-
Notifications
You must be signed in to change notification settings - Fork 2
/
GNN_node_classifier.py
557 lines (510 loc) · 20.2 KB
/
GNN_node_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
#coding=utf-8
import sys
import os
import math
import pickle
import numpy as np
import pandas
import tensorflow as tf
import scipy
import pickle
import rdkit
from rdkit import Chem
from rdkit.Chem import FunctionalGroups
from rdkit import DataStructs
from MOD_CompositeGNN import *
from MOD_CompositeGNN.CompositeGNN import *
from MOD_CompositeGNN import GNN_utils
from MOD_CompositeGNN.MLP import *
#network parameters
EPOCHS = 2000 #number of training epochs
STATE_DIM = 50 #node state dimension
HIDDEN_UNITS_OUT_NET = 200 #number of hidden units in the output network
LR = 0.0001 #learning rate
MAX_ITER = 6 #maximum number of state convergence iterations
VALIDATION_INTERVAL = 10 #interval between two validation checks, in training epochs
TRAINING_BATCHES = 10 #number of batches in which the training set should be split
DROPOUT_RATE = 0.0 #dropout rate for MLPs
AGGREGATION = "average" #can either be "average" or "sum"
ACTIVATION = "tanh" #activation function
SIDE_EFFECT_COUNT = 360 #number of side-effects to take into account
LABEL_DIM = [135, 140, SIDE_EFFECT_COUNT]
#gpu parameters
use_gpu = True
target_gpu = "1"
#script parameters
run_id = sys.argv[1]
execution_mode = sys.argv[2]
path_data = "Datasets/Nuovo/Output/Soglia_100/"
path_results = "Results/Nuovo/LinkPredictor/"+run_id+".txt"
tanimoto_threshold = 0.7
feature_fingerprint_size = 128
tanimoto_fingerprint_size = 2048
ontology_size = 113
splitting_seed = 3
validation_share = 0.1
test_share = 0.1
atomic_number = { 'Li':3, 'B':5, 'C':6, 'N':7, 'O':8, 'F':9, 'Mg':12, 'Al':13, 'P':15, 'S':16, 'Cl':17, 'K':19, 'Ca':20, 'Fe':26, 'Co':27, 'As':33, 'Br':35, 'I':53, 'Au':79 }
atomic_label = { 3:'Li', 5:'B', 6:'C', 7:'N', 8:'O', 9:'F', 12:'Mg', 13:'Al', 15:'P', 16:'S', 17:'Cl', 19:'K' ,20:'Ca', 26:'Fe', 27:'Co', 33:'As', 35:'Br', 53:'I', 79:'Au' }
label_translator = {'C':1, 'N':2, 'O':3, 'S':4, 'F':5, 'P':6, 'Cl':7, 'I':7, 'Br':7, 'Ca':8, 'Mg':8, 'K':8, 'Li':8, 'Co':8, 'As':8, 'B':8, 'Al':8, 'Au':8, 'Fe':8}
chromosome_dict = {'MT':0, '1':1, '2':2, '3':3, '4':4, '5':5, '6':6, '7':7, '8':8, '9':9, '10':10, '11':11, '12':12, '13':13, '14':14, '15':15, '16':16, '17':17, '18':18, '19':19, '20':20, '21':21, '22':22, 'X':23, 'Y':24}
#function that adjusts NaN features
def CheckedFeature(feature):
if feature is None:
return 0.0
if np.isnan(feature):
return 0.0
return feature
#function that binarizes a fingerprint
def BinarizedFingerprint(fp):
bfp = [0 for i in range(len(fp))]
for i in range(len(fp)):
if fp[i] > 0:
bfp[i] = 1
return bfp
#set target gpu as the only visible device
if use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"]=target_gpu
#select execution mode (either "full" or "short")
if execution_mode not in ["full", "short"]:
sys.exit("ERROR! Wrong execution mode: \""+str(execution_mode)+"\". Allowed values are \"full\" and \"short\". ")
if execution_mode == "full":
#load side-effect data
print("Loading side-effects")
in_file = open(path_data+"side_effects.pkl", 'rb')
side_effects = pickle.load(in_file)
in_file.close()
#load gene data
print("Loading genes")
in_file = open(path_data+"genes.pkl", 'rb')
