-
Notifications
You must be signed in to change notification settings - Fork 1
/
DA1_Tables.tex
399 lines (372 loc) · 18.1 KB
/
DA1_Tables.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
\chapter{STATISTICAL TABLES}
\label{ch:tables}
\epigraph{``The main purpose of a significance test is to inhibit the natural enthusiasm of the investigator.''}{\textit{Frederick Mosteller, Statistician}}
\index{Critical values|(}
This appendix contains a set of standard statistical tables of critical values
for a variety of tests or distributions at selected levels of confidence. When appropriate,
both one-sided and two-sided critical values are provided. A two-sided test is used when
the null hypothesis is asserting an \emph{equality}, while a one-sided test is appropriate when the
null hypothesis is stating an \emph{inequality}. Reject the null hypothesis
if the calculated statistic \emph{exceeds} the critical value (except for the $U$-test where rejection of $H_0$ should result when the calculated $U$ is \emph{less} than the critical value.)
\vspace{0.25in}
\begin{table}[H]
\centering
\begin{tabular}{|c|c|} \hline
\bf{Test or Distribution} & \bf{Table} \\ \hline
\rule{0pt}{2ex}Normal distribution & \ref{tbl:Critical_z} \\[2pt] \hline
\rule{0pt}{2ex}Student's $t$ & \ref{tbl:Critical_t} \\[2pt] \hline
\rule{0pt}{2ex}$\chi^2_{\alpha,\nu}$ & \ref{tbl:Critical_chi2} \\[2pt] \hline
\rule{0pt}{2ex}$F_{0.9,\nu_1,\nu_2}$ & \ref{tbl:Critical_F90} \\[2pt] \hline
\rule{0pt}{2ex}$F_{0.95,\nu_1,\nu_2}$ & \ref{tbl:Critical_F95} \\[2pt] \hline
\rule{0pt}{2ex}$F_{0.975,\nu_1,\nu_2}$ & \ref{tbl:Critical_F975} \\[2pt] \hline
\rule{0pt}{2ex}$F_{0.99,\nu_1,\nu_2}$ & \ref{tbl:Critical_F99} \\[2pt] \hline
\rule{0pt}{2ex}$U_{0.05,n_1,n_2}$ (one-sided) & \ref{tbl:Critical_U1} \\[2pt] \hline
\rule{0pt}{2ex}$U_{0.01,n_1,n_2}$ (one-sided) & \ref{tbl:Critical_U2} \\[2pt] \hline
\rule{0pt}{2ex}$U_{0.05,n_1,n_2}$ (two-sided) & \ref{tbl:Critical_U3} \\[2pt] \hline
\rule{0pt}{2ex}$U_{0.01,n_1,n_2}$ (two-sided) & \ref{tbl:Critical_U4} \\[2pt] \hline
\rule{0pt}{2ex}Kolmogorov-Smirnov (one sample, given $\mu, \sigma$) & \ref{tbl:Critical_KS1} \\[2pt] \hline
\rule{0pt}{2ex}Kolmogorov-Smirnov (one sample, estimate $\mu, \sigma$) & \ref{tbl:Critical_KS2} \\
(Normally called Lilliefors test for normality) & \\[2pt] \hline
\rule{0pt}{2ex}Kolmogorov-Smirnov (two sample) & \ref{tbl:Critical_KS3} \\[2pt] \hline
\rule{0pt}{2ex}Spearman's rank correlation & \ref{tbl:Critical_Spearman} \\[2pt] \hline
\rule{0pt}{2ex}Determine $\kappa$ from $\bar{R}$ (two-dimensional) & \ref{tbl:Critical_kappa2} \\[2pt] \hline
\rule{0pt}{2ex}Lord Rayleigh test for $\bar{R}$ (two-dimensional) & \ref{tbl:Critical_R2} \\[2pt] \hline
\rule{0pt}{2ex}Determine $\kappa$ from $\bar{R}$ (three-dimensional) & \ref{tbl:Critical_kappa3} \\[2pt] \hline
\rule{0pt}{2ex}Fisher test for $\bar{R}$ (three-dimensional) & \ref{tbl:Critical_R3} \\[2pt] \hline
\end{tabular}
\end{table}
\clearpage
\section{Cumulative Probabilities for the Normal Distribution}
\index{Normal distribution}
