forked from uboone/xsec_analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSliceHistogram.hh
625 lines (497 loc) · 22.8 KB
/
SliceHistogram.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
#pragma once
// Standard library includes
#include <cmath>
#include <limits>
#include <memory>
#include <stdexcept>
// ROOT includes
#include "TH1.h"
#include "Math/SpecFuncMathCore.h" // Needed for ROOT::Math::inc_gamma_c()
// STV analysis includes
#include "MatrixUtils.hh"
#include "NormShapeCovMatrix.hh"
#include "SliceBinning.hh"
#include "SystematicsCalculator.hh"
class SliceHistogram {
public:
SliceHistogram() {}
static SliceHistogram* make_slice_histogram( TH1D& reco_bin_histogram,
const Slice& slice, const CovMatrix* input_cov_mat = nullptr );
static SliceHistogram* make_slice_histogram( const TMatrixD& reco_bin_counts,
const Slice& slice, const TMatrixD* input_cov_mat );
// TODO: revisit this implementation
static SliceHistogram* make_slice_efficiency_histogram(
const TH1D& true_bin_histogram, const TH2D& hist_2d, const Slice& slice );
// For histograms that are already a single slice without covariance (e.g. generator predictions)
static SliceHistogram* slice_histogram_from_histogram ( TH1D& histogram );
// Transform the bin contents by multiplying by the input TMatrixD, which
// must be a square matrix with a number of columns equal to the number of
// histogram bins. If present, the owned covariance matrix will also be
// transformed accordingly.
void transform( const TMatrixD& mat );
// Create a column vector with the current histogram bin contents
TMatrixD get_col_vect() const;
// Calculates a decomposition of the full covariance matrix into norm,
// mixed, and shape-only pieces
void calc_norm_shape_errors();
struct Chi2Result {
Chi2Result() : chi2_(-1), num_bins_(-1), dof_(-1), p_value_(-1) {}
Chi2Result( double chi2, int nbins, int dof, double pval )
: chi2_( chi2 ), num_bins_( nbins ), dof_( dof ), p_value_( pval ) {}
double chi2_;
int num_bins_;
int dof_;
double p_value_;
};
Chi2Result get_chi2( const SliceHistogram& other,
const double inversion_tol = DEFAULT_MATRIX_INVERSION_TOLERANCE ) const;
TMatrixD get_inverse_cov_mat( double inversion_tol = DEFAULT_MATRIX_INVERSION_TOLERANCE ) const;
TMatrixD get_diff(const SliceHistogram& other) const;
std::unique_ptr< TH1 > hist_;
CovMatrix cmat_;
};
// Creates a new event histogram and an associated covariance matrix for a
// particular slice of phase space. The histogram is filled from the
// appropriate bin(s) of a 1D histogram of reco bin event counts. The mapping
// from reco bin number to the slice histogram bins is described by the input
// Slice object. Bin errors are set according to the reco-bin-space CovMatrix
// object pointed to by the input_cov_mat argument. If it is null, the bin
// errors are set to a default value of zero, and the output CovMatrix object
// owns a nullptr.
SliceHistogram* SliceHistogram::make_slice_histogram( TH1D& reco_bin_histogram,
const Slice& slice, const CovMatrix* input_cov_mat )
{
// std::cout<<"DEBUG make_slice_histogram Point 0"<<std::endl;
// Get the binning and axis labels for the current slice by cloning the
// (empty) histogram owned by the Slice object
TH1* slice_hist = dynamic_cast< TH1* >(
slice.hist_->Clone("slice_hist") );
slice_hist->SetDirectory( nullptr );
// Fill the slice bins based on the input reco bins
for ( const auto& pair : slice.bin_map_ ) {
// One-based index for the global TH1 bin number in the slice
int slice_bin_idx = pair.first;
const auto& reco_bin_set = pair.second;
double slice_bin_content = 0.;
for ( const auto& rb_idx : reco_bin_set ) {
// The UniverseMaker reco bin indices are zero-based, so I correct
// for this here when pulling values from the one-based input ROOT
// histogram
slice_bin_content += reco_bin_histogram.GetBinContent( rb_idx + 1 );
}
slice_hist->SetBinContent( slice_bin_idx, slice_bin_content );
} // slice bins
// If we've been handed a non-null pointer to a CovMatrix object, then
// we will use it to propagate uncertainties.
