-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
337 lines (292 loc) · 13.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the MIT License.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# MIT License for more details.
import os
import random
import numpy as np
import torch
import tgt
from params import seed as random_seed
from params import n_mels, train_frames
def get_test_speakers():
test_speakers = ['1401', '2238', '3723', '4014', '5126',
'5322', '587', '6415', '8057', '8534']
return test_speakers
def get_vctk_unseen_speakers():
unseen_speakers = ['p252', 'p261', 'p241', 'p238', 'p243',
'p294', 'p334', 'p343', 'p360', 'p362']
return unseen_speakers
def get_vctk_unseen_sentences():
unseen_sentences = ['001', '002', '003', '004', '005']
return unseen_sentences
# exclude utterances where MFA couldn't recognize some words
def exclude_spn(data_dir, spk, mel_ids):
res = []
for mel_id in mel_ids:
textgrid = mel_id + '.TextGrid'
t = tgt.io.read_textgrid(os.path.join(data_dir, 'textgrids', spk, textgrid))
t = t.get_tier_by_name('phones')
spn_found = False
for i in range(len(t)):
if t[i].text == 'spn':
spn_found = True
break
if not spn_found:
res.append(mel_id)
return res
# LibriTTS dataset for training "average voice" encoder
class VCEncDataset(torch.utils.data.Dataset):
def __init__(self, data_dir, exc_file, avg_type):
self.mel_x_dir = os.path.join(data_dir, 'mels')
self.mel_y_dir = os.path.join(data_dir, 'mels_%s' % avg_type)
self.test_speakers = get_test_speakers()
self.speakers = [spk for spk in os.listdir(self.mel_x_dir)
if spk not in self.test_speakers]
with open(exc_file) as f:
exceptions = f.readlines()
self.exceptions = [e.strip() + '_mel.npy' for e in exceptions]
self.test_info = []
self.train_info = []
for spk in self.speakers:
mel_ids = os.listdir(os.path.join(self.mel_x_dir, spk))
mel_ids = [m[:-8] for m in mel_ids if m not in self.exceptions]
mel_ids = exclude_spn(data_dir, spk, mel_ids)
self.train_info += [(m, spk) for m in mel_ids]
for spk in self.test_speakers:
mel_ids = os.listdir(os.path.join(self.mel_x_dir, spk))
mel_ids = [m[:-8] for m in mel_ids]
self.test_info += [(m, spk) for m in mel_ids]
print("Total number of test wavs is %d." % len(self.test_info))
print("Total number of training wavs is %d." % len(self.train_info))
random.seed(random_seed)
random.shuffle(self.train_info)
def get_vc_data(self, mel_id, spk):
mel_x_path = os.path.join(self.mel_x_dir, spk, mel_id + '_mel.npy')
mel_y_path = os.path.join(self.mel_y_dir, spk, mel_id + '_avgmel.npy')
mel_x = np.load(mel_x_path)
mel_y = np.load(mel_y_path)
mel_x = torch.from_numpy(mel_x).float()
mel_y = torch.from_numpy(mel_y).float()
return (mel_x, mel_y)
def __getitem__(self, index):
mel_id, spk = self.train_info[index]
mel_x, mel_y = self.get_vc_data(mel_id, spk)
item = {'x': mel_x, 'y': mel_y}
return item
def __len__(self):
return len(self.train_info)
def get_test_dataset(self):
pairs = []
for i in range(len(self.test_info)):
mel_id, spk = self.test_info[i]
mel_x, mel_y = self.get_vc_data(mel_id, spk)
pairs.append((mel_x, mel_y))
return pairs
# VCTK dataset for training "average voice" encoder
class VCTKEncDataset(torch.utils.data.Dataset):
def __init__(self, data_dir, exc_file, avg_type):
self.mel_x_dir = os.path.join(data_dir, 'mels')
self.mel_y_dir = os.path.join(data_dir, 'mels_%s' % avg_type)
self.unseen_speakers = get_vctk_unseen_speakers()
self.unseen_sentences = get_vctk_unseen_sentences()
self.speakers = [spk for spk in os.listdir(self.mel_x_dir)
if spk not in self.unseen_speakers]
with open(exc_file) as f:
exceptions = f.readlines()
self.exceptions = [e.strip() + '_mel.npy' for e in exceptions]
self.test_info = []
self.train_info = []
for spk in self.speakers:
mel_ids = os.listdir(os.path.join(self.mel_x_dir, spk))
