds both the RPN and the classifier, used to load/save weights for the models
model_all = Model([img_input, roi_input], rpn[:2] + classifier)
log_rpn_path = './logs/rpn'
log_cls_path = './logs/cls'
callback_rpn = TensorBoard(log_rpn_path)
callback_rpn.set_model(model_rpn)
train_rpn_names = ['rpn_loss','rpn_cls','rpn_rgr']
callback_cls = TensorBoard(log_cls_path)
callback_cls.set_model(model_classifier)
train_cls_names = ['cls_loss','cls_cls','cls_rgr']
try:
print('loading weights from {}'.format(C.base_net_weights))
model_rpn.load_weights(C.base_net_weights, by_name=True)
model_classifier.load_weights(C.base_net_weights, by_name=True)
except:
raise ImportError('Could not load pretrained model weights')
# opt is okay
optimizer = Adam(lr=1e-5)
# opt_cls lr should be smaller 2e-5
optimizer_classifier = Adam(lr=3e-5)
model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)])
model_classifier.compile(optimizer=optimizer_classifier,
loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count) - 1)],
metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})
model_all.compile(optimizer='sgd', loss='mae')
epoch_length = train_neccessary_paras['num_length']
num_epochs = train_neccessary_paras['num_epochs']
iter_num = 0
losses = np.zeros((epoch_length, 5))
rpn_accuracy_rpn_monitor = []
rpn_accuracy_for_epoch = []
start_time = time.time()
best_loss = np.Inf
class_mapping_inv = {v: k for k, v in class_mapping.items()}
print('Starting training')
vis = True
for epoch_num in range(num_epochs):
progbar = generic_utils.Progbar(epoch_length)
print('Epoch {}/{}'.format(epoch_num + 1, num_epochs))
while True:
try:
if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose:
mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor)
rpn_accuracy_rpn_monitor = []
print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(
mean_overlapping_bboxes, epoch_length))
if mean_overlapping_bboxes == 0:
print(
'RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.')
X, Y, img_data = next(data_gen_train)
loss_rpn = model_rpn.train_on_batch(X, Y)
write_log(callback_rpn,train_rpn_names,loss_rpn[:3],epoch_num*epoch_length+iter_num)
P_rpn = model_rpn.predict_on_batch(X)
R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7,
max_boxes=2000)
# note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format
X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping)
if X2 is None:
rpn_accuracy_rpn_monitor.append(0)
rpn_accuracy_for_epoch.append(0)
continue
neg_samples = np.where(Y1[0, :, -1] == 1)
pos_samples = np.where(Y1[0, :, -1] == 0)
if len(neg_samples) > 0:
neg_samples = neg_samples[0]
else:
neg_samples = []
if len(pos_samples) > 0:
pos_samples = pos_samples[0]
else:
pos_samples = []
rpn_accuracy_rpn_monitor.append(len(pos_samples))
rpn_accuracy_for_epoch.append((len(pos_samples)))
if C.num_rois > 1:
if len(pos_samples) < C.num_rois // 2:
selected_pos_samples = pos_samples.tolist()
else:
selected_pos_samples = np.random.choice(pos_samples, C.num_rois // 2, replace=False).tolist()
try:
selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples),
replace=False).tolist()
except:
selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples),
replace=True).tolist()
sel_samples = selected_pos_samples + selected_neg_samples
else:
# in the extreme case where num_rois = 1, we pick a random pos or neg sample
selected_pos_samples = pos_samples.tolist()
selected_neg_samples = neg_samples.tolist()
if np.random.randint(0, 2):
sel_samples = random.choice(neg_samples)
else:
sel_samples = random.choice(pos_samples)
loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]],
[Y1[:, sel_samples, :], Y2[:, sel_samples, :]])
write_log(callback_cls,train_cls_names,loss_class[:3],epoch_num*epoch_length+iter_num)
losses[iter_num, 0] = loss_rpn[1]
losses[iter_num, 1] = loss_rpn[2]
losses[iter_num, 2] = loss_class[1]
losses[iter_num, 3] = loss_class[2]
losses[iter_num, 4] = loss_class[3]
iter_num += 1
progbar.update(iter_num,
[('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])),
('detector_cls', np.mean(losses[:iter_num, 2])),
('detector_regr', np.mean(losses[:iter_num, 3]))])
if iter_num == epoch_length:
loss_rpn_cls = np.mean(losses[:, 0])
loss_rpn_regr = np.mean(losses[:, 1])
loss_class_cls = np.mean(losses[:, 2])
loss_class_regr = np.mean(losses[:, 3])
class_acc = np.mean(losses[:, 4])
mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch)
rpn_accuracy_for_epoch = []
if C.verbose:
print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(
mean_overlapping_bboxes))
print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc))
print('Loss RPN classifier: {}'.format(loss_rpn_cls))
print('Loss RPN regression: {}'.format(loss_rpn_regr))
print('Loss Detector classifier: {}'.format(loss_class_cls))
print('Loss Detector regression: {}'.format(loss_class_regr))
print('Elapsed time: {}'.format(time.time() - start_time))
curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr
iter_num = 0
start_time = time.time()
if curr_loss < best_loss:
if C.verbose:
print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss))
best_loss = curr_loss
model_all.save_weights(C.model_path)
break
except Exception as e:
print('Exception: {}'.format(e))
continue
print('Training complete, exiting.')