-
Notifications
You must be signed in to change notification settings - Fork 3
/
DreamBot.py
610 lines (516 loc) · 21.5 KB
/
DreamBot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
from __future__ import print_function
from datetime import datetime
from io import BytesIO
from IPython.display import clear_output, Image, display, HTML
from imgurpython import ImgurClient
from PIL import Image
from random import randint
import praw
import time
import re
import urllib2 as rlib
import io
import numpy as np
import PIL.Image
import tensorflow as tf
import logging
import evaluate
logging.getLogger('tensorflow').setLevel(logging.DEBUG)
USERAGENT = 'web:DreamProcessor:v0.1 (by /u/ThePeskyWabbit)'
FOOTER = "^^I ^^work ^^on ^^i.redd.it ^^and ^^imgur ^^posts ^^and ^^links. ^^See ^^all ^^my ^^new ^^options ^^[here](https://imgur.com/a/QWANb)" \
"\n\n^^check ^^/r/DreamProcessor ^^for ^^my" \
" ^^new ^^command ^^options ^^and ^^all ^^of ^^my ^^creations! ^^https://github.com/PeskyWabbit/DreamProcessor"
lastUserToCall = ""
userStreak = 0
commented = []
PATH = "/home/jpeel/PycharmProjects/DreamBot/commented.txt"
regexes = "!dreambot(?:1[0-8]|[1-9])?(?:x[2-3])?", "!dbhowto"
combined = re.compile('|'.join('(?:{0})'.format(x) for x in regexes))
model_fn = "tensorflow_inception_graph.pb"
graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)
with tf.gfile.FastGFile(model_fn, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
t_input = tf.placeholder(np.float32, name = 'input')
#default 117.0
imagenet_mean = 117.0
t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input':t_preprocessed})
layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name]
print(layers)
feature_nums = [int(graph.get_tensor_by_name(name + ':0').get_shape()[-1]) for name in layers]
print('Number of layers', len(layers))
print('Total number of feature channels:', sum(feature_nums))
'''The below code is from Google's Tensorflow DeepDream tutorial Notbook'''
# Helper functions for TF Graph visualization
def strip_consts(graph_def, max_const_size=32):
"""Strip large constant values from graph_def."""
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
size = len(tensor.tensor_content)
if size > max_const_size:
tensor.tensor_content = tf.compat.as_bytes("<stripped %d bytes>" % size)
return strip_def
def rename_nodes(graph_def, rename_func):
res_def = tf.GraphDef()
for n0 in graph_def.node:
n = res_def.node.add()
n.MergeFrom(n0)
n.name = rename_func(n.name)
for i, s in enumerate(n.input):
n.input[i] = rename_func(s) if s[0] != '^' else '^' + rename_func(s[1:])
return res_def
# Visualizing the network graph. Be sure expand the "mixed" nodes to see their
# internal structure. We are going to visualize "Conv2D" nodes.
tmp_def = rename_nodes(graph_def, lambda s: "/".join(s.split('_', 1)))
#show_graph(tmp_def)
print("selecting Layer and channel")
layer = 'mixed4b'
channel = 139 # picking some feature channel to visualize
print("generating noise")
# start with a gray image with a little noise
img_noise = np.random.uniform(size=(224, 224, 3)) + 130.0
def showarray(a, fmt='jpeg'):
print("Entered showArray")
a = np.uint8(np.clip(a, 0, 1) * 255)
f = BytesIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
def visstd(a, s=0.1):
'''Normalize the image range for visualization'''
return (a - a.mean()) / max(a.std(), 1e-4) * s + 0.5
def T(layer):
print("Processing...")
'''Helper for getting layer output tensor'''
return graph.get_tensor_by_name("import/%s:0" % layer)
def tffunc(*argtypes):
'''Helper that transforms TF-graph generating function into a regular one.
See "resize" function below.
'''
placeholders = list(map(tf.placeholder, argtypes))
def wrap(f):
out = f(*placeholders)
def wrapper(*args, **kw):
return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
return wrapper
return wrap
# Helper function that uses TF to resize an image
def resize(img, size):
img = tf.expand_dims(img, 0)
return tf.image.resize_bilinear(img, size)[0,:,:,:]
resize = tffunc(np.float32, np.int32)(resize)
def calc_grad_tiled(img, t_grad, tile_size=512):
'''Compute the value of tensor t_grad over the image in a tiled way.