\PSfig[H]{Fig1_App_Normal}{Given a chosen $z_P$-value, the probability $P$ (gray area under the curve from $-\infty$ to $z_P$)
can be read from this table. Here, $z_P$ is given in the format \emph{-a.bc}, where \emph{-a.b} and \emph{0.0c}
correspond to a unique row and column combination.}
\begin{table}[H]
\centering
\small
\begin{tabular}{|c|cccccccccc|} \hline
$z_P$ & \bf{0.09} & \bf{0.08} & \bf{0.07} & \bf{0.06} & \bf{0.05} & \bf{0.04} & \bf{0.03} & \bf{0.02} & \bf{0.01} & \bf{0.00} \\ \hline
\input{CriticalTables/DA1_Table_Normal}
\end{tabular}
\normalsize
\caption{Normal cumulative distribution function. For $z > 0$ use $P(z) = 1 - P(-z)$.}
\label{tbl:Critical_z}
\end{table}
For critical $z_\alpha$ or $z_{\alpha/2}$ values, see the last entry ($\nu = \infty$) in the table of critical values
for the Student-$t$ (Table \ref{tbl:Critical_t}).
\clearpage
\section{Critical Values for the Student's $t$ Distribution}
\index{Critical values!Student's $t$}
\index{Critical values!Normal distribution}
\PSfig[H]{Fig1_App_Student_t}{Given a chosen confidence level, $\alpha$ (area of the tail(s)), and sample size, $n$, then the degrees of
freedom, $\nu$, is $n -1$. Find the corresponding row and column entries and read the critical $t_{\alpha,\nu}$ value (one-sided test, e.g., for $H_0: t < 0$)
or $t_{\alpha/2,\nu}$ value (two-sided test for $H_0: t = 0$). The sign of $t$ depends on which
tail you are considering.}
\begin{table}[H]
\centering
\begin{tabular}{|c|ccccc|} \hline
\bf{One tail, } $\mathbf{\alpha}$: & \bf{0.10} & \bf{0.05} & \bf{0.025} & \bf{0.01} & \bf{0.005} \\ \hline
\bf{Two tails, } $\mathbf{\alpha}$: & \bf{0.20} & \bf{0.1} & \bf{0.05} & \bf{0.02} & \bf{0.01} \\ \hline
$\nu$ & & & & & \\ \hline
\input{CriticalTables/DA1_Table_Student_t}
\end{tabular}
\caption{Critical values for the Student's $t$ distribution.}
\label{tbl:Critical_t}
\end{table}
\clearpage
\section{Critical Values for the $\chi^2$ Distribution}
\index{Critical values!$\chi^2$}
\PSfig[H]{Fig1_App_Chisquare}{Given $\alpha$ and degrees of freedom, $\nu = n -1$, read critical $\chi^2_{1-\alpha,\nu}$ or $\chi^2_{\alpha,\nu}$ values.}
\begin{table}[H]
\centering
\footnotesize
\begin{tabular}{|c|ccccc||ccccc|} \hline
\bf{Degrees of} & \multicolumn{5}{|c||}{\bf{Left tail} ($1-\alpha$)} & \multicolumn{5}{c|}{\bf{Right tail} ($\alpha$)} \\ \cline{2-11}
\bf{freedom, }$\nu$ & \bf{0.995} & \bf{0.99} & \bf{0.975} & \bf{0.95} & \bf{0.90} & \bf{0.10} & \bf{0.05} & \bf{0.025} & \bf{0.01} & \bf{0.005} \\ \hline
\input{CriticalTables/DA1_Table_Chisquare}
\end{tabular}
\normalsize
\caption{Critical values for the $\chi^2$ distribution.}
\label{tbl:Critical_chi2}
\end{table}
\clearpage
\section{Critical Values for the $F$ Distribution}
\label{sec:Ftables}
\index{Critical values!$F$|(}
\PSfig[H]{Fig1_App_F}{Given chosen confidence level $\alpha$ (area of the tail) and the degrees of
freedom ($\nu_1 = n_1 -1$, $\nu_2 = n_2 -1$), find the corresponding row and column entries and read the critical
$F_{\alpha,\nu_1, \nu_2}$ value (two-sided test, e.g., $H_0: F = 1$).}
\subsection{$F$ table for 90\% confidence level}.
