-
Notifications
You must be signed in to change notification settings - Fork 124
/
bert_utils.py
executable file
·143 lines (118 loc) · 4.46 KB
/
bert_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import json
import math
import re
import six
import tensorflow as tf
def get_shape_list(tensor, expected_rank=None, name=None):
"""Returns a list of the shape of tensor, preferring static dimensions.
Args:
tensor: A tf.Tensor object to find the shape of.
expected_rank: (optional) int. The expected rank of `tensor`. If this is
specified and the `tensor` has a different rank, and exception will be
thrown.
name: Optional name of the tensor for the error message.
Returns:
A list of dimensions of the shape of tensor. All static dimensions will
be returned as python integers, and dynamic dimensions will be returned
as tf.Tensor scalars.
"""
if name is None:
name = tensor.name
if expected_rank is not None:
assert_rank(tensor, expected_rank, name)
shape = tensor.shape.as_list()
non_static_indexes = []
for (index, dim) in enumerate(shape):
if dim is None:
non_static_indexes.append(index)
if not non_static_indexes:
return shape
dyn_shape = tf.shape(tensor)
for index in non_static_indexes:
shape[index] = dyn_shape[index]
return shape
def reshape_to_matrix(input_tensor):
"""Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
ndims = input_tensor.shape.ndims
if ndims < 2:
raise ValueError("Input tensor must have at least rank 2. Shape = %s" %
(input_tensor.shape))
if ndims == 2:
return input_tensor
width = input_tensor.shape[-1]
output_tensor = tf.reshape(input_tensor, [-1, width])
return output_tensor
def reshape_from_matrix(output_tensor, orig_shape_list):
"""Reshapes a rank 2 tensor back to its original rank >= 2 tensor."""
if len(orig_shape_list) == 2:
return output_tensor
output_shape = get_shape_list(output_tensor)
orig_dims = orig_shape_list[0:-1]
width = output_shape[-1]
return tf.reshape(output_tensor, orig_dims + [width])
def assert_rank(tensor, expected_rank, name=None):
"""Raises an exception if the tensor rank is not of the expected rank.
Args:
tensor: A tf.Tensor to check the rank of.
expected_rank: Python integer or list of integers, expected rank.
name: Optional name of the tensor for the error message.
Raises:
ValueError: If the expected shape doesn't match the actual shape.
"""
if name is None:
name = tensor.name
expected_rank_dict = {}
if isinstance(expected_rank, six.integer_types):
expected_rank_dict[expected_rank] = True
else:
for x in expected_rank:
expected_rank_dict[x] = True
actual_rank = tensor.shape.ndims
if actual_rank not in expected_rank_dict:
scope_name = tf.get_variable_scope().name
raise ValueError(
"For the tensor `%s` in scope `%s`, the actual rank "
"`%d` (shape = %s) is not equal to the expected rank `%s`" %
(name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
sequence_shape = get_shape_list(sequence_tensor, expected_rank=3)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
# add sequence mask for:
# 1. random shuffle lm modeling---xlnet with random shuffled input
# 2. left2right and right2left language modeling
# 3. conditional generation
def generate_seq2seq_mask(attention_mask, mask_sequence, seq_type, **kargs):
if seq_type == 'seq2seq':
if mask_sequence is not None:
seq_shape = get_shape_list(mask_sequence, expected_rank=2)
seq_len = seq_shape[1]
ones = tf.ones((1, seq_len, seq_len))
a_mask = tf.matrix_band_part(ones, -1, 0)
s_ex12 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 2)
s_ex13 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 3)
a_mask = (1 - s_ex13) * (1 - s_ex12) + s_ex13 * a_mask
# generate mask of batch x seq_len x seq_len
a_mask = tf.reshape(a_mask, (-1, seq_len, seq_len))
out_mask = attention_mask * a_mask
else:
ones = tf.ones_like(attention_mask[:1])
mask = (tf.matrix_band_part(ones, -1, 0))
out_mask = attention_mask * mask
else:
out_mask = attention_mask
return out_mask