genes = pickle.load(in_file)
in_file.close()
#load drug data
print("Loading drugs")
in_file = open(path_data+"drugs.pkl", 'rb')
drugs_pre = pickle.load(in_file)
in_file.close()
#load drug-side effect links
print("Loading drug - side-effects associations")
in_file = open(path_data+"drug_side_effect_links.pkl", 'rb')
links_dse = pickle.load(in_file)
in_file.close()
#load gene-gene links
print("Loading protein-protein interactions")
in_file = open(path_data+"gene_gene_links.pkl", 'rb')
links_gg = pickle.load(in_file)
in_file.close()
#load drug-gene links
print("Loading drug-gene links")
in_file = open(path_data+"drug_gene_links.pkl", 'rb')
links_dg = pickle.load(in_file)
in_file.close()
#load drug features
print("Loading drug features")
pubchem_data = pandas.read_csv(path_data+"pubchem_output.csv")
#load gene features
print("Loading gene features")
in_file = open(path_data+"gene_features.pkl", 'rb')
gene_data = pickle.load(in_file)
in_file.close()
#load gene ontology molecular function classification
print("Loading molecular function ontology data")
ontology = pandas.read_table(path_data+"david_output.tsv")
#preprocess drug ids
print("Preprocessing drug identifiers")
drugs = list()
for i in range(len(drugs_pre)):
drugs.append(str(int(drugs_pre[i][4:])))
#determine graph dimensions
print("Calculating graph dimensions")
CLASSES = len(side_effects) #number of outputs
n_nodes = len(drugs)+len(genes)
n_edges = 2*links_dg.shape[0]+2*links_gg.shape[0]
dim_node_label = max(LABEL_DIM)
type_mask = np.zeros((n_nodes,3), dtype=int)
#build id -> node number mappings
node_number = dict()
for i in range(len(drugs)):
node_number[str(drugs[i])] = i
type_mask[i][0] = 1
for i in range(len(genes)):
node_number[str(genes[i])] = i + len(drugs)
type_mask[i + len(drugs)][1] = 1
#build id -> class number mappings
class_number = dict()
for i in range(len(side_effects)):
class_number[side_effects[i]] = i
#build output mask
print("Building output mask")
output_mask = np.concatenate((np.ones(len(drugs)), np.zeros(len(genes))))
#build list of positive examples
print("Building list of positive examples")
positive_dsa_list = list()
for i in range(links_dse.shape[0]):
if str(int(links_dse[i][0][4:])) in node_number.keys():
#skip side-effects which were filtered out of the dataset
if links_dse[i][2] not in side_effects:
continue
positive_dsa_list.append((node_number[str(int(links_dse[i][0][4:]))],class_number[links_dse[i][2]]))
else:
sys.exit("ERROR: drug-side-effect link pointing to incorrect drug id")
#build node feature matrix
print("Building node feature matrix")
nodes = np.zeros((n_nodes, dim_node_label))
#build drug features
for i in pubchem_data.index:
#skip drugs which were filtered out of the dataset
if str(pubchem_data.at[i,'cid']) not in node_number.keys():
continue
nn = node_number[str(pubchem_data.at[i,'cid'])]
nodes[nn][0] = CheckedFeature(float(pubchem_data.at[i,'mw']))#molecular weight
nodes[nn][1] = CheckedFeature(float(pubchem_data.at[i,'polararea']))#polar area
nodes[nn][2] = CheckedFeature(float(pubchem_data.at[i,'xlogp']))#log octanal/water partition coefficient
nodes[nn][3] = CheckedFeature(float(pubchem_data.at[i,'heavycnt']))#heavy atom count
nodes[nn][4] = CheckedFeature(float(pubchem_data.at[i,'hbonddonor']))#hydrogen bond donors
nodes[nn][5] = CheckedFeature(float(pubchem_data.at[i,'hbondacc']))#hydrogen bond acceptors