Random shifts are applied to the image to blur tile boundaries over
multiple iterations.'''
sz = tile_size
h, w = img.shape[:2]
sx, sy = np.random.randint(sz, size=2)
img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
grad = np.zeros_like(img)
for y in range(0, max(h-sz//2, sz),sz):
for x in range(0, max(w-sz//2, sz),sz):
sub = img_shift[y:y+sz,x:x+sz]
g = sess.run(t_grad, {t_input:sub})
grad[y:y+sz,x:x+sz] = g
return np.roll(np.roll(grad, -sx, 1), -sy, 0)
'''
step increases the intesity. iter_n increases how many times the filter runs
defaults: step = 1.5 iter_n = 10 octave_n = 4 octave_scale = 1.4
pretty good settings: iter_n=20, step=1.5 octave_n=4 octave_scale=1.4
'''
def render_deepdream(t_obj, args, img0=img_noise,
iter_n=27, step=1.6, octave_n=4, octave_scale=1.6):
t_score = tf.reduce_mean(t_obj) # defining the optimization objective
t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
print("iter_n = " + str(iter_n))
# split the image into a number of octaves
img = img0
octaves = []
for i in range(octave_n - 1):
hw = img.shape[:2]
lo = resize(img, np.int32(np.float32(hw) / octave_scale))
hi = img - resize(lo, hw)
img = lo
octaves.append(hi)
# generate details octave by octave
for octave in range(octave_n):
if octave > 0:
hi = octaves[-octave]
img = resize(img, hi.shape[:2]) + hi
for i in range(iter_n):
g = calc_grad_tiled(img, t_grad)
img += g * (step / (np.abs(g).mean() + 1e-7))
clear_output()
a = img / 255.0
a = np.uint8(np.clip(a, 0, 1) * 255)
PIL.Image.fromarray(a).save("/home/jpeel/PycharmProjects/DreamBot/temp." + args[0])
print("DeepDream image saved as temp1." + args[0])
def get_config():
''' Create a config parser for reading INI files '''
try:
import ConfigParser
return ConfigParser.ConfigParser()
except:
import configparser
return configparser.ConfigParser()
'''The above code is from Google's DeepDream Tensorflow Tutorial Notebook'''
#Download and resize image from the given URL
def directDownload(url):
request = rlib.Request(url)
response = rlib.urlopen(request)
data = response.read()
args = []
split = url.split('.')
args.append(split[-1])
print("Image type: " + args[0])
img = Image.open(io.BytesIO(data))
size = img.size
print("Image size: " + str(size))
fname = "temp." + args[0]
#resize image if needed
if(size[0] > 1500 or size[1] > 1500):
print("resizing img")
max = np.maximum(size[0], size[1])
divisor = float(max // 1500)
newWidth = int(size[0] / divisor)
newHeight = int(size[1] / divisor)
img = img.resize((newWidth, newHeight), Image.ANTIALIAS)
print("resized")
try:
img.save(fname)
print("Saved input picure as temp." + args[0])
except:
print("Failed to save image")
args[0] = "fail"
return args
#post image to imgur and return the image post object
def uploadImgur(argsList):
album = None
image_path = '/home/jpeel/PycharmProjects/DreamBot/temp.' + argsList[0]
config = {
'album': album,
'name': 'Deep Dream Pic!',
'title': 'Deep Dream Pic!',
'description': 'Image processed through Deepdream filter {0}'.format(datetime.now())
}
print("Uploading temp." + argsList[0] + "...")
image = imgurClient.upload_from_path(image_path, config=config, anon=False)
print("done")
return image
def imgurAuth():
config = get_config()
config.read('auth.ini')
client_id = config.get('credentials', 'client_id')
client_secret = config.get('credentials', 'client_secret')
client = ImgurClient(client_id, client_secret)
print("Authenticated as " + client_id + " on imgur client.\n")
return client
#crosspost to /r/dreamprocessor unless it is NSFW
def sendToSub(data, image, directUrl):
global userStreak
if(userStreak > 3):
return
#if its a comment
if hasattr(data, "is_root"):
sub = "/r/" + str(data.submission.subreddit)
#if its a message
else:
return
#crosspost
try:
print("1st one " + str(data.permalink()))
permalink = str(data.permalink())
except:
try:
print("2nd one " + str(data.permalink))
permalink = str(data.permalink)
except:
permalink = "Picture received in PM."
