欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
题目链接: https://leetcode-cn.com/problems/uncrossed-lines/
我们在两条独立的水平线上按给定的顺序写下 A 和 B 中的整数。
现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
以这种方法绘制线条,并返回我们可以绘制的最大连线数。
相信不少录友看到这道题目都没啥思路,我们来逐步分析一下。
绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不能相交!
直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。
拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:
其实也就是说A和B的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串A中数字1的后面,那么数字4也应该在字符串B数字1的后面)
这么分析完之后,大家可以发现:本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!
那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列就是一样一样的了。
一样到什么程度呢? 把字符串名字改一下,其他代码都不用改,直接copy过来就行了。
其实本题就是求最长公共子序列的长度,介于我们刚刚讲过动态规划:1143.最长公共子序列,所以本题我就不再做动规五部曲分析了。
如果大家有点遗忘了最长公共子序列,就再看一下这篇:动态规划:1143.最长公共子序列
本题代码如下:
class Solution {
public:
int maxUncrossedLines(vector<int>& A, vector<int>& B) {
vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
for (int i = 1; i <= A.size(); i++) {
for (int j = 1; j <= B.size(); j++) {
if (A[i - 1] == B[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[A.size()][B.size()];
}
};
看到代码大家也可以发现其实就是求两个字符串的最长公共子序列,但如果没有做过1143.最长公共子序列,本题其实还有很有难度的。
这是Carl为什么要先讲1143.最长公共子序列再讲本题,大家会发现一个正确的刷题顺序对算法学习是非常重要的!
这也是Carl做了很多题目(包括ACM和力扣)才总结出来的规律,大家仔细体会一下哈。
Java:
class Solution {
public int maxUncrossedLines(int[] A, int[] B) {
int [][] dp = new int[A.length+1][B.length+1];
for(int i=1;i<=A.length;i++) {
for(int j=1;j<=B.length;j++) {
if (A[i-1]==B[j-1]) {
dp[i][j]=dp[i-1][j-1]+1;
}
else {
dp[i][j]=Math.max(dp[i-1][j], dp[i][j-1]);
}
}
}
return dp[A.length][B.length];
}
}
Python:
class Solution:
def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:
dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
for i in range(1, len(A)+1):
for j in range(1, len(B)+1):
if A[i-1] == B[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
return dp[-1][-1]
Go: