Many neuroimaging tools have idiosyncratic CLIs that are clumsy to use from programming languages like python and R. Nipype provides a unified interface that facilitates the design of workflows within and between packages, lowering the learning curve necessary to use a new package.
Nipype interfaces consist of an input and output specification class, _run_interface
method, and _list_outputs
. To validate inputs are the requested type and outputs get created correctly, nipype uses a package called Traits to automate much of the process. When the .run()
method is called on an instance of your interface, the _run_interface
method is called, and _list_outputs
is used to list the files matched against the output specification. For example, an interface that simply moves a file might look like
class MoveResultFileInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, desc='input file to be renamed', mandatory=True)
output_name = traits.String(desc='output name string')
class MoveResultFileOutputSpec(TraitedSpec):
out_file = File(desc='path of moved file')
class MoveResultFile(BaseInterface):
input_spec = MoveResultFileInputSpec
output_spec = MoveResultFileOutputSpec
def _run_interface(self, runtime):
shutil.copyfile(self.inputs.in_file, self.inputs.output_name)
return runtime
def _list_outputs(self):
outputs = self._outputs().get()
outputs['out_file'] = self.inputs.output_name
return outputs
A slightly more complex example, which thresholds an input image with nibabel might look like:
from nipype.interfaces.base import BaseInterface, \
BaseInterfaceInputSpec, traits, File, TraitedSpec
from nipype.utils.filemanip import split_filename
import nibabel as nb
import numpy as np
import os
class SimpleThresholdInputSpec(BaseInterfaceInputSpec):
volume = File(exists=True, desc='volume to be thresholded', mandatory=True)
threshold = traits.Float(desc='everything below this value will be set to zero',
mandatory=True)
class SimpleThresholdOutputSpec(TraitedSpec):
thresholded_volume = File(exists=True, desc="thresholded volume")
class SimpleThreshold(BaseInterface):
input_spec = SimpleThresholdInputSpec
output_spec = SimpleThresholdOutputSpec
def _run_interface(self, runtime):
fname = self.inputs.volume
img = nb.load(fname)
data = np.array(img.get_data())
active_map = data > self.inputs.threshold
thresholded_map = np.zeros(data.shape)
thresholded_map[active_map] = data[active_map]
new_img = nb.Nifti1Image(thresholded_map, img.affine, img.header)
_, base, _ = split_filename(fname)
nb.save(new_img, base + '_thresholded.nii')
return runtime
def _list_outputs(self):
outputs = self._outputs().get()
fname = self.inputs.volume
_, base, _ = split_filename(fname)
outputs["thresholded_volume"] = os.path.abspath(base + '_thresholded.nii')
return outputs
When writing workflows, most of the time a tool will already have an interface, see the nipype interfaces index for a complete list. A workflow will typically begin by parsing command line arguments
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, default='T1W.nii.gz')
parser.add_argument('-o', '--output', type=str, default='/tmp/tmp')
args = parser.parse_args()
setup a workflow and interface node:
wf = Workflow('threshold')
thresh_phase = Node(SimpleThreshold(), 'thresh_phase')
thresh_phase.inputs.volume = args.input
thresh_phase.inputs.threshold = 0.5
then another node, connected to the first
move_phase = Node(MoveResultFile(), 'move_phase')
move_phase.inputs.output_name = args.output
wf.connect([(thresh_phase, move_phase, [('out_file', 'input_image')])])