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|cccccccccccccc|} \hline
$\downarrow \nu_2 | \nu_1 \rightarrow$ & \bf{1} & \bf{2} & \bf{3} & \bf{4} & \bf{5} & \bf{6} & \bf{7} & \bf{8} & \bf{9} & \bf{10} & \bf{15} & \bf{20} & \bf{25} & \bf{50} \\ \hline
\input{CriticalTables/DA1_Table_F_0.1}
\end{tabular}
\normalsize
\caption{Critical values for the $F$ distribution, $\alpha = 0.1$. Note: $\nu_1, \nu_2$ are the degrees of freedom for
the numerator and denominator, respectively.}
\label{tbl:Critical_F90}
\end{table}
\clearpage
\subsection{$F$ table for 95\% confidence level}.
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|cccccccccccccc|} \hline
$\downarrow \nu_2 | \nu_1 \rightarrow$ & \bf{1} & \bf{2} & \bf{3} & \bf{4} & \bf{5} & \bf{6} & \bf{7} & \bf{8} & \bf{9} & \bf{10} & \bf{15} & \bf{20} & \bf{25} & \bf{50} \\ \hline
\input{CriticalTables/DA1_Table_F_0.05}
\end{tabular}
\normalsize
\caption{Critical values for the $F$ distribution, $\alpha = 0.05$. Note: $\nu_1, \nu_2$ are the degrees of freedom for
the numerator and denominator, respectively.}
\label{tbl:Critical_F95}
\end{table}
\clearpage
\subsection{$F$ table for 97.5\% confidence level}.
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|cccccccccccccc|} \hline
$\downarrow \nu_2 | \nu_1 \rightarrow$ & \bf{1} & \bf{2} & \bf{3} & \bf{4} & \bf{5} & \bf{6} & \bf{7} & \bf{8} & \bf{9} & \bf{10} & \bf{15} & \bf{20} & \bf{25} & \bf{50} \\ \hline
\input{CriticalTables/DA1_Table_F_0.025}
\end{tabular}
\normalsize
\caption{Critical values for the $F$ distribution, $\alpha = 0.025$. Note: $\nu_1, \nu_2$ are the degrees of freedom for
the numerator and denominator, respectively.}
\label{tbl:Critical_F975}
\end{table}
\clearpage
\subsection{$F$ table for 99\% confidence level}.
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|cccccccccccccc|} \hline
$\downarrow \nu_2 | \nu_1 \rightarrow$ & \bf{1} & \bf{2} & \bf{3} & \bf{4} & \bf{5} & \bf{6} & \bf{7} & \bf{8} & \bf{9} & \bf{10} & \bf{15} & \bf{20} & \bf{25} & \bf{50} \\ \hline
\input{CriticalTables/DA1_Table_F_0.01}
\end{tabular}
\normalsize
\caption{Critical values for the $F$ distribution, $\alpha = 0.01$. Note: $\nu_1, \nu_2$ are the degrees of freedom for
the numerator and denominator, respectively.}
\label{tbl:Critical_F99}
\end{table}
\index{Critical values!$F$|)}
\clearpage
\section{Critical Values for the Mann-Whitney ($U$-Test)}
\index{Critical values!$U$|(}
These critical values are used when comparing two samples based on their
\emph{ranks} instead of their values. These tables are symmetrical so it does not matter
which sample you label ``1'' and which one is sample ``2'', i.e., $U_{\alpha,n_1,n_2} \equiv U_{\alpha,n_2,n_1}$.
For sample sizes larger than 20 you may use the normal distribution approximation (\ref{eq:U_approx}).
\subsection{One-sided tests}
This section concerns itself with \emph{one-sided} comparisons,
i.e., $H_0: \mu_1 > \mu_2$. Depending on your level of confidence, use either
Table~\ref{tbl:Critical_U1} (for $\alpha = 0.05$) or
Table~\ref{tbl:Critical_U2} (for $\alpha = 0.01$).
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|ccccccccccccccccccc|} \hline
\input{CriticalTables/DA1_Table_U1}
\end{tabular}
\normalsize
\caption{Critical values for the one-sided $U$-test for $\alpha = 0.05$. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_U1}
\end{table}
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|ccccccccccccccccccc|} \hline
\input{CriticalTables/DA1_Table_U2}
\end{tabular}
\normalsize
\caption{Critical values for the one-sided $U$-test for $\alpha = 0.01$. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_U2}
\end{table}
\clearpage
\subsection{Two-sided tests}
This section concerns itself with \emph{two-sided} comparisons,
i.e., $H_0: \mu_1 = \mu_2$. Depending on your level of confidence, use either
Table~\ref{tbl:Critical_U3} (for $\alpha = 0.05$) or
Table~\ref{tbl:Critical_U4} (for $\alpha = 0.01$).
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|ccccccccccccccccccc|} \hline
\input{CriticalTables/DA1_Table_U3}
\end{tabular}
\normalsize
\caption{Critical values for the two-sided $U$-test for $\alpha = 0.05$. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_U3}
\end{table}
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|ccccccccccccccccccc|} \hline
\input{CriticalTables/DA1_Table_U4}
\end{tabular}
\normalsize
\caption{Critical values for the two-sided $U$-test for $\alpha = 0.01$. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_U4}
\end{table}
\index{Critical values!$U$|)}
\clearpage
\section{Critical Values for the Kolmogorov-Smirnov Distribution}
\index{Critical values!Kolmogorov-Smirnov|(}
\subsection{One-sample comparison with a known distribution}
Use table \ref{tbl:Critical_KS1} when comparing a single sample's cumulative distribution to
that of a \emph{known} distribution, i.e., its parameters ($\mu, \sigma$) are prescribed
by the null hypothesis.
\begin{table}[h]
\centering
\small
\begin{tabular}{|c|ccccc|} \hline
\bf{One tail, } $\mathbf{\alpha}$: & \bf{0.10} & \bf{0.05} & \bf{0.025} & \bf{0.01} & \bf{0.005} \\ \hline
\bf{Two tails, } $\mathbf{\alpha}$: & \bf{0.20} & \bf{0.1} & \bf{0.05} & \bf{0.02} & \bf{0.01} \\ \hline
\input{CriticalTables/DA1_Table_KS1}
$n > 40$ & $\frac{1.07}{\sqrt{n}}$ & $\frac{1.22}{\sqrt{n}}$ & $\frac{1.36}{\sqrt{n}}$ & $\frac{1.52}{\sqrt{n}}$ & $\frac{1.63}{\sqrt{n}}$ \\[4pt] \hline
\end{tabular}
\normalsize
\caption{Critical values for the one-sample Kolmogorov-Smirnov test. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_KS1}
\end{table}
\clearpage
\subsection{One-sample comparison with an unknown distribution (Lilliefors)}
Use table \ref{tbl:Critical_KS2} when comparing a single sample's cumulative distribution to
that of an \emph{unknown} normal distribution. Equate the unknown distribution's
parameters ($\mu, \sigma$) to those from the sample ($\bar{x}, s$) in order to compute its cumulative distribution.