TH2D* covmat_hist = nullptr;
if ( input_cov_mat ) {
// Create a new TH2D to hold the covariance matrix elements associated with
// the slice histogram.
// NOTE: I assume here that every slice bin is represented in the bin_map.
// If this isn't the case, the bin counting will be off.
// TODO: revisit this assumption and perhaps do something better
int num_slice_bins = slice.bin_map_.size();
covmat_hist = new TH2D( "covmat_hist", "covariance; slice bin;"
" slice bin; covariance", num_slice_bins, 0., num_slice_bins,
num_slice_bins, 0., num_slice_bins );
covmat_hist->SetDirectory( nullptr );
covmat_hist->SetStats( false );
// We're ready. Populate the new covariance matrix using the elements
// of the one for the reco bin space
for ( const auto& pair_a : slice.bin_map_ ) {
// Global slice bin index
int sb_a = pair_a.first;
// Set of reco bins that correspond to slice bin sb_a
const auto& rb_set_a = pair_a.second;
for ( const auto& pair_b : slice.bin_map_ ) {
int sb_b = pair_b.first;
const auto& rb_set_b = pair_b.second;
double cov = 0.;
const TH2D* cmat = input_cov_mat->cov_matrix_.get();
for ( const auto& rb_m : rb_set_a ) {
for ( const auto& rb_n : rb_set_b ) {
// The covariance matrix TH2D uses one-based indices even though
// the UniverseMaker numbering scheme is zero-based. I
// correct for this here.
cov += cmat->GetBinContent( rb_m + 1, rb_n + 1 );
} // reco bin index m
} // reco bin index n
covmat_hist->SetBinContent( sb_a, sb_b, cov );
} // slice bin index b
} // slice bin index a
// We have a finished covariance matrix for the slice. Use it to set
// the bin errors on the slice histogram.
for ( const auto& pair : slice.bin_map_ ) {
int slice_bin_idx = pair.first;
double bin_variance = covmat_hist->GetBinContent( slice_bin_idx,
slice_bin_idx );
double bin_error = std::sqrt( std::max(0., bin_variance) );
// This works for a multidimensional slice because a global bin index
// (as returned by TH1::GetBin) is used for slice_bin_idx.
slice_hist->SetBinError( slice_bin_idx, bin_error );
} // slice bins
} // non-null input_cov_mat
// We're done. Prepare the SliceHistogram object and return it.
auto* result = new SliceHistogram;
result->hist_.reset( slice_hist );
result->cmat_.cov_matrix_.reset( covmat_hist );
return result;
}
SliceHistogram* SliceHistogram::make_slice_histogram(
const TMatrixD& reco_bin_counts, const Slice& slice,
const TMatrixD* input_cov_mat )
{
// TODO: reduce code duplication between this function and the overloaded
// version that takes an input TH1& and CovMatrix*
// Check that the reco_bin_counts are given as a column vector
if ( reco_bin_counts.GetNcols() != 1 ) {
throw std::runtime_error( "Invalid dimension for bin counts passed"
"to SliceHistogram::make_slice_histogram()" );
}
// Get the binning and axis labels for the current slice by cloning the
// (empty) histogram owned by the Slice object
TH1* slice_hist = dynamic_cast< TH1* >(
slice.hist_->Clone("slice_hist") );
slice_hist->SetDirectory( nullptr );
// Fill the slice bins based on the input reco bins
for ( const auto& pair : slice.bin_map_ ) {
// One-based index for the global TH1 bin number in the slice
int slice_bin_idx = pair.first;
const auto& reco_bin_set = pair.second;
double slice_bin_content = 0.;
for ( const auto& rb_idx : reco_bin_set ) {
// The UniverseMaker reco bin indices are zero-based like the
// TMatrixD element indices
slice_bin_content += reco_bin_counts( rb_idx, 0 );
}
slice_hist->SetBinContent( slice_bin_idx, slice_bin_content );
} // slice bins
// If we've been handed a non-null pointer to a TMatrixD object representing
// the covariance matrix, then we will use it to propagate uncertainties.