#Build comment for post in sub
link = "www.reddit.com" + permalink + "\n\nDirect image link: " + str(directUrl)
user = data.author.name
url = image['link']
title = "DreamBot requested by /u/" + user + " in " + sub
#make post
if (data.submission.over_18):
post = reddit.subreddit('NSFWDreamBot').submit(title, url=url)
else:
post = reddit.subreddit('dreamprocessor').submit(title, url=url)
post.reply("Link to the original post: " + link)
#data to map fnum to the desired filter
filters = {
#not included in random
1: ("mixed4c", [0, 664]),
2: ("mixed3b", [0, 640]),
#included in random
3: ("mixed4a", [151, 152]),
4: ("mixed4c", [211, 212]),
5: ("mixed4c", [382, 383]),
6: ("mixed4d", [72, 73]),
7: ("mixed3a", [0, 368]),
8: ("mixed3a", [31, 32]),
9: ("mixed3a", [230, 240]),
10: ("mixed3a", [5, 9]),
11:("Strarry Night", "/home/jpeel/PycharmProjects/DreamBot/checks/starrynight"),
12:("Alex Gray", "/home/jpeel/PycharmProjects/DreamBot/checks/alexgray"),
13:("Fractal", "/home/jpeel/PycharmProjects/DreamBot/checks/stain"),
14:("MS Paint Oil", "/home/jpeel/PycharmProjects/DreamBot/checks/MSOil"),
15:("Rain Princess", "/home/jpeel/PycharmProjects/DreamBot/checks/rain"),
16:("Trippy Watercolor", "/home/jpeel/PycharmProjects/DreamBot/checks/trippywc"),
17:("Great Wave", "/home/jpeel/PycharmProjects/DreamBot/checks/wave"),
18:("Fun Color", "/home/jpeel/PycharmProjects/DreamBot/checks/funcolor")
}
#create the deepdream/style transfer picture and send it to the user. Should likely be split into 2 separate functions. Do later
def renderAndReply(data, args, url):
banned = ["pics", "elitedangerous", "perfecttiming", "strangerthings", "travel", "aww", "rabbits", "moviedetails", "choosingbeggars", "battlestations", "interestingasfuck", "itookapicture", "gamingcirclejerk",
"realgirls", "seattle", "natureisfuckinglit", "dankmemes", "random_acts_of_amazon", "tgirls", "earthporn"]
flag = False
response = None
if hasattr(data, "is_root"):
flag = True
try:
response = data.reply("I am processing your request! This comment will be edited when it is complete! If this "
"never changes, there is likely a bug which will be sorted out as soon as my dev has a minute to look into it!")
except:
print("Could not tell user their request was being processed...")
pass
fnum = int(args[1][0])
fMult = int(args[1][1])
#if no int given or int is out of bounds, generate one for the random set of images.
if (fnum == 0 or fnum > 18):
rand = randint(3, 18)
fnum = rand
layerData = filters[rand]
#args[0] is the filetype
img0 = PIL.Image.open('temp.' + args[0])
in_path = "/home/jpeel/PycharmProjects/DreamBot/temp."+str(args[0])
out = "/home/jpeel/PycharmProjects/DreamBot/temp."+str(args[0])
#style transfer filters
i = 0
if(fnum > 10):
while(i < fMult):
i+=1
evaluate.process(in_path, out, filters[fnum][1])
#non style transfer filters
else:
if ('png' in args[0]):
img0 = np.float32(img0)[:,:,:3]
else:
img0 = np.float32(img0)
if fMult > 3 or fMult < 1:
fMult = 1
else:
layerData = filters[fnum]
layerSet = layerData[0]
range = layerData[1]
int1 = range[0]
int2 = range[1]
#with tf.device('/gpu:0'):
render_deepdream(tf.square(T(layerSet)[:,:,:,int1:int2]), args, img0, 27*fMult)
#updload and respond to user
try:
image = uploadImgur(args)
time.sleep(1)
wholeResponse = "[Here is your DreamBot picture]({0})".format(
image['link']) + " Made using option " + str(fnum) + "\n\n" + FOOTER
#is comment
if(flag):
if(str(data.submission.subreddit).lower() in banned):
data.author.message("The Mods of " + str(data.submission.subreddit) + " have Banned me :( Here's your picture", wholeResponse,)
else:
response.edit(wholeResponse)
sendToSub(data, image, url)
print("SENT RESPONSE TO USER")
#is message
else:
sendToSub(data, image, url)
data.reply(wholeResponse)
print("replied to PM")
except:
print("Comment or upload failed...")
def authenticate():
print("Authenticating...")