The parameter estimation reduces the degrees of freedom by two and the standard
Kolmogorov-Smirnov critical values are not appropriate. Lilliefors developed a numerical solution that
gives the correct critical values. This is a two-sided test.
\begin{table}[h]
\centering
\begin{tabular}{|c|cccc|} \hline
$\alpha$: & \bf{0.10} & \bf{0.05} & \bf{0.01} & \bf{0.001} \\ \hline
\input{CriticalTables/DA1_Table_KS2}
$n > 100$ & $\frac{0.816}{\sqrt{n}}$ & $\frac{0.888}{\sqrt{n}}$ & $\frac{1.038}{\sqrt{n}}$ & $\frac{1.212}{\sqrt{n}}$ \\[4pt] \hline
\end{tabular}
\caption{Critical values for the Lilliefors test. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_KS2}
\end{table}
\clearpage
\subsection{Two-sample comparison}
Table \ref{tbl:Critical_KS3} gives critical $D$-values for $\alpha = 0.05$ (upper row) and $\alpha = 0.01$ (lower row) for various sample sizes, $n_1$ and $n_2$.
The asterisk (*) means you cannot reject $H_0$ regardless of observed $D$. For blank entries
simply reverse $n_1$ and $n_2$.
\begin{table}[h]
\centering
\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|} \hline
$n_2 | n_1$: & \bf{3} & \bf{4} & \bf{5} & \bf{6} & \bf{7} & \bf{8} & \bf{9} & \bf{10} & \bf{11} & \bf{12} \\ \hline
\input{CriticalTables/DA1_Table_KS3}
\end{tabular}
\caption{Critical values for the two-sample Kolmogorov-Smirnov test. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_KS3}
\end{table}
For larger sample sizes, the approximate critical value $D_\alpha$ is given by the equation
\begin{equation}
D_\alpha = c(\alpha) \sqrt{\frac{n_1 + n_2}{n_1\cdot n_2}},
\end{equation}
where the coefficient $c(\alpha)$ is given via the table below:
\begin{table}[H]
\centering
\begin{tabular}{|c||c|c|c|c|c|c|} \hline
$\alpha$ & \bf{0.10} & \bf{0.05} & \bf{0.025} & \bf{0.01} & \bf{0.005} & \bf{0.001} \\ \hline
$c(\alpha)$ & 1.22 & 1.36 & 1.48 & 1.63 & 1.73 & 1.95 \\ \hline
\end{tabular}
\label{tbl:Critical_KS3b}
\end{table}
Examples:
\begin{enumerate}
\item For $\alpha = 0.05$ and sample sizes 5 and 8, $D_\alpha = 30/40 = 0.75$.
\item For $\alpha = 0.01$ and sample sizes 15 and 28, $D_\alpha = 1.63 \sqrt{\frac{15+28}{15 \cdot 28}} = 0.522$.
\end{enumerate}
\index{Critical values!Kolmogorov-Smirnov|)}
\clearpage
\section{Critical Values for Spearman's Rank Correlation}
\index{Critical values!Spearman's rank}
This is either a one-sided (e.g., $H_0: \rho > 0$) or two-sided ($H_0: \rho = 0$) test
for the nonparametric rank correlation. Given the number of pairs, $n$, in the sample and
the chosen confidence level, $\alpha$, Table~\ref{tbl:Critical_Spearman} shows the critical correlation that must be
exceeded for $H_0$ to be rejected. The asterisk identify situations when $H_0$ cannot be rejected.
\begin{table}[h]
\centering
\footnotesize
\begin{tabular}{|c|cccccccc|} \hline
\bf{One tail, } $\alpha$: & \bf{0.10} & \bf{0.05} & \bf{0.025} & \bf{0.01} & \bf{0.005} & \bf{0.0025} & \bf{0.001} & \bf{0.0005} \\ \hline
\bf{Two tails, } $\alpha$: & \bf{0.20} & \bf{0.1} & \bf{0.05} & \bf{0.02} & \bf{0.01} & \bf{0.005} & \bf{0.002} & \bf{0.001} \\ \hline
\input{CriticalTables/DA1_Table_Spearman}
\end{tabular}
\normalsize
\caption{Critical values for Spearman's rank correlation. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_Spearman}
\end{table}
\clearpage
\section{Relationship Between $\kappa$ and $\bar{R}$ for 2-D Directional Data}
\index{Mean resultant!kappa (2-D)}
Given a mean resultant ($\bar{R}$) we use Table~\ref{tbl:Critical_kappa2} to obtain the corresponding concentration parameter ($\kappa$)
for directional data in the plane.