nodes[nn][6] = CheckedFeature(float(pubchem_data.at[i,'rotbonds']))#number of rotatable bonds
#normalize drug features
print("Normalizing drug features")
for i in range(dim_node_label):
col_min = None
col_max = None
for j in range(n_nodes):
#skip zeros
if nodes[j][i] == 0:
continue
if col_min is None:
col_min = nodes[j][i]
if col_max is None:
col_max = nodes[j][i]
if nodes[j][i] < col_min:
col_min = nodes[j][i]
if nodes[j][i] > col_max:
col_max = nodes[j][i]
#do not normalize zero columns
if col_min is None or col_max is None:
continue
for j in range(nodes.shape[0]):
#do not normalize zeros
if nodes[j][i] == 0:
continue
nodes[j][i] = float(nodes[j][i] - col_min) / float(col_max - col_min)
#build dict of molecular structures
molecule_dict = dict()
for i in pubchem_data.index:
#skip drugs which were filtered out of the dataset
if str(pubchem_data.at[i,'cid']) not in node_number.keys():
continue
nn = node_number[str(pubchem_data.at[i,'cid'])]
molecule_dict[nn] = rdkit.Chem.MolFromSmiles(pubchem_data.at[i,'isosmiles'])
#build dicts of fingerprints
feature_fingerprint_dict = dict()
tanimoto_fingerprint_dict = dict()
for k in molecule_dict.keys():
feature_fingerprint_dict[k] = Chem.RDKFingerprint(molecule_dict[k], fpSize=feature_fingerprint_size)
tanimoto_fingerprint_dict[k] = Chem.RDKFingerprint(molecule_dict[k], fpSize=tanimoto_fingerprint_size)
#add fingerprints to drug node features
for i in pubchem_data.index:
#skip drugs which were filtered out of the dataset
if str(pubchem_data.at[i,'cid']) not in node_number.keys():
continue
nn = node_number[str(pubchem_data.at[i,'cid'])]
#get fingerprint from dictionary and convert it to numpy array
fingerprint = np.array((1,))
rdkit.DataStructs.cDataStructs.ConvertToNumpyArray(feature_fingerprint_dict[nn], fingerprint)
#add fingerprint
nodes[nn][-feature_fingerprint_size:] = fingerprint
#build list of drug-drug connections on the basis of chemical fingerprint similarity
ddc_list = list()
for i in range(len(drugs)):
for j in range(len(drugs)):
if i == j:
continue
tanimoto_coeff = DataStructs.TanimotoSimilarity(tanimoto_fingerprint_dict[node_number[drugs[i]]],tanimoto_fingerprint_dict[node_number[drugs[j]]])
if tanimoto_coeff >= tanimoto_threshold:
ddc_list.append([node_number[drugs[i]], node_number[drugs[j]]])
print("Adding "+str(len(ddc_list))+" drug-drug edges based on Tanimoto similarity ( coeff >= "+str(tanimoto_threshold)+" )")
n_edges = n_edges + len(ddc_list)
#build gene features
print("Adding gene features")
for i in range(gene_data.shape[0]):
#skip genes which were filtered out of the dataset
if gene_data[i,0] not in node_number.keys():
continue
nn = node_number[gene_data[i,0]]
nodes[nn][0] = float(gene_data[i,1])#dna strand (-1 or +1)
nodes[nn][1] = float(gene_data[i,2])#percent GC content (real value in [0,1])
nodes[nn][2+chromosome_dict[gene_data[i,4]]] = float(1)#one-hot encoding of chromosome
#add ontology features
start = 27
for i in ontology.index:
#collect list of genes associated to i-th term
gene_list = ontology.at[i,"Genes"].split(", ")
#add a "1" to each gene in the list in the (i+start)-th column
for g in gene_list:
#skip void strings (a by-product of splitting)
if g == "": continue
nn = node_number[g]
nodes[nn][start+i] = 1
#build target tensor