mel_ids = [m for m in mel_ids if m.split('_')[1] not in self.unseen_sentences]
mel_ids = [m[:-8] for m in mel_ids if m not in self.exceptions]
mel_ids = exclude_spn(data_dir, spk, mel_ids)
self.train_info += [(m, spk) for m in mel_ids]
for spk in self.unseen_speakers:
mel_ids = os.listdir(os.path.join(self.mel_x_dir, spk))
mel_ids = [m for m in mel_ids if m.split('_')[1] not in self.unseen_sentences]
mel_ids = [m[:-8] for m in mel_ids if m not in self.exceptions]
self.test_info += [(m, spk) for m in mel_ids]
print("Total number of test wavs is %d." % len(self.test_info))
print("Total number of training wavs is %d." % len(self.train_info))
random.seed(random_seed)
random.shuffle(self.train_info)
def get_vc_data(self, mel_id, spk):
mel_x_path = os.path.join(self.mel_x_dir, spk, mel_id + '_mel.npy')
mel_y_path = os.path.join(self.mel_y_dir, spk, mel_id + '_avgmel.npy')
mel_x = np.load(mel_x_path)
mel_y = np.load(mel_y_path)
mel_x = torch.from_numpy(mel_x).float()
mel_y = torch.from_numpy(mel_y).float()
return (mel_x, mel_y)
def __getitem__(self, index):
mel_id, spk = self.train_info[index]
mel_x, mel_y = self.get_vc_data(mel_id, spk)
item = {'x': mel_x, 'y': mel_y}
return item
def __len__(self):
return len(self.train_info)
def get_test_dataset(self):
pairs = []
for i in range(len(self.test_info)):
mel_id, spk = self.test_info[i]
mel_x, mel_y = self.get_vc_data(mel_id, spk)
pairs.append((mel_x, mel_y))
return pairs
class VCEncBatchCollate(object):
def __call__(self, batch):
B = len(batch)
mels_x = torch.zeros((B, n_mels, train_frames), dtype=torch.float32)
mels_y = torch.zeros((B, n_mels, train_frames), dtype=torch.float32)
max_starts = [max(item['x'].shape[-1] - train_frames, 0)
for item in batch]
starts = [random.choice(range(m)) if m > 0 else 0 for m in max_starts]
mel_lengths = []
for i, item in enumerate(batch):
mel_x = item['x']
mel_y = item['y']
if mel_x.shape[-1] < train_frames:
mel_length = mel_x.shape[-1]
else:
mel_length = train_frames
mels_x[i, :, :mel_length] = mel_x[:, starts[i]:starts[i] + mel_length]
mels_y[i, :, :mel_length] = mel_y[:, starts[i]:starts[i] + mel_length]
mel_lengths.append(mel_length)
mel_lengths = torch.LongTensor(mel_lengths)
return {'x': mels_x, 'y': mels_y, 'lengths': mel_lengths}
# LibriTTS dataset for training speaker-conditional diffusion-based decoder
class VCDecDataset(torch.utils.data.Dataset):
def __init__(self, data_dir, val_file, exc_file):
self.mel_dir = os.path.join(data_dir, 'mels')
self.emb_dir = os.path.join(data_dir, 'embeds')
self.test_speakers = get_test_speakers()
self.speakers = [spk for spk in os.listdir(self.mel_dir)
if spk not in self.test_speakers]
self.speakers = [spk for spk in self.speakers
if len(os.listdir(os.path.join(self.mel_dir, spk))) >= 10]
random.seed(random_seed)
random.shuffle(self.speakers)
with open(exc_file) as f:
exceptions = f.readlines()
self.exceptions = [e.strip() + '_mel.npy' for e in exceptions]
with open(val_file) as f:
valid_ids = f.readlines()
self.valid_ids = set([v.strip() + '_mel.npy' for v in valid_ids])
self.exceptions += self.valid_ids
self.valid_info = [(v[:-8], v.split('_')[0]) for v in self.valid_ids]
self.train_info = []
for spk in self.speakers:
mel_ids = os.listdir(os.path.join(self.mel_dir, spk))
mel_ids = [m for m in mel_ids if m not in self.exceptions]
self.train_info += [(i[:-8], spk) for i in mel_ids]
print("Total number of validation wavs is %d." % len(self.valid_info))
print("Total number of training wavs is %d." % len(self.train_info))
print("Total number of training speakers is %d." % len(self.speakers))
random.seed(random_seed)
random.shuffle(self.train_info)
def get_vc_data(self, audio_info):
audio_id, spk = audio_info
mels = self.get_mels(audio_id, spk)
embed = self.get_embed(audio_id, spk)