Alternatively, one can solve the implicit equation for $\kappa$ given by
\begin{equation}
\bar{R} = \frac{I_1(\kappa)}{I_0(\kappa)}.
\label{eq:kappa2d}
\end{equation}
\begin{table}[h]
\centering
\begin{tabular}{|cc|cc|cc|} \hline
$\bar{R}$ & $\kappa$ & $\bar{R}$ & $\kappa$ & $\bar{R}$ & $\kappa$ \\ \hline
\input{CriticalTables/DA1_Table_kappa2}
\end{tabular}
\caption{Relationship between $\kappa$ and $\bar{R}$ in 2-D.}
\label{tbl:Critical_kappa2}
\end{table}
\clearpage
\section{Critical Values of $\bar{R}$ for 2-D Directional Data}
\index{Critical values!$\bar{R}$ 2-D}
Given the level of significance we determine the critical value for the mean resultant
length under the null hypothesis of no preferred direction in the plane ($H_0: \bar{R} = 0$), with the alternative hypothesis
being that the data can be described via the von Mises distribution (\ref{eg:von_Mises}) with a preferred trend ($H_1: \bar{R} \neq 0$).
\begin{table}[h]
\centering
\begin{tabular}{|c|cccc|} \hline
$\alpha$: & \bf{0.10} & \bf{0.05} & \bf{0.025} & \bf{0.01} \\ \hline
\input{CriticalTables/DA1_Table_R2mean}
\end{tabular}
\caption{Critical values for $\bar{R}$ in the plane. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_R2}
\end{table}
\clearpage
\section{Relationship Between $\kappa$ and $\bar{R}$ for 3-D Directional Data}
\index{Mean resultant!kappa (3-D)}
Given a mean resultant ($\bar{R}$) we use Table~\ref{tbl:Critical_kappa3} to obtain the corresponding concentration parameter ($\kappa$)
for directional data in space.
Alternatively, one can solve the implicit equation for $\kappa$ given by
\begin{equation}
\coth{\kappa} - 1/\kappa = \bar{R}.
\label{eq:kappa3d}
\end{equation}
\begin{table}[h]
\centering
\begin{tabular}{|cc|cc|cc|} \hline
$\bar{R}$ & $\kappa$ & $\bar{R}$ & $\kappa$ & $\bar{R}$ & $\kappa$ \\ \hline
\input{CriticalTables/DA1_Table_kappa3}
\end{tabular}
\caption{Relationship between $\kappa$ and $\bar{R}$ in 3-D.}
\label{tbl:Critical_kappa3}
\end{table}
\clearpage
\section{Critical Values of $\bar{R}$ for 3-D Directional Data}
\index{Critical values!$\bar{R}$ 3-D}
Given the level of significance we determine the critical value for the mean resultant
length under the null hypothesis of no preferred direction in space ($H_0: \bar{R} = 0$), with the alternative hypothesis
being that the data can be described via the Fisher distribution (\ref{eq:fisher}) with a preferred trend ($H_1: \bar{R} \neq 0$).
\begin{table}[h]
\centering
\begin{tabular}{|c|cccc|} \hline
$\alpha$: & \bf{0.10} & \bf{0.05} & \bf{0.025} & \bf{0.01} \\ \hline
\input{CriticalTables/DA1_Table_R3mean}
\end{tabular}
\caption{Critical values for $\bar{R}$ in 3-D space. Note the use of $n$ rather than $\nu$.}
\label{tbl:Critical_R3}
\end{table}
\index{Critical values|)}