reddit = praw.Reddit('bot1', user_agent=USERAGENT)
print("Authenticated as {}\n".format(reddit.user.me()))
return reddit
#save comment ID to text document to avoid duplicate replies. Text document is cleared every 500 comment batches
#def writeCommentToFile(id):
# print("saving comment ID: " + id)
# commentFile = open(PATH, 'a')
# commentFile.write(id + "\n\n")
# commentFile.close()
def failReply(comment):
global commented
comment.reply("There was an error saving this picture. It is likely that it was a .png and was converted to a .jpg by the host site.\n\n" + FOOTER)
commented.append(comment.id)
#once command has been found in comment or PM, it is passed in here
def processCall(data, fNum):
url = None
global lastUserToCall
global userStreak
#if its a comment that called !dreambot
if hasattr(data, "is_root"):
if (lastUserToCall == data.author.name):
userStreak += 1
else:
lastUserToCall = data.author.name
userStreak = 0
print(str(userStreak) + " / " + lastUserToCall)
print("processing a call from a comment")
dataWithLink = data.parent()
try:
commentLink = dataWithLink.permalink()
print("https://www.reddit.com" + commentLink)
except:
try:
print("https://www.reddit.com" + str(dataWithLink.permalink))
except:
print("Couldnt find any link whatsoever ")
#if the parent of the command is a comment, find the URL in the comment
if hasattr(dataWithLink, "is_root"):
url = re.findall(
'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',
dataWithLink.body)
try:
url = str(url[0])
except:
print("couldnt find url")
try:
data.reply("I couldn't find the link for some reason. this is not very common\n\n" + FOOTER)
except:
return
if (')' in url):
url = url[0:len(url) - 1]
#if the parent of the command comment is a post, get the post url
else:
url = dataWithLink.url
print("Comment url: " + str(url))
#if Private message, find link in private message
elif hasattr(data, "mark_read"):
url = re.findall(
'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',
data.body)
url = str(url[0])
print("message url: " + url)
else:
print("Data was found to be neither a comment nor a message.")
#no gif's yet...
if ('gif' in url):
data.reply(
"Sorry but I cannot process gifs. If I could, It would take like 2 hours anyways so yeah. Sorry!\n\n" + FOOTER)
elif ("//i.imgur" in url or "i.redd.it" in url or "m.imgur" in url and "/a/" not in url):
print("i.imgur.com / i.redd.it / m.imgur link being used")
args = directDownload(url)
args.append(fNum)
renderAndReply(data, args, url)
elif ("//imgur.com/a/" in url or "m.imgur.com/a/" in url or "gallery" in url):
print("/imgur.com/a/ / gallery link being used")
split = url.split("/")
images = imgurClient.get_album_images(split[4])
pic = images[0]
args = directDownload(pic.link)
args.append(fNum)
renderAndReply(data, args, url)
elif ("/imgur.com" in url):
print("/imgur.com link being used")
split = url.split("/")
link = "https://i.imgur.com/" + split[3] + ".jpg"
args = directDownload(link)
args.append(fNum)
renderAndReply(data, args, url)
else:
#if none of the above URL's are present, try downloading it anyways
try:
print("did not recognize link. trying last resort download...")
args = directDownload(url)
args.append(fNum)
renderAndReply(data, args, url)
except:
try:
data.reply("Please be sure you are responding to a submission or a comment with a link in it. If you are, I am not compatible with those links.\n\n" + FOOTER)
except:
print("comment reply failed...")
global commented
if hasattr(data, "is_root"):
commented.append(data.id)
auth = True
while (auth):
try:
reddit = authenticate()
imgurClient = imgurAuth()
auth = False
except:
print("Authentication Failed, retying in 30 seconds.")
time.sleep(30)
def purgeCommentList():
print("purging contents of comment list")
open(PATH, 'w').close()
#pull comments and look for the command. Once found, parse fnum and multiplier ints and pass to processCall function and save comment ID to file.
def runBot():
SUBREDDITS = 'all-suicidewatch-depression-anxiety-askreddit'
global commented
inboxCount = 0
count = 0
while (True):
try:
if (inboxCount == 5):
fNum = []
print("checking inbox")
for message in reddit.inbox.unread(limit=1):
message.mark_read()
match = combined.findall(message.body.lower())
if(match):
print("Message match = " + str(match))
fNum = re.findall("[1][0-8]|[1-9]", match[0])
if not fNum:
fNum.append(0)
if len(fNum) < 2:
fNum.append(1)
print(fNum)
processCall(message, fNum)
inboxCount = 0
inboxCount += 1
print("pulling 500 comments...")
#commentFile = open(PATH, 'r')
#commentList = commentFile.read().splitlines()
#commentFile.close()
try:
count +=1
if count == 50:
print("purging comment file")
commented = []
count = 0
for comment in reddit.subreddit(SUBREDDITS).comments(limit=500):
if (comment.id in commented):
continue
match = combined.findall(comment.body.lower())
if(match):
print("Comment match = " + str(match))
fNum = re.findall("[1][0-8]|[1-9]", match[0])
if not fNum:
fNum.append(0)
if len(fNum) < 2:
fNum.append(1)
print(fNum)
try:
print("Processing comment call!!")
processCall(comment, fNum)
except:
try:
print("failure on match try catch")
comment.reply("Please be sure there is a link in the post you are reponding to. If this is not the case, tagging for notification /u/ThePeskyWabbit\n\n")
commented.append(comment.id)
except:
print("couldnt send error reply")
except:
print("something really went wrong...")
except:
print("This would have crashed the whole bot. likely a timeout")
#one function to rule them all
runBot()