forked from drishti-agarwal/E-yantra_self-balancing-bot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensor data.m
258 lines (191 loc) · 7.12 KB
/
sensor data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
clear all;
global A = csvread('sensor_data.csv'); #do not change this line
#global C = csvread('csv_output_eyantra.csv'); #do not change this line
global on1_accx =0; # holds value of y[n-1] for x-axis of accelerometer
global on1_accy =0; # holds value of y[n-1] for y-axis of accelerometer
global on1_accz =0; # holds value of y[n-1] for z-axis of accelerometer
global on1_gyrx =0; # holds value of y[n-1] for x-axis of gyroscope
global on1_gyry =0; # holds value of y[n-1] for y-axis of gyroscope
global on1_gyrz =0; # holds value of y[n-1] for z-axis of gyroscope
global in1_gyrx =0; # holds value of x[n-1] for x-axis of gyroscope
global in1_gyry=0; # holds value of x[n-1] for y-axis of gyroscope
global in1_gyrz=0; # holds value of x[n-1] for z-axis of gyroscope
global angle_pitch = 0; # holds value of pitch angle
global angle_roll = 0; # holds value of roll angle
################################################
#######Declare your global variables here#######
################################################
function acc_filter=read_accel(axl,axh,ayl,ayh,azl,azh)
#################################################
####### Write a code here to combine the ########
#### HIGH and LOW values from ACCELEROMETER #####
#################################################
## conversion of 8-bit raw data to 16-bit signed data for accelerometer ##
axl = dec2bin (axl,8);
axh = dec2bin (axh,8);
ax = strcat(axh,axl);
ax = bin2dec(ax);
if ax>32767
ax = ax - 65536;
endif
ayl = dec2bin (ayl,8);
ayh = dec2bin (ayh,8);
ay = strcat(ayh,ayl);
ay = bin2dec(ay);
if ay>32767
ay = ay - 65536;
endif
azl = dec2bin (azl,8);
azh = dec2bin (azh,8);
az = strcat(azh,azl);
az = bin2dec(az);
if az>32767
az = az - 65536;
endif
####################################################
# Call function lowpassfilter(ax,ay,az,f_cut) here #
####################################################
#disp([ax,ay,az])
acc_filter = lowpassfilter(ax,ay,az,5);
endfunction
function gyro_filter=read_gyro(gxl,gxh,gyl,gyh,gzl,gzh)
#################################################
####### Write a code here to combine the ########
###### HIGH and LOW values from GYROSCOPE #######
#################################################
## conversion of 8-bit raw data to 16-bit signed data for gyroscope ##
gxl = dec2bin (gxl,8);
gxh = dec2bin (gxh,8);
gx = strcat(gxh,gxl);
gx = bin2dec(gx);
if gx > 32767
gx = gx - 65536;
endif
gyl = dec2bin (gyl,8);
gyh = dec2bin (gyh,8);
gy = strcat(gyh,gyl);
gy = bin2dec (gy);
if gy>32767
gy = gy - 65536;
endif
gzl = dec2bin (gzl,8);
gzh = dec2bin (gzh,8);
gz = strcat(gzh,gzl);
gz = bin2dec (gz);
if gz>32767
gz = gz - 65536;
endif
#####################################################
# Call function highpassfilter(ax,ay,az,f_cut) here #
#####################################################;
gyro_filter = highpassfilter(gx,gy,gz,5);
endfunction
function On_acc = lowpassfilter(ax,ay,az,f_cut)
## scaling factor for accelerometer ##
scale_acc = 16384;
global on1_accx;
global on1_accy;
global on1_accz;
dT = 1/100; #time in seconds
Tau = 1/(2*pi*f_cut);
alpha = Tau/(Tau+dT); #do not change this line
################################################
##############Write your code here##############
################################################
## pass raw data of accelerometer to lowpassfilter for each axis ##
On_x = ((1-alpha)*ax) + (alpha*on1_accx);
on1_accx = On_x;
On_y = ((1-alpha)*ay) + (alpha*on1_accy);
on1_accy = On_y;
On_z = ((1-alpha)*az) + (alpha*on1_accz);
on1_accz = On_z;
On_acc = [On_x/scale_acc,On_y/scale_acc,On_z/scale_acc];
endfunction
function On_gyr = highpassfilter(gx,gy,gz,f_cut)
## scaling factor for gyroscope ##
scale_gyr = 131;
global on1_gyrx;
global on1_gyry;
global on1_gyrz;
global in1_gyrx;
global in1_gyry;
global in1_gyrz;
dT = 1/100; #time in seconds
Tau = 1/(2*pi*f_cut);
alpha = Tau/(Tau+dT); #do not change this line
################################################
##############Write your code here##############
################################################
## pass raw data of gyroscope to highpassfilter for each axis ##
On_x = (1-alpha)*on1_gyrx + (1-alpha)*(gx-in1_gyrx);
on1_gyrx = On_x;
in1_gyrx = gx;
On_y = (1-alpha)*on1_gyry + (1-alpha)*(gy-in1_gyry);
on1_gyry = On_y;
in1_gyry = gy;
On_z = (1-alpha)*on1_gyrz + (1-alpha)*(gz-in1_gyrz);
on1_gyrz = On_z;
in1_gyrz = gz;
On_gyr = [On_x/scale_gyr,On_y/scale_gyr,On_z/scale_gyr];
endfunction
function pitch = comp_filter_pitch(ay,az,gx)
alpha = 0.03;
dt = 0.01;
global angle_pitch;
##############################################
####### Write a code here to calculate ######
####### PITCH using complementry filter ######
##############################################
acc_data = atan(ay/abs(az))* 57.295;
gyr_data = -gx;
## combining filtered value of lowpassfilter and highpassfilter ##
## to calculate pitch angle ##
angle_pitch=((1-alpha)*(angle_pitch+(gyr_data*dt)))+(alpha*acc_data);
pitch = angle_pitch;
endfunction
function roll = comp_filter_roll(ax,az,gy)
alpha = 0.03;
dt = 0.01;
global angle_roll;
##############################################
####### Write a code here to calculate #######
####### ROLL using complementry filter #######
##############################################
acc_data = atan(ax/abs(az))* 57.295;
gyr_data = -gy;
## combining filtered value of lowpassfilter and highpassfilter ##
## to calculate roll angle ##
angle_roll=((1-alpha)*(angle_roll+(gyr_data*dt)))+(alpha*acc_data);
roll = angle_roll;
endfunction
function execute_code
global A;
#global C;
B = [];
for n = 1:rows(A) #do not change this line
#disp(n);
ax_h = A(n,1);
ax_l = A(n,2);
ay_h = A(n,3);
ay_l = A(n,4);
az_h = A(n,5);
az_l = A(n,6);
gx_h = A(n,7);
gx_l = A(n,8);
gy_h = A(n,9);
gy_l = A(n,10);
gz_h = A(n,11);
gz_l = A(n,12);
filtered_acc = read_accel(ax_l,ax_h,ay_l,ay_h,az_l,az_h);
filtered_gyr = read_gyro(gx_l,gx_h,gy_l,gy_h,gz_l,gz_h);
###############################################
####### Write a code here to calculate #######
####### PITCH using complementry filter #######
###############################################
B(n,1) = comp_filter_pitch(filtered_acc(2),filtered_acc(3),filtered_gyr(1));
B(n,2) = comp_filter_roll(filtered_acc(1),filtered_acc(3),filtered_gyr(2));
endfor
csvwrite('output_data.csv',B); #do not change this line
#plot(B(1:1000,1),color='b',C(1:1000,1),color='r');
endfunction
execute_code #do not change this line