print("Building target tensor")
targets = np.zeros((len(drugs),len(side_effects)))
for p in positive_dsa_list:
targets[p[0]][p[1]] = 1
#select most common side effects
se_counts = np.sum(targets, axis=0)
sorted_counts = np.sort(-se_counts)
se_count_threshold = -sorted_counts[SIDE_EFFECT_COUNT-1]
del_indices = list()
for i in range(targets.shape[1]):
if se_counts[i] < se_count_threshold:
del_indices.append(i)
for i in range(targets.shape[1]):
if se_counts[i] == se_count_threshold and len(del_indices) < CLASSES - SIDE_EFFECT_COUNT:
del_indices.append(i)
targets = np.delete(targets, del_indices, axis=1)
CLASSES = SIDE_EFFECT_COUNT
if targets.shape[1] != CLASSES:
sys.exit("ERROR: Error while selecting most common side-effect")
#build arcs tensor
print("Building arc tensor")
arcs = np.zeros((n_edges,2), dtype=int)
l = 0
#add drug-gene edges
for i in range(links_dg.shape[0]):
arcs[l][:] = [node_number[str(int(links_dg[i][0]))],node_number[str(links_dg[i][1])]]
arcs[l+1][:] = [node_number[str(links_dg[i][1])],node_number[str(int(links_dg[i][0]))]]
l = l+2
#add gene-gene edges
for i in range(links_gg.shape[0]):
arcs[l][:] = [node_number[str(links_gg[i][0])],node_number[str(links_gg[i][1])]]
arcs[l+1][:] = [node_number[str(links_gg[i][1])],node_number[str(links_gg[i][0])]]
l = l+2
#add drug-drug edges
for ddc in ddc_list:
arcs[l][:] = ddc
l = l+1
arcs = np.array(arcs)
### DEBUG START ###
### DEBUG: calculate graph diameter
'''
print("Calculating graph diameter")
import networkx as nx
g = nx.Graph()
for i in range(len(nodes)):
g.add_node(i)
for i in range(len(arcs)):
g.add_edge(arcs[i][0], arcs[i][1])
diameter = nx.algorithms.distance_measures.diameter(g)
print("Graph Diameter = "+str(diameter))
sys.exit()
'''
### DEBUG STOP ###
### DEBUG START ###
### DEBUG: print final list of genes
'''
print("Printing final list of genes")
out_file = open("gene_ids.txt", 'w')
for g in genes:
out_file.write(g+"\n")
out_file.close()
sys.exit()
'''
### DEBUG STOP ###
#split the dataset
print("Splitting the dataset")
validation_size = int(validation_share*targets.shape[0])
test_size = int(test_share*targets.shape[0])
index = np.array(list(range(targets.shape[0])))
np.random.seed(splitting_seed)
np.random.shuffle(index)
test_index = index[:test_size]
validation_index = index[test_size:test_size+validation_size]
training_index = index[test_size+validation_size:]
#build set masks
te_mask = np.zeros(targets.shape[0], dtype=int)
va_mask = np.zeros(targets.shape[0], dtype=int)
tr_mask = np.zeros(targets.shape[0], dtype=int)
for i in test_index:
te_mask[i] = 1
for i in validation_index:
va_mask[i] = 1
for i in training_index:
tr_mask[i] = 1
#concatenate all-zero set mask extensions for gene nodes
te_mask = np.concatenate((te_mask,np.zeros(len(genes), dtype=int)))
va_mask = np.concatenate((va_mask,np.zeros(len(genes), dtype=int)))
tr_mask = np.concatenate((tr_mask,np.zeros(len(genes), dtype=int)))
### DEBUG START ###
'''
print("Printing dimensions of dataset components")
print(nodes.shape)
print(arcs.shape)
print(expanded_targets.shape)
print(tr_mask.shape)
print(va_mask.shape)
print(te_mask.shape)
print(type_mask.shape)
sys.exit()
'''
### DEBUG STOP ###
#split the training set into batches
batch_sizes = [int(len(training_index)/TRAINING_BATCHES) for i in range(TRAINING_BATCHES)]
i = 0
