-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
140 lines (108 loc) · 3.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import nltk
nltk.download('punkt')
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tflearn
import tensorflow
from tensorflow.python.framework import ops
import random
import json
import pickle
import pyfiglet
import os
import pyttsx3
engine = pyttsx3.init()
engine.setProperty("rate", 180)
voices = engine.getProperty("voices")
engine.setProperty("voice", voices[4].id)
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
ops.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 40)
net = tflearn.fully_connected(net, 40)
net = tflearn.fully_connected(net, 40)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=30000, batch_size=10, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
os.system('cls||clear')
print("\n\n\n\n")
ascii_banner = pyfiglet.figlet_format("javascriptcoding")
print(ascii_banner)
print("\n\n")
# engine.say("Willkommen zurück, Sir!")
engine.say("Welcome back, Sir!")
engine.runAndWait()
while True:
inp = input("You: ")
results = model.predict([bag_of_words(inp, words)])[0]
results_index = numpy.argmax(results)
tag = labels[results_index]
if results[results_index] > 0.8:
for tg in data["intents"]:
if tg["tag"] == tag:
responses = tg["responses"]
answer = random.choice(responses)
print("Chatbot: " + answer)
engine.say(answer)
engine.runAndWait()
if tag == "abschied":
break
else:
engine.say("Ich habe nicht ganz verstanden, was du meinst.")
engine.runAndWait()
chat()