TH2D* covmat_hist = nullptr;
if ( input_cov_mat ) {
// Create a new TH2D to hold the covariance matrix elements associated with
// the slice histogram.
// NOTE: I assume here that every slice bin is represented in the bin_map.
// If this isn't the case, the bin counting will be off.
// TODO: revisit this assumption and perhaps do something better
int num_slice_bins = slice.bin_map_.size();
covmat_hist = new TH2D( "covmat_hist", "covariance; slice bin;"
" slice bin; covariance", num_slice_bins, 0., num_slice_bins,
num_slice_bins, 0., num_slice_bins );
covmat_hist->SetDirectory( nullptr );
covmat_hist->SetStats( false );
// We're ready. Populate the new covariance matrix using the elements
// of the one for the reco bin space
// std::cout<<"\n\nDEBUG make_slice_histogram V2 - covmat_hist: "<<std::endl;
for ( const auto& pair_a : slice.bin_map_ ) {
// Global slice bin index
int sb_a = pair_a.first;
// Set of reco bins that correspond to slice bin sb_a
const auto& rb_set_a = pair_a.second;
for ( const auto& pair_b : slice.bin_map_ ) {
int sb_b = pair_b.first;
const auto& rb_set_b = pair_b.second;
double cov = 0.;
for ( const auto& rb_m : rb_set_a ) {
for ( const auto& rb_n : rb_set_b ) {
// std::cout<<"DEBUG make_slice_histogram V2 slid a: "<<pair_a.first<<" slid b: "<<pair_b.first<<" rb_m: "<<rb_m<<" rb_n: "<<rb_n<<" cov before: "<<cov;
// The TMatrixD object uses zero-based indices
cov += input_cov_mat->operator()( rb_m, rb_n );
// std::cout<<"cov after: "<<cov<<std::endl;
} // reco bin index m
} // reco bin index n
covmat_hist->SetBinContent( sb_a, sb_b, cov );
// std::cout << cov << " ";
} // slice bin index b
// std::cout << std::endl;
} // slice bin index a
// We have a finished covariance matrix for the slice. Use it to set
// the bin errors on the slice histogram.
for ( const auto& pair : slice.bin_map_ ) {
int slice_bin_idx = pair.first;
double bin_variance = covmat_hist->GetBinContent( slice_bin_idx,
slice_bin_idx );
double bin_error = std::sqrt( std::max(0., bin_variance) );
// This works for a multidimensional slice because a global bin index
// (as returned by TH1::GetBin) is used for slice_bin_idx.
slice_hist->SetBinError( slice_bin_idx, bin_error );
} // slice bins
} // non-null input_cov_mat
// We're done. Prepare the SliceHistogram object and return it.
auto* result = new SliceHistogram;
result->hist_.reset( slice_hist );
result->cmat_.cov_matrix_.reset( covmat_hist );
return result;
}
// TODO: revisit this rough draft. Right now, an assumption is made that the
// true and reco bins are defined in the same way with the same indices. This
// isn't enforced by the UniverseMaker configuration itself, although
// it is currently consistent with what you've done so far.
SliceHistogram* SliceHistogram::make_slice_efficiency_histogram(
const TH1D& true_bin_histogram, const TH2D& hist_2d, const Slice& slice )
{
// Get the binning and axis labels for the current slice by cloning the
// (empty) histogram owned by the Slice object
TH1* slice_hist = dynamic_cast< TH1* >(
slice.hist_->Clone("slice_hist") );
slice_hist->SetDirectory( nullptr );
slice_hist->GetYaxis()->SetTitle( "efficiency" );
slice_hist->GetYaxis()->SetRangeUser( 0., 1. );
// Fill the slice bins based on the input reco bins
for ( const auto& pair : slice.bin_map_ ) {
// One-based index for the global TH1 bin number in the slice
int slice_bin_idx = pair.first;
const auto& reco_bin_set = pair.second;
double selected_signal_evts = 0.;
double all_signal_evts = 0.;
for ( const auto& rb_idx : reco_bin_set ) {
// The UniverseMaker reco bin indices are zero-based, so I correct
// for this here when pulling values from the one-based input ROOT
// histogram.