while sum(batch_sizes) < len(training_index):
batch_sizes[i] += 1
i = i + 1
tr_batch_index = list()
START=0
for i in range(TRAINING_BATCHES):
STOP = START+batch_sizes[i]
tr_batch_index.append(training_index[START:STOP])
START = STOP
#build transductive training batches
print("Building CompositeGraphObjects")
tr_graphs = list()
for i in range(TRAINING_BATCHES):
batch_nodes = np.copy(nodes)
batch_mask = np.copy(tr_mask)
#substitute features of nodes outside the batch with transductive features
for j in training_index:
if j not in tr_batch_index[i]:
batch_nodes[j,0:CLASSES] = targets[j,:]
#change node type to transductive
type_mask[j,0] = 0
type_mask[j,2] = 1
#change set mask
batch_mask[j] = 0
#build batch CompositeGraphObject
tr_graphs.append( CompositeGraphObject(arcs, batch_nodes, targets, type_mask, LABEL_DIM, 'n', batch_mask, output_mask, aggregation_mode=AGGREGATION) )
#build transductive validation set
va_nodes = np.copy(nodes)
#substitute features of training set nodes with transductive features
for j in training_index:
va_nodes[j,0:CLASSES] = targets[j,:]
#change node type to transductive
type_mask[j,0] = 0
type_mask[j,2] = 1
#build validation CompositeGraphObject
va_graph = CompositeGraphObject(arcs, va_nodes, targets, type_mask, LABEL_DIM, 'n', va_mask, output_mask, aggregation_mode=AGGREGATION)
#build transductive test set
te_nodes = np.copy(nodes)
#substitute features of training set and validation set nodes with transductive features
for j in np.concatenate((training_index,validation_index)):
te_nodes[j,0:CLASSES] = targets[j,:]
#change node type to transductive
type_mask[j,0] = 0
type_mask[j,2] = 1
#build test CompositeGraphObject
te_graph = CompositeGraphObject(arcs, te_nodes, targets, type_mask, LABEL_DIM, 'n', te_mask, output_mask, aggregation_mode=AGGREGATION)
#save CompositeGraphObjects
if not os.path.exists("SavedBatches/"):
os.makedirs("SavedBatches/")
for i in range(TRAINING_BATCHES):
print("Saving training batch "+str(i+1)+" of "+str(TRAINING_BATCHES), end='\r')
out_file = open("SavedBatches/train_"+str(i)+".pkl", "wb")
pickle.dump(tr_graphs[i], out_file)
out_file.close()
print("")
print("Saving validation batch")
out_file = open("SavedBatches/validation.pkl", "wb")
pickle.dump(va_graph, out_file)
out_file.close()
print("Saving test batch")
out_file = open("SavedBatches/test.pkl", "wb")
pickle.dump(te_graph, out_file)
out_file.close()
#if execution mode is short load pre-saved CompositeGraphObjects
if execution_mode == "short":
tr_graphs = list()
for i in range(TRAINING_BATCHES):
print("Loading training batch "+str(i+1)+" of "+str(TRAINING_BATCHES), end='\r')
in_file = open("SavedBatches/train_"+str(i)+".pkl", "rb")
tr_graphs.append(pickle.load(in_file))
in_file.close()
print("")
print("Loading validation batch")
in_file = open("SavedBatches/validation.pkl", "rb")
va_graph = pickle.load(in_file)
in_file.close()
print("Loading test batch")
in_file = open("SavedBatches/test.pkl", "rb")
te_graph = pickle.load(in_file)
in_file.close()
#determine number of classes
CLASSES = te_graph.getTargets().shape[1]
#build network
print("Building Graph Neural Network")
netSt_drugs = MLP(input_dim=2*STATE_DIM+LABEL_DIM[0]+sum(LABEL_DIM), layers=[STATE_DIM], activations=[ACTIVATION],
kernel_initializer=[tf.keras.initializers.GlorotNormal() for i in range(1)],
