-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvMF.cpp
134 lines (116 loc) · 3.4 KB
/
vMF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
This code is free to use, copy, distribute, and modify.
If you use this code or any modification of this code, we request that you reference both this code https://zenodo.org/record/438675 and the paper https://arxiv.org/abs/1703.09721.
*/
#include <gsl/gsl_roots.h>
#include <gsl/gsl_errno.h>
#include <cmath>
#include "vMF.h"
#include "rng.h"
#include "Coordinates.h"
double sigma_direction_vMF_helper(double sigma_direction, void *params)
{
double *alpha50 = (double*) params;
return 1 + pow(sigma_direction, 2) * log(1 - 0.5 * (1 - exp(-2 / pow(sigma_direction, 2)))) - cos(*alpha50);
}
// alpha50 in rad
// returns sigma
double sigma_direction_vMF(double alpha50)
{
const gsl_root_fsolver_type *T;
gsl_root_fsolver *s;
gsl_function F;
F.function = &sigma_direction_vMF_helper;
F.params = &alpha50;
T = gsl_root_fsolver_brent;
s = gsl_root_fsolver_alloc(T);
double x_lo, x_hi;
x_lo = 1e-3;
x_hi = 100;
gsl_root_fsolver_set(s, &F, x_lo, x_hi);
int status = GSL_CONTINUE;
double r;
while (status == GSL_CONTINUE)
{
gsl_root_fsolver_iterate(s);
r = gsl_root_fsolver_root(s);
x_lo = gsl_root_fsolver_x_lower(s);
x_hi = gsl_root_fsolver_x_upper(s);
status = gsl_root_test_interval(x_lo, x_hi, 0, 1e-3);
}
gsl_root_fsolver_free(s);
return r;
}
double kappa_vMF_helper(double kappa, void *params)
{
double *sigma_direction = (double*) params;
return 1 - kappa * pow(*sigma_direction, 2) - exp(-2 * kappa);
}
// returns kappa, the concentration
double kappa_vMF(double sigma_direction)
{
const gsl_root_fsolver_type *T;
gsl_root_fsolver *s;
gsl_function F;
F.function = &kappa_vMF_helper;
F.params = &sigma_direction;
T = gsl_root_fsolver_brent;
s = gsl_root_fsolver_alloc(T);
double x_lo, x_hi;
x_lo = 0.1 / pow(sigma_direction, 2);
x_hi = 10 / pow(sigma_direction, 2);
gsl_root_fsolver_set(s, &F, x_lo, x_hi);
int status = GSL_CONTINUE;
double r;
while (status == GSL_CONTINUE)
{
gsl_root_fsolver_iterate(s);
r = gsl_root_fsolver_root(s);
x_lo = gsl_root_fsolver_x_lower(s);
x_hi = gsl_root_fsolver_x_upper(s);
status = gsl_root_test_interval(x_lo, x_hi, 0, 1e-3);
}
gsl_root_fsolver_free(s);
return r;
}
// returns a random angle (costheta) distributed according to a given sigma value
double cos_theta_vMF(double sigma_direction)
{
double u;
u = rng.rand();
return 1 + pow(sigma_direction, 2) * log(1 - u * (1 - exp(-2 / pow(sigma_direction, 2))));
}
// generates a random direction spread around a given direction, with a given sigma
coord2D vMF_smear(coord2D coord, double sigma_direction)
{
double stheta1, ctheta1, rangle, sr, cr, psi, cpsi, ctheta2, theta2, stheta2, cDphi, Dphi, phi2;
rangle = acos(cos_theta_vMF(sigma_direction));
stheta1 = sin(coord.theta);
ctheta1 = cos(coord.theta);
sr = sin(rangle);
cr = cos(rangle);
psi = 2 * M_PI * rng.rand();
cpsi = cos(psi);
ctheta2 = ctheta1 * cr + stheta1 * sr * cpsi;
theta2 = acos(ctheta2);
stheta2 = sin(theta2);
cDphi = (cr - ctheta1 * ctheta2) / (stheta1 * stheta2);
cDphi = (cDphi > 1) ? 1 : cDphi;
cDphi = (cDphi < -1) ? -1 : cDphi;
if (psi > 0)
Dphi = acos(cDphi);
else
Dphi = 0;
if (psi < M_PI)
phi2 = coord.phi + Dphi;
else
phi2 = coord.phi - Dphi;
return coord2D(theta2, phi2);
}
// the pdf
double f_vMF(double cos_theta, double kappa)
{
if (kappa > 10) // for numerical stability
return exp(kappa * (cos_theta - 1)) * kappa / (2 * M_PI);
return exp(kappa * cos_theta) * kappa / (4 * M_PI * sinh(kappa));
}