all_signal_evts += true_bin_histogram.GetBinContent( rb_idx + 1 );
// Include selected signal events in the current true bin that fall into
// any of the reco bins
selected_signal_evts += hist_2d.Integral( rb_idx + 1, rb_idx + 1,
1, hist_2d.GetNbinsY() );
}
double bin_efficiency = selected_signal_evts / all_signal_evts;
// See DocDB #32401, Eq. (5.2)
double bin_stat_err = std::sqrt( std::max(0., bin_efficiency
* (1. - bin_efficiency) / all_signal_evts) );
slice_hist->SetBinContent( slice_bin_idx, bin_efficiency );
slice_hist->SetBinError( slice_bin_idx, bin_stat_err );
} // slice bins
TH2D* covmat_hist = nullptr;
// We're done. Prepare the SliceHistogram object and return it.
auto* result = new SliceHistogram;
result->hist_.reset( slice_hist );
result->cmat_.cov_matrix_.reset( nullptr );
return result;
}
// Create a SliceHistogram object from a TH1D object
SliceHistogram* SliceHistogram::slice_histogram_from_histogram(
TH1D& truth_histogram)
{
auto* result = new SliceHistogram;
result->hist_.reset( dynamic_cast< TH1D* >( truth_histogram.Clone() ) );
result->hist_->SetDirectory( nullptr );
return result;
}
SliceHistogram::Chi2Result SliceHistogram::get_chi2(
const SliceHistogram& other, const double inversion_tol ) const
{
int num_bins = hist_->GetNbinsX();
if ( other.hist_->GetNbinsX() != num_bins ) {
throw std::runtime_error( "Incompatible vector sizes in chi^2"
" calculation" );
}
// If both SliceHistogram objects have a covariance matrix, then
// check that their dimensions match. If one is missing, it will be assumed
// to be a null matrix
if ( cmat_.cov_matrix_ && other.cmat_.cov_matrix_ ) {
std::cout << "DEBUG get_chi2 - Both covariance matrices are present" << std::endl;
int my_cov_mat_x_bins = cmat_.cov_matrix_->GetNbinsX();
int my_cov_mat_y_bins = cmat_.cov_matrix_->GetNbinsY();
int other_cov_mat_x_bins = other.cmat_.cov_matrix_->GetNbinsY();
int other_cov_mat_y_bins = other.cmat_.cov_matrix_->GetNbinsY();
if ( my_cov_mat_x_bins != num_bins
|| my_cov_mat_y_bins != num_bins
|| other_cov_mat_x_bins != num_bins
|| other_cov_mat_y_bins != num_bins )
{
throw std::runtime_error( "Invalid covariance matrix dimensions"
" encountered in chi^2 calculation" );
}
}
else if ( !cmat_.cov_matrix_ && !other.cmat_.cov_matrix_ ) {
throw std::runtime_error( "Both SliceHistogram objects involved in"
" a chi^2 calculation have null covariance matrices" );
}
else
{
std::cout << "DEBUG get_chi2 - Only one covariance matrix - cmat_.cov_matrix_: " << (cmat_.cov_matrix_ == nullptr ? "null" : "not null") << " other.cmat_.cov_matrix_: " << (other.cmat_.cov_matrix_ == nullptr ? "null" : "not null") << std::endl;
// Print out other.cmat_.cov_matrix_ when it is not null
// if(other.cmat_.cov_matrix_)
// {
// for (int i = 1; i <= other.cmat_.cov_matrix_->GetNbinsX(); ++i) {
// for (int j = 1; j <= other.cmat_.cov_matrix_->GetNbinsY(); ++j) {
// std::cout << "Cov[" << i << "][" << j << "] = " << other.cmat_.cov_matrix_->GetBinContent(i, j) << std::endl;
// }
// }
// }
}
// TH2D* hist2D = other.cmat_.cov_matrix_.get();
// std::cout<<"DEBUG chi2 other.cmat_.cov_matrix_: "<<std::endl;
// for (int i = 1; i <= hist2D->GetNbinsX(); i++) {
// for (int j = 1; j <= hist2D->GetNbinsY(); j++) {
// std::cout << hist2D->GetBinContent(i, j) << " ";
// }
// std::cout << std::endl;
// }
// The total covariance matrix on the difference between the
// two histograms is just the sum of each individual SliceHistogram's
// owned covariance matrix.
CovMatrix cov_mat;
cov_mat += cmat_;
cov_mat += other.cmat_;
// Get access to a TMatrixD object representing the covariance matrix.
auto cov_matrix = cov_mat.get_matrix();
// std::cout<<"DEBUG chi2 covariance matrix: "<<std::endl;
// for (int i = 0; i < cov_matrix->GetNrows(); ++i) {
// for (int j = 0; j < cov_matrix->GetNcols(); ++j) {
// std::cout << cov_matrix->operator()(i, j) << " ";
// }
// std::cout << std::endl;
// }
// Invert the covariance matrix
auto inverse_cov_matrix = invert_matrix( *cov_matrix, inversion_tol );
// std::cout<<"DEBUG chi2 inverse covariance matrix: "<<std::endl;
// for (int i = 0; i < inverse_cov_matrix->GetNrows(); ++i) {
// for (int j = 0; j < inverse_cov_matrix->GetNcols(); ++j) {
// std::cout << inverse_cov_matrix->operator()(i, j) << " ";
// }
// std::cout << std::endl;
// }
// std::cout<<"DEBUG diff_vec: ";
// Create a 1D vector containing the difference between the two slice
// histograms in each bin
TMatrixD diff_vec( 1, num_bins );
for ( int a = 0; a < num_bins; ++a ) {
// Note the one-based bin indices used for ROOT histograms
double counts = hist_->GetBinContent( a + 1 );
double other_counts = other.hist_->GetBinContent( a + 1 );
// if(a == 7)
// {
// std::cout<<" !!!!!!!!!! WARNING !!!!!!!!!!: Skipping bins in chi2 calculation."<<std::endl;
// counts = other_counts;
// }
diff_vec( 0, a ) = counts - other_counts;
// std::cout<<" "<<diff_vec( 0, a )<<"("<<std::sqrt(hist2D->GetBinContent(a+1, a+1))<<")";
// std::cout<<" "<<diff_vec( 0, a );
// Print out the counts for each bin
// std::cout << "DEBUG chi2 bin " << a + 1 << ": " << counts << " " << other_counts << " diff: "<< diff_vec( 0, a ) << std::endl;
}
// std::cout<<std::endl;
// std::cout<<" !!!!!!!!!! WARNING !!!!!!!!!!: Skipping bins in chi2 calculation."<<std::endl;
// num_bins--; // Removes the last bin from the calculation
// Multiply diff * covMat^{-1} * diff^{T} to get chi-squared
TMatrixD temp1( diff_vec, TMatrixD::kMult, *inverse_cov_matrix );
TMatrixD temp2( temp1, TMatrixD::kMult, diff_vec.T() );
// We'll now have a 1x1 matrix containing the chi-squared value
double chi2 = temp2( 0, 0 );
// Assume that parameter fitting is not done, so that the relevant degrees
// of freedom for the chi^2 test is just the number of bins minus one
int dof = num_bins - 1;
// Calculate a p-value for observing a chi^2 value at least as large as the
// one actually obtained
double p_value = ROOT::Math::inc_gamma_c( dof / 2., chi2 / 2. );
Chi2Result result( chi2, num_bins, dof, p_value );
return result;
}
TMatrixD SliceHistogram::get_inverse_cov_mat( double inversion_tol ) const
{
int num_bins = hist_->GetNbinsX();
// If both SliceHistogram objects have a covariance matrix, then
// check that their dimensions match. If one is missing, it will be assumed
// to be a null matrix
if ( cmat_.cov_matrix_) {
// std::cout << "DEBUG get_chi2 - Both covariance matrices are present" << std::endl;
int my_cov_mat_x_bins = cmat_.cov_matrix_->GetNbinsX();
int my_cov_mat_y_bins = cmat_.cov_matrix_->GetNbinsY();
if ( my_cov_mat_x_bins != num_bins || my_cov_mat_y_bins != num_bins )
{
throw std::runtime_error( "Invalid covariance matrix dimensions"
" encountered in chi^2 calculation" );
}
}
else
{
throw std::runtime_error( "No covariance matrix present" );
}
// The total covariance matrix on the difference between the
// two histograms is just the sum of each individual SliceHistogram's
// owned covariance matrix.