bias_initializer=[tf.keras.initializers.GlorotNormal() for i in range(1)],
kernel_regularizer=[tf.keras.regularizers.L2(0.01) for i in range(1)],
bias_regularizer=[tf.keras.regularizers.L2(0.01) for i in range(1)],
dropout_rate=DROPOUT_RATE, dropout_pos=1)
netSt_genes = MLP(input_dim=2*STATE_DIM+LABEL_DIM[1]+sum(LABEL_DIM), layers=[STATE_DIM], activations=[ACTIVATION],
kernel_initializer=[tf.keras.initializers.GlorotNormal() for i in range(1)],
bias_initializer=[tf.keras.initializers.GlorotNormal() for i in range(1)],
kernel_regularizer=[tf.keras.regularizers.L2(0.01) for i in range(1)],
bias_regularizer=[tf.keras.regularizers.L2(0.01) for i in range(1)],
dropout_rate=DROPOUT_RATE, dropout_pos=1)
netOut = MLP(input_dim=STATE_DIM+max(LABEL_DIM), layers=[HIDDEN_UNITS_OUT_NET,CLASSES], activations=[ACTIVATION, 'sigmoid'],
kernel_initializer=[tf.keras.initializers.GlorotNormal() for i in range(2)],
bias_initializer=[tf.keras.initializers.GlorotNormal() for i in range(2)],
kernel_regularizer=[tf.keras.regularizers.L2(0.01) for i in range(2)],
bias_regularizer=[tf.keras.regularizers.L2(0.01) for i in range(2)],
dropout_rate=DROPOUT_RATE, dropout_pos=1)
model = CompositeGNNnodeBased([netSt_drugs, netSt_genes], netOut, optimizer = tf.keras.optimizers.Adam(LR), loss_function = tf.keras.losses.binary_crossentropy, loss_arguments=None, state_vect_dim = STATE_DIM, max_iteration=MAX_ITER, threshold=0.001, addressed_problem='c')
#train the network
print("Training Graph Neural Network")
model.train(tr_graphs, EPOCHS, va_graph, update_freq=10, max_fails=10)
#evaluate the network
print("Evaluating Graph Neural Network")
iterations, loss, targets, outputs = model.evaluate_single_graph(te_graph, training=False)
#calculate results
TP = [0 for j in range(CLASSES)]
TN = [0 for j in range(CLASSES)]
FP = [0 for j in range(CLASSES)]
FN = [0 for j in range(CLASSES)]
exact_matches = 0
for i in range(targets.shape[0]):
exact_match = True
for j in range(CLASSES):
if targets[i][j] > 0.5:
if outputs[i][j] > 0.5:
TP[j] += 1
else:
FN[j] += 1
exact_match = False
else:
if outputs[i][j] > 0.5:
FP[j] += 1
exact_match = False
else:
TN[j] += 1
if exact_match:
exact_matches += 1
accuracy = [ float(TP[j]+TN[j])/float(TP[j]+TN[j]+FP[j]+FN[j]) for j in range(CLASSES)]
precision = [ float(TP[j])/float(TP[j]+FP[j]) if TP[j]+FP[j] > 0 else 0.0 for j in range(CLASSES)]
recall = [ float(TP[j])/float(TP[j]+FN[j]) if TP[j]+FN[j] > 0 else 0.0 for j in range(CLASSES)]
#calculate global metrics
EMR = float(exact_matches) / targets.shape[0]
global_accuracy = float(sum(TP)+sum(TN))/float(sum(TP)+sum(TN)+sum(FP)+sum(FN))
global_sensitivity = 0.0
if float(sum(TP)+sum(FN)) > 0: global_sensitivity = float(sum(TP))/float(sum(TP)+sum(FN))
global_specificity = 0.0
if float(sum(FP)+sum(TN)) > 0: global_specificity = float(sum(TN))/float(sum(FP)+sum(TN))
global_balanced_accuracy = float(global_specificity+global_sensitivity)/2
print("TP = "+str(sum(TP))+" , TN = "+str(sum(TN)))
print("FP = "+str(sum(FP))+" , FN = "+str(sum(FN)))
print("Class Precision:")
print(precision)
print("")
print("Class Recall:")
print(recall)
print("")
print("Class Accuracy:")
print(accuracy)
print("")
print("Global Accuracy:\n"+str(global_accuracy))
print("\nGlobal Balanced Accuracy:\n"+str(global_balanced_accuracy))
print("\nExact Match Ratio:\n"+str(EMR))