This repo is an unofficial implementation of Graph Clustering with Embedding Propagation in Python 3 and PyTorch. See the original code in Python 2 and TensorFlow. Note that I do not guarantee the correctness of this code.
- add GRACE model
- fix bugs: the gradient of
self.mean
is not being properly updated - fix other bugs...
- Python 3.11
- SciPy 1.11.3
- Numpy 1.26.0
- tqdm 4.66.1
- scikit-learn 1.3.1
- PyTorch 2.1.0
Note: I don't think this code is version-sensitive, so maybe you don't need to be fully compliant with these.
Try this script to train the model on cora
dataset.
python train.py --device cuda --dataset cora --embed_dim 512 --encoder_hidden 512 --decoder_hidden 512 --learning_rate 5e-5 --pre_epoch 1000 --epoch 2000
This work partly uses the code from the original version.
If you find this work useful, please cite the original paper.
@INPROCEEDINGS{9378031,
author={Yang, Carl and Liu, Liyuan and Liu, Mengxiong and Wang, Zongyi and Zhang, Chao and Han, Jiawei},
booktitle={2020 IEEE International Conference on Big Data (Big Data)},
title={Graph Clustering with Embedding Propagation},
year={2020},
volume={},
number={},
pages={858-867},
doi={10.1109/BigData50022.2020.9378031}}