CovMatrix cov_mat;
cov_mat += cmat_;
// Get access to a TMatrixD object representing the covariance matrix.
auto cov_matrix = cov_mat.get_matrix();
// Invert the covariance matrix
return *invert_matrix( *cov_matrix, inversion_tol );
}
TMatrixD SliceHistogram::get_diff(const SliceHistogram& other) const
{
int num_bins = hist_->GetNbinsX();
if ( other.hist_->GetNbinsX() != num_bins ) {
throw std::runtime_error( "Incompatible vector sizes in chi^2"
" calculation" );
}
// Create a 1D vector containing the difference between the two slice
// histograms in each bin
TMatrixD diff_vec( 1, num_bins );
for ( int a = 0; a < num_bins; ++a ) {
// Note the one-based bin indices used for ROOT histograms
double counts = hist_->GetBinContent( a + 1 );
double other_counts = other.hist_->GetBinContent( a + 1 );
diff_vec( 0, a ) = counts - other_counts;
}
return diff_vec;
}
void SliceHistogram::transform( const TMatrixD& mat ) {
int dim = hist_->GetDimension();
if ( dim != 1 ) throw std::runtime_error( "SliceHistogram::transform() is"
" currently implemented only for 1D histograms." );
int num_cols = mat.GetNcols();
int num_bins = hist_->GetNbinsX();
if ( num_cols != num_bins ) throw std::runtime_error( "Incompatible"
" transformation matrix passed to SliceHistogram::transform()" );
int num_rows = mat.GetNrows();
if ( num_rows != num_cols ) throw std::runtime_error( "Transformations which"
" change the number of bins are currently unimplemented in"
" SliceHistogram::transform()" );
// Create a column vector with the current histogram bin contents
TMatrixD hist_vec = this->get_col_vect();
// Apply the transformation matrix to the histogram and store the result in a
// new column vector
TMatrixD transformed_hist_vec( mat,
TMatrixD::EMatrixCreatorsOp2::kMult, hist_vec );
// Replace the old histogram contents with the new ones
for ( int b = 0; b < num_bins; ++b ) {
double val = transformed_hist_vec( b, 0 );
hist_->SetBinContent( b + 1, val );
}
// If the covariance matrix isn't defined, then we're done and can return
// early. Otherwise, we'll apply a corresponding transformation to the
// covariance matrix.
if ( !cmat_.cov_matrix_ ) return;
// Get the original covariance matrix as a std::unique_ptr< TMatrixD >
auto orig_cov = cmat_.get_matrix();
// Take the transpose of the transformation matrix
TMatrixD tr_mat( TMatrixD::kTransposed, mat );
// See https://stats.stackexchange.com/q/113700
TMatrixD transformed_cov = mat * ( *orig_cov ) * tr_mat;
// Create a new CovMatrix object using the transformed covariance matrix
CovMatrix transformed_cmat( transformed_cov );
// Replace the owned CovMatrix object with the new one
cmat_ = std::move( transformed_cmat );
// To wrap things up, set the updated histogram bin errors based on the
// diagonal elements of the covariance matrix
for ( int b = 0; b < num_bins; ++b ) {
double variance = cmat_.cov_matrix_->GetBinContent( b + 1, b + 1 );
double err = std::sqrt( std::max(0., variance) );
//double err = shape_errors_.at( b );
hist_->SetBinError( b + 1, err );
}
}
// Create a column vector with the current histogram bin contents
TMatrixD SliceHistogram::get_col_vect() const {
int num_bins = hist_->GetNbinsX();
TMatrixD hist_vec( num_bins, 1 );
for ( int b = 0; b < num_bins; ++b ) {
// Note that TH1D bin indices are one based while TMatrixD element indices
// are zero-based
double val = hist_->GetBinContent( b + 1 );
hist_vec( b, 0 ) = val;
}
return hist_vec;
}