return (mels, embed)
def get_mels(self, audio_id, spk):
mel_path = os.path.join(self.mel_dir, spk, audio_id + '_mel.npy')
mels = np.load(mel_path)
mels = torch.from_numpy(mels).float()
return mels
def get_embed(self, audio_id, spk):
embed_path = os.path.join(self.emb_dir, spk, audio_id + '_embed.npy')
embed = np.load(embed_path)
embed = torch.from_numpy(embed).float()
return embed
def __getitem__(self, index):
mels, embed = self.get_vc_data(self.train_info[index])
item = {'mel': mels, 'c': embed}
return item
def __len__(self):
return len(self.train_info)
def get_valid_dataset(self):
pairs = []
for i in range(len(self.valid_info)):
mels, embed = self.get_vc_data(self.valid_info[i])
pairs.append((mels, embed))
return pairs
# VCTK dataset for training speaker-conditional diffusion-based decoder
class VCTKDecDataset(torch.utils.data.Dataset):
def __init__(self, data_dir):
self.mel_dir = os.path.join(data_dir, 'mels')
self.emb_dir = os.path.join(data_dir, 'embeds')
self.unseen_speakers = get_vctk_unseen_speakers()
self.unseen_sentences = get_vctk_unseen_sentences()
self.speakers = [spk for spk in os.listdir(self.mel_dir)
if spk not in self.unseen_speakers]
random.seed(random_seed)
random.shuffle(self.speakers)
self.train_info = []
for spk in self.speakers:
mel_ids = os.listdir(os.path.join(self.mel_dir, spk))
mel_ids = [m for m in mel_ids if m.split('_')[1] not in self.unseen_sentences]
self.train_info += [(i[:-8], spk) for i in mel_ids]
self.valid_info = []
for spk in self.unseen_speakers:
mel_ids = os.listdir(os.path.join(self.mel_dir, spk))
mel_ids = [m for m in mel_ids if m.split('_')[1] not in self.unseen_sentences]
self.valid_info += [(i[:-8], spk) for i in mel_ids]
print("Total number of validation wavs is %d." % len(self.valid_info))
print("Total number of training wavs is %d." % len(self.train_info))
print("Total number of training speakers is %d." % len(self.speakers))
random.seed(random_seed)
random.shuffle(self.train_info)
def get_vc_data(self, audio_info):
audio_id, spk = audio_info
mels = self.get_mels(audio_id, spk)
embed = self.get_embed(audio_id, spk)
return (mels, embed)
def get_mels(self, audio_id, spk):
mel_path = os.path.join(self.mel_dir, spk, audio_id + '_mel.npy')
mels = np.load(mel_path)
mels = torch.from_numpy(mels).float()
return mels
def get_embed(self, audio_id, spk):
embed_path = os.path.join(self.emb_dir, spk, audio_id + '_embed.npy')
embed = np.load(embed_path)
embed = torch.from_numpy(embed).float()
return embed
def __getitem__(self, index):
mels, embed = self.get_vc_data(self.train_info[index])
item = {'mel': mels, 'c': embed}
return item
def __len__(self):
return len(self.train_info)
def get_valid_dataset(self):
pairs = []
for i in range(len(self.valid_info)):
mels, embed = self.get_vc_data(self.valid_info[i])
pairs.append((mels, embed))
return pairs
class VCDecBatchCollate(object):
def __call__(self, batch):
B = len(batch)
mels1 = torch.zeros((B, n_mels, train_frames), dtype=torch.float32)
mels2 = torch.zeros((B, n_mels, train_frames), dtype=torch.float32)
max_starts = [max(item['mel'].shape[-1] - train_frames, 0)
for item in batch]
starts1 = [random.choice(range(m)) if m > 0 else 0 for m in max_starts]
starts2 = [random.choice(range(m)) if m > 0 else 0 for m in max_starts]
mel_lengths = []
for i, item in enumerate(batch):
mel = item['mel']
if mel.shape[-1] < train_frames:
mel_length = mel.shape[-1]
else:
mel_length = train_frames
mels1[i, :, :mel_length] = mel[:, starts1[i]:starts1[i] + mel_length]
mels2[i, :, :mel_length] = mel[:, starts2[i]:starts2[i] + mel_length]
mel_lengths.append(mel_length)
mel_lengths = torch.LongTensor(mel_lengths)
embed = torch.stack([item['c'] for item in batch], 0)
return {'mel1': mels1, 'mel2': mels2, 'mel_lengths': mel_lengths